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2 Éole polytehnique, Laboratoire d'informatique (LIX),91128 Palaiseau Cedex, FraneAbstrat. We study minimisation of integer linear programs with posi-tive right-hand sides. We show that suh programs an be approximatedwithin the maximum absolute row sum of the onstraint matrix A when-ever the variables are allowed to take values in N. This result is optimalunder the unique games onjeture. When the variables are restrited tobounded domains, we show that �nding a feasible solution is NP-hardin almost all ases.1 IntrodutionWe study the approximability of minimising integer linear programswith positive right-hand sides. Let n and m be positive integers,representing the number of variables and the number of inequalities,respetively. Let x

T = (x1, . . . , xn) be a vetor of n variables, A bean integer m×n matrix, b ∈ (Z+)m, and c ∈ (Q+∪{0})n. Finally, let
X be some given subset of Nn. We onsider here various restritionsof the following integer linear program:Minimise c

T
xsubjet to Ax ≥ b,

x ∈ X.
(IP)Typially, X is either Nn or {x ∈ Zn | 0 ≤ x ≤ d} for some

d ∈ (Z+)n, where the inequalities are to hold omponentwise. Aommonly ourring instane of the latter ase is when X = {0, 1}n,so-alled 0-1 programming. In all but very restrited ases, (IP) is
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NP-hard to solve to optimality. Instead, the e�ort is direted to-wards �nding approximation algorithms and improving the boundwithin whih it is possible to �nd approximate solutions. Formally,a minimisation problem Π is said to be approximable within (a realonstant) c ≥ 1 if there exists a polynomial time algorithm A suhthat for all instanes x of Π , A(x)/Opt(x) ≤ c.Let aj
T = (aj1, . . . , ajn) ∈ Zn be the jth row of A. We willuse the norm ‖aj‖1 =

∑n

i=1
|aji| as well as the maximum absoluterow sum norm of A, de�ned as ‖A‖∞ = max1≤j≤m ‖aj‖1. Let (IP)kdenote the subset of (IP) where ||A||∞ ≤ k. We show that (IP)kan unonditionally be approximated within k when X = Nn, butannot be approximated within k− ε, ε > 0, if Khot's unique gamesonjeture holds [9℄. We also show that �nding a feasible solution to(IP) is NP-hard in almost all ases when X = {0, . . . , a − 1}n.1.1 Previous workThe approximability of the program (IP) has been extensively stud-ied in the ase when A is restrited to non-negative entries. In thisase, the problem is usually referred to as a (generalised, or apa-itated) overing problem. Among the problems desribed by suhprograms one �nds the Minimum Knapsak Problem, Mini-mum Vertex Cover (and its k-uniform hypergraph ounterpart,desribed below) and various network design problems [2℄. We willrefer to (IP) with non-negative A as (CIP) (overing integer pro-gram). Here, X is often taken to be {x ∈ Zn | 0 ≤ x ≤ d}. Indeed,optimal solutions remain feasible after introdution of the bounds

xi ≤ ⌈maxj bj/aji⌉.Hall and Hohbaum [7℄ restrit A in (CIP) to a 0/1-matrix andgive an ‖A‖∞-approximating algorithm for the ase when X = {0, 1}n.Bertsimas and Vohra [1℄ study the general (CIP) with X = {0, 1}nas well as X = Nn. They use both a randomised rounding heuristiwith a nonlinear rounding funtion and deterministi rounding us-ing information about the dual program. For X = {0, 1}n, they showthat (CIP) an be approximated within ‖A‖∞ using both a deter-ministi rounding funtion and a dual heuristi. For X = Nn, theyobtain an ‖A‖∞+1 approximating algorithm. Carr, Fleisher, Leungand Phillips [2℄ lower the integrality gap of (CIP) with X = {0, 1}n



