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Abstra
tAn instan
e of the maximum 
onstraint satisfa
tion problem (Max CSP) is a �nite
olle
tion of 
onstraints on a set of variables, and the goal is to assign values tothe variables that maximises the number of satis�ed 
onstraints. Max CSP 
ap-tures many well-known problems (su
h as Max k-SAT and Max Cut) and is
onsequently NP-hard. Thus, it is natural to study how restri
tions on the allowed
onstraint types (or 
onstraint language) a�e
t the 
omplexity and approximabil-ity of Max CSP. The PCP theorem is equivalent to the existen
e of a 
onstraintlanguage for whi
h Max CSP has a hard gap at lo
ation 1, i.e. it is NP-hard todistinguish between satis�able instan
es and instan
es where at most some 
onstantfra
tion of the 
onstraints are satis�able. All 
onstraint languages, for whi
h theCSP problem (i.e., the problem of de
iding whether all 
onstraints 
an be satis�ed)is 
urrently known to be NP-hard, have a 
ertain algebrai
 property. We prove thatany 
onstraint language with this algebrai
 property makes Max CSP have a hardgap at lo
ation 1 whi
h, in parti
ular, implies that su
h problems 
annot have aPTAS unless P = NP. We then apply this result toMax CSP restri
ted to a single
onstraint type; this 
lass of problems 
ontains, for instan
e, Max Cut and MaxDiCut. Assuming P 6= NP, we show that su
h problems do not admit PTAS ex-
ept in some trivial 
ases. Our results hold even if the number of o

urren
es of ea
hvariable is bounded by a 
onstant. Finally, we give some appli
ations of our results.Key words: 
onstraint satisfa
tion, optimisation, approximability, universalalgebra, 
omputational 
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1 Introdu
tionMany 
ombinatorial optimisation problems are NP-hard so there has been agreat interest in 
onstru
ting approximation algorithms for su
h problems. Forsome optimisation problems, there exist powerful approximation algorithmsknown as polynomial-time approximation s
hemes (PTAS). An optimisationproblem Π has a PTAS A if, for any �xed rational c > 1 and for any instan
e
I of Π, A(I, c) returns a c-approximate (i.e., within c of optimum) solutionin time polynomial in |I|. There are some well-known NP-hard optimisationproblems that have the highly desirable property of admitting a PTAS: exam-ples in
lude Knapsa
k [33℄, Eu
lidean Tsp [2℄, and Independent Setrestri
ted to planar graphs [6,46℄. It is also well-known that a large number ofoptimisation problems do not admit PTAS unless some unexpe
ted 
ollapseof 
omplexity 
lasses o

urs. For instan
e, problems like Max k-SAT [4℄ andIndependent Set [5℄ do not admit a PTAS unless P = NP. We note that if
Π is a problem that does not admit a PTAS, then there exists a 
onstant c > 1su
h that Π 
annot be approximated within c in polynomial time. Throughoutthe paper, we assume that P 6= NP.The 
onstraint satisfa
tion problem (CSP) [53℄ and its optimisation variantshave played an important role in resear
h on approximability. For example, itis well known that the famous PCP theorem has an equivalent reformulationin terms of inapproximability of some CSP [4,26,56℄, and the re
ent 
ombi-natorial proof of this theorem [26℄ deals entirely with CSPs. Other importantexamples in
lude Håstad's �rst optimal inapproximability results [32℄ and thework around the unique games 
onje
ture (UGC) of Khot [16,39,40,52℄.We will fo
us on a 
lass of optimisation problems known as the maximum
onstraint satisfa
tion problem (Max CSP). The most well-known examplesin this 
lass probably are Max k-SAT and Max Cut.We are now ready to formally de�ne our problem. Let D be a �nite set. Asubset R ⊆ Dn is a relation and n is the arity of R. Let R(k)

D be the set of all
k-ary relations on D and let RD = ∪∞

i=1R
(i)
D . A 
onstraint language is a �nitesubset of RD.De�nition 1 (CSP(Γ)) The 
onstraint satisfa
tion problem over the 
on-
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straint language Γ, denoted CSP(Γ), is de�ned to be the de
ision problemwith instan
e (V, C), where
• V is a set of variables, and
• C is a 
olle
tion of 
onstraints {C1, . . . , Cq}, in whi
h ea
h 
onstraint Ci isa pair (Ri, si) with si a list of variables of length ni, 
alled the 
onstraints
ope, and Ri ∈ Γ is an ni-ary relation in RD, 
alled the 
onstraint relation.The question is whether there exists an assignment s : V → D whi
h satis�esall 
onstraints in C or not. A 
onstraint (Ri, (vi1 , vi2, . . . , vini

)) ∈ C is satis�edby an assignment s if the image of the 
onstraint s
ope is a member of the
onstraint relation, i.e., if (s(vi1), s(vi2), . . . , s(vini
)) ∈ Ri.Many 
ombinatorial problems are subsumed by the CSP framework; examplesin
lude problems in graph theory [31℄, 
ombinatorial optimisation [38℄, and
omputational learning [23℄. We refer the reader to [18℄ for an introdu
tion tothis framework.For a 
onstraint language Γ ⊆ RD, the optimisation problemMax CSP(Γ) isde�ned as follows:De�nition 2 (Max CSP(Γ)) Max CSP(Γ) is de�ned to be the optimisationproblem withInstan
e: An instan
e (V, C) of CSP(Γ).Solution: An assignment s : V → D to the variables.Measure: Number of 
onstraints in C satis�ed by the assignment s.We use 
olle
tions of 
onstraints instead of just sets of 
onstraints as we do nothave any weights in our de�nition of Max CSP. Some of our redu
tions willmake use of 
opies of one 
onstraint to simulate something whi
h resemblesweights. We 
hoose to use 
olle
tions instead of weights be
ause boundedo

urren
e restri
tions are easier to explain in the 
olle
tion setting. Notethat we prove our hardness results in this restri
ted setting without weightsand with a 
onstant bound on the number of o

urren
es of ea
h variable.Throughout the arti
le,Max CSP(Γ)-k will denote the problemMax CSP(Γ)restri
ted to instan
es with the number of o

urren
es of ea
h variable isbounded by k. For our hardness results we will write that Max CSP(Γ)-Bis hard (in some sense) to denote that there is a k su
h that Max CSP(Γ)-kis hard in this sense. If a variable o

urs t times in a 
onstraint whi
h ap-pears s times in an instan
e, then this would 
ontribute t · s to the number ofo

urren
es of that variable in the instan
e.Example 3 Given a (multi)graph G = (V,E), the Max k-Cut problem,

k ≥ 2, is the problem of maximising |E ′|, E ′ ⊆ E, su
h that the subgraph3



G′ = (V,E ′) is k-
olourable. For k = 2, this problem is known simply asMax Cut. The problem Max k-Cut is known to be APX-
omplete for any
k (it is Problem GT33 in [6℄), and so has no PTAS. Let Nk denote the binarydisequality relation on {0, 1, . . . , k−1}, k ≥ 2, that is, (x, y) ∈ Nk ⇐⇒ x 6= y.To see that Max CSP({Nk}) is pre
isely Max k-Cut, think of verti
es of agiven graph as of variables, and apply the relation to every pair of variables x, ysu
h that (x, y) is an edge in the graph, with the 
orresponding multipli