by introduing additional inequalities into the program to obtainan approximation ratio equal to the maximal number of non-zeroentries in a row of A. Their laim that the proof immediately gener-alises to the ase when the variables are bounded by any �xed d > 1seems to be inorret, but a omplete proof for general d is given byPrithard [11℄. Koufogiannakis and Young [10℄ present an approx-imation algorithm for a general framework of monotone overingproblems, with an approximation ratio equal to the maximal num-ber of variables upon whih a onstraint depends. The onstraintsmust be monotone (losed upwards), but an be non-onvex. Thisframework in partiular inludes problems suh as (CIP) and Min-imum Set Cover.2 Unbounded domainWe assume that X = Nn throughout this setion. Lower bounds for(IP)k are disussed in Setion 2.1. We aim to prove the followingresult:Proposition 1. (IP)k an be approximated within k.The problem (IP)1 is solvable in polynomial time: initially, let xi = 0for all i, and for eah inequality xi ≥ b, update xi to max{xi, b}. Anyinequality of the form −xi ≥ b implies that there are no solutions.In order to prove Proposition 1 for k ≥ 2, we give a deterministi`rounding'-sheme, whih produes an integer solution from a ratio-nal one, while inreasing the value of the objetive funtion by atmost k. For an integer k ≥ 2 and x ∈ Q+ ∪ {0}, de�ne the followingoperation:
x̂ =







0 if 0 ≤ x < 1/k

1 if 1/k ≤ x < 2/k

⌈(k − 1)x⌉ otherwise.For a vetor x = (x1, x2, . . . , xn)T , let x̂ = (x̂1, x̂2, . . . , x̂n)T . Notethat c
T
x̂ ≤ k ·cT

x. We will show that in addition, x̂ satis�es Ax̂ ≥ bby showing that for any integer b ≥ 1, we have a · x̂ ≥ b whenever
a · x ≥ b for any vetor a = (a1, . . . , an)T with ‖a‖1 ≤ k. In order todo this, we �rst introdue a saling of x̂ whih will be easier to work



with. Let x′ = x̂/(k−1) and extend to vetors, x′ = (x′
1, x

′
2, . . . , x

′
k)

T ,as before.Our �rst step is to bound the di�erene ∆ = a · x − a · x′ fromabove. Let δi = ai(xi − x′
i) so that ∆ =

∑n

i=1
δi. Let ti = sgn(ai) · xiand t′i = sgn(ai) · x

′
i. Then, δi = |ai|(ti − t′i). Figure 1 illustrates howthe t′i are determined from the ti in the ases whih give positiveontributions to ∆. Eah arrow represents an interval, and for a tiin a partiular interval, t′i an be found at the arrow head. Note thatthere are only two suh intervals on the positive axis. To the left of

L5 follows an in�nite sequene of left arrows, eah of size equal tothat of L5.
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kFig. 1. The intervals L1, . . . , L5 represented by arrows.Formally, the intervals Li, i ≥ 1 are de�ned as follows:
L1 = {x ∈ Q | 1/(k − 1) ≤ x < 2/k}
L2 = {x ∈ Q | 0 ≤ x < 1/k}
L3 = {x ∈ Q | − 1/(k − 1) < x ≤ −1/k}
L4 = {x ∈ Q | − 2/(k − 1) ≤ x ≤ −2/k}
Li = {x ∈ Q | − (i − 2)/(k − 1) ≤ x < −(i − 3)/(k − 1)}(i ≥ 5)When k = 2, the interval L1 vanishes while L3 and L4 beome adja-ent. Let L =

⋃

i≥1
Li. Now, δi an be bounded as follows, given theloation of ti:







0 ≤ δi/|ai| < (k − 2)/k(k − 1) if ti ∈ L1

0 ≤ δi/|ai| < 1/k if ti ∈ L2

0 ≤ δi/|ai| ≤ 1/k(k − 1) if ti ∈ L3

0 ≤ δi/|ai| ≤ 2/k(k − 1) if ti ∈ L4

0 ≤ δi/|ai| < 1/(k − 1) if ti ∈ Lj , j ≥ 5

δi ≤ 0 if ti 6∈ L.



Note that when k = 2, the upper bound on δi/|ai| for ti ∈ L4 isatually strit, sine −2/k is an integer. Thus, δi < |ai|/(k − 1), forall i ≥ 1.Lemma 1. Let b ≥ 1 and k ≥ 2 be integers. If a · x ≥ b and
‖a‖1 ≤ k, then ∆ < 1.Proof. Assume that there is an index l suh that tl 6∈ L. Then,
|al| > 0 so ∑

i6=l
|ai| ≤ k − 1. We then have

∆ ≤
∑

i6=l

δi <
∑

i6=l

|ai|

k − 1
≤

k − 1

k − 1
= 1. (1)Therefore, we an assume that for all 1 ≤ i ≤ n we have ti ∈ L.Let X1 = {i | ti ∈ L1} and X2 = {i | ti ∈ L2}. We will bound

∆ by separately bounding the three parts of the sum with indexsets X1, X2 and {1, . . . , n} \ (X1 ∪ X2). Let p =
∑

i∈X1
|ai| and

q =
∑

i∈X2
|ai|. Sine ti ≥ 0 if and only if i ∈ X1 ∪X2, we must havethat ∑

i∈X1∪X2
|ai|ti ≥ a · x ≥ b ≥ 1, hene p · 2/k + q · 1/k > 1 ⇔

2p + q > k. Upper bounding the three parts yields:
∆ < p ·

k − 2

k(k − 1)
+ q ·

1

k
+ (k − p − q) ·

1

k − 1
=

k2 − 2p − q

k(k − 1)
< 1.The lemma follows. ⊓⊔We an now use Lemma 1 to prove the following lemma, andomplete the proof of Proposition 1.Lemma 2. Let b ≥ 1 and k ≥ 2 be integers. If a · x ≥ b and

‖a‖1 ≤ k, then a · x̂ ≥ b.Proof. From Lemma 1, we have ∆ = a · x− a · x′ < 1 whih an berearranged to a · x′ > a · x− 1 ≥ b− 1. Multipliation by k − 1 nowyields
a · x̂ = (k − 1)a · x′ > (k − 1)(b − 1).When k ≥ 2 and b ≥ 1, we have (k−1)(b−1) ≥ b−1, i.e., a·x̂ > b−1.By integrality, it follows that a · x̂ must in fat be greater than, orequal to b. ⊓⊔



Proof (Proposition 1). It remains to prove the statement for k ≥ 2.For an instane of (IP)k, we solve the LP-relaxation and obtain asolution x suh that Ax ≥ b, and c
T
x is less than or equal tothe optimum of the orresponding integer program. In partiular,

a · x ≥ b for every row vetor a of A. By Lemma 2, it follows that
a · x̂ ≥ b, and therefore Ax̂ ≥ b. The value of the objetive funtionfor the solution x̂ is c

T
x̂ ≤ k · cT

x, hene we have approximated(IP)k within k. ⊓⊔2.1 Lower boundsA k-uniform hypergraph H is a pair (V, E), where V is a set of ver-ties and eah hyperedge e ∈ E is a k-element subset of V . TheEk-Vertex-Cover problem is that of �nding a minimum size ver-tex over in a k-uniform hypergraph. Note that E2-Vertex-Coveris idential to the well-known Minimum Vertex Cover for ordi-nary graphs. Given H , there is an immediate redution to a (CIP)with one variable xi for eah vertex vi ∈ V and one inequality of theform
xj1 + xj2 + . . . + xjk

≥ 1for eah hyperedge ej = {vj1, vj2, . . . , vjk
} ∈ E. Here, the domain Xmay be any superset of {0, 1}n sine we an always obtain a feasi-ble solution x

′ = min{1,x} (omponentwise) with at least as smallmeasure. Consequently, if Ek-Vertex-Cover is not approximablewithin a onstant α, then (IP)k is not approximable within α either.The best lower bounds urrently known under the assumptionof P 6= NP is 1.3606 for Minimum Vertex Cover by Dinur andSafra [4℄ and k − 1 − ε for Ek-Vertex-Cover by Dinur et al. [3℄.Stronger bounds are obtainable by exploiting stronger omplexitytheoretial assumptions suh as Khot's unique games onjeture:Khot and Regev [9℄ show that modulo the truth of this onjeture,Ek-Vertex-Cover annot be approximated within k − ε for any
ε > 0. Thus, we have good reasons to believe that it may in fat beNP-hard to approximate Ek-Vertex-Cover within k − ε for any
ε. Combined with Proposition 1, this bound yields a (onjetured)tight approximation onstant of k of (IP)k. This bound also mathesthe upper bound on (CIP) by Carr et al. [2℄.



3 Bounded domainLet X = {0, 1, . . . , a − 1}, a ≥ 2 and k ≥ 3, with at least one of theinequalities strit. In this ase, we show that it is NP-hard to �ndany feasible solution to (IP)k. The exeptional ase a = 2 and k = 3turns out to be approximable within 3.Proposition 2. Let a ≥ 2 and X = {0, 1, . . . , a−1}n. When k ≥ 4,it is an NP-hard problem to �nd feasible solutions to (IP)k.Proof. We redue from the problem One-in-three SAT, whihhas been shown to be NP-hard by Shaefer [12℄. An instane ofOne-in-three SAT is given by a set of lauses {C1, . . . , Cm} overvariables U = {u1, . . . , un}, where eah lause is a disjuntion ui ∨
uj ∨ ul of exatly three variables. The question is whether or notthere exists a satisfying assignment suh that preisely one variablein eah lause is assigned the value 1. Note that we do not allow nega-tions of the variables. This is in agreement with Shaefer's originalformulation.For eah propositional variable ui ourring in a One-in-threeSAT instane, reate a variable xi, and for eah lause C = ui∨uj ∨
ul, add the following inequalities:

xi, xj , xl ≥ a − 2
xi + xj + xl ≥ 3(a − 2) + 1

(2)The �rst equation restrits the variables xi, xj, xl to the set {a−2, a−
1}. The seond equation ensures that at least one of the variables
xi, xj and xl is assigned the value a − 1. Furthermore, we add a(unique) new variable y, and the following inequalities

y ≥ a − 1
xi + xj ≤ 2y − 1 ⇔ 2y − xi − xj ≥ 1
xi + xl ≤ 2y − 1
xj + xl ≤ 2y − 1

(3)Sine y must be a − 1, the last three inequalities, together with thefat that xi, xj , xl ∈ {a− 2, a− 1} implies that at most one variablefrom {xi, xj , xl} takes the value a−1. We an now solve the originalOne-in-three SAT-instane by assigning ui = 0 if xi = a − 2 and
ui = 1 if xi = a − 1. It follows that �nding a solution to (IP)k isNP-hard. ⊓⊔



Corollary 1. If X = {0, 1, . . . , a−1}n with a > 2, then the problemof �nding a feasible solution to (IP)3 is NP-hard.Proof. The proof of Proposition 2 an be altered in the following wayto produe the result in the orollary. First, replae the equations(2) with xi + xj + xl ≥ 1. Then, replae 2y − 1 in equations (3) with
y − (a − 2). Finally, let ui = 0 if and only if xi = 0. ⊓⊔We are left with one remaining ase:Proposition 3. The problem (IP)3 with domain X = {0, 1} an beapproximated within 3.Proof. Let x be an optimal solution to the LP-relaxation of IP3. Weround x to an integer solution x̂ as follows:

x̂i =

{

0 if xi < 1/3,
1 otherwise.This inreases the value of the objetive funtion by at most 3. Theproof follows a similar strategy as that of Proposition 1. De�ne ti =sgn(ai) · xi and t̂i = sgn(ai) · x̂i. We note again that it su�es toshow that

∆ = a · x − a · x̂ =
n∑

i=1

|ai|(ti − t̂i) < 1,sine we then have a · x̂ > a · x − 1 ≥ b − 1, and the result followsfrom the integrality of a · x̂.Let X1 = {i | −1 ≤ ti ≤ −1/3} and X2 = {i | −1/3 < ti < 1/3},and let p =
∑

i∈X1
|ai| and q =

∑

i∈X2
|ai|. The values of p and qmust satisfy

b ≤ a · x ≤ p · (−1/3) + q · 1/3 + (3 − p − q) · 1 (4)whih implies p · 2/3 + q · 1/3 ≤ 1, where we have used 1 as a lowerbound for b. In fat, we have p ·2/3+q ·1/3 < 1: if q = 0, this followsimmediately from the non-strit inequality, and if q > 0, then theterm q · 1/3 in (4) is a strit upper bound on ∑

i∈X2
ti.To �nish the proof, note that {i | ti − t̂i > 0} ⊆ X1 ∪ X2. Wetherefore have the bound

∆ ≤
∑

i∈X1∪X2

|ai|(ti − t̂i) ≤ p · 2/3 + q · 1/3 < 1,and the proposition follows. ⊓⊔



4 Disussion and Future WorkWe have obtained a tight approximation of a general lass of integerlinear programs under the parameterisation ‖A‖∞ ≤ k. It is howeverimportant to note, that the result in Setion 2 is tight only with re-spet to this partiular parameterisation. It is still imaginable thatthere exists an approximation algorithm whih approximates (IP)within, for example, the maximum number of non-zero entries inany row of A as was the ase for the (CIP) problems. The approahof Carr et al. [2℄ and Prithard [11℄ is based on adding so-alledKnapsak Cover (KC) inequalities to the program, whih lowers theintegrality gap. The exponentially many inequalities are then han-dled using a separation orale. We note that for (IP), there seems tobe no natural ounterpart to the KC-inequalities. The main obstaleis that the validity of the inequalities of (IP) does not uniformly im-prove upon inreasing individual variables, as is the ase for ordinaryovering problems.A �rst step in this diretion ould be to look for a 2-approximationof (IP) with at most two variables per inequality (or, indeed, provethat suh an algorithm is unlikely to exist.) An algorithm is knownfor arbitrary right-hand sides when the variables are bounded, seeHohbaum et al. [8℄. The idea behind the proof is to redue the prob-lem to program with only monotone inequalities (ax− by ≥ c, where
a, b > 0.) This system an then be solved in pseudo-polynomial time,depending on the upper bounds of the variables. The value of the�nal solution an then easily be seen to be o� by at most a fatorof 2. To use a similar approah, one would like to prove that poly-nomial time solvability is retained for monotone inequalities, whenarbitrary right-hand sides and bounded domain is substituted withpositive right-hand sides and unbounded domain. We note that thisan be seen as a onstraint satisfation problem over an in�nite do-main, and that the onstraint language of monotone inequalities isinvariant under the operations min and max.Dobson [5℄ and Fisher and Wolsey [6℄ both analyse greedy al-gorithms for (CIP) and derive bounds of O(log d), where d is themaximum olumn sum of A. As for the KC-inequalities, the or-retness of these algorithms ruially uses the non-negativity of the
A-matrix, and a diret generalisation to (IP) fails. Nevertheless, it



seems reasonable to assume that some kind of olumn-sum boundfor (IP) should exist.Referenes1. D. Bertsimas and R. Vohra. Rounding algorithms for overing problems. Mathe-matial Programming, 80(1):63�89, 1998.2. R. D. Carr, L. K. Fleisher, V. J. Leung, and C. A. Phillips. Strengthening integral-ity gaps for apaitated network design and overing problems. In Proeedings ofthe eleventh annual ACM-SIAM symposium on Disrete algorithms (SODA-2000),pages 106�115, 2000.3. I. Dinur, V. Guruswami, S. Khot, and O. Regev. A new multilayered PCP and thehardness of hypergraph vertex over. SIAM Journal on Computing, 34(5):1129�1146, 2005.4. I. Dinur and S. Safra. On the hardness of approximating minimum vertex over.Annals of Mathematis, 162(1):439�485, 2005.5. G. Dobson. Worst-ase analysis of greedy heuristis for integer programming withnonnegative data. Mathematis of Operations Researh, 7(4):515�531, 1982.6. M. L. Fisher and L. A. Wolsey. On the greedy heuristi for ontinuous overingand paking problems. SIAM Journal on Algebrai Disrete Methods, 3(4):584�591, 1982.7. N. G. Hall and D. S. Hohbaum. A fast approximation algorithm for the multi-overing problem. Disrete Applied Mathematis, 15:35�40, 1986.8. D. S. Hohbaum, N. Megiddo, J. Naor, and A. Tamir. Tight bounds and 2-approximation algorithms for integer programs with two variables per inequality.Mathematial Programming, 62:69�83, 1993.9. S. Khot and O. Regev. Vertex over might be hard to approximate to within 2−ε.Journal of Computer and System Sienes, 74(3):335�349, 2008.10. C. Koufogiannakis and N. E. Young. Greedy ∆-approximation algorithm for over-ing with arbitrary onstraints and submodular ost. In Proeedings of the 36th In-ternational Colloquium on Automata, Languages and Programming (ICALP-2009),pages 634�652, 2009.11. D. Prithard. Approximability of sparse integer programs. In Proeedings of the17th Annual European Symposium on Algorithms (ESA-2009), pages 83�94, 2009.12. T. J. Shaefer. The omplexity of satis�ability problems. In Proeedings of thetenth annual ACM symposium on Theory of omputing (STOC-1978), pages 216�226, 1978.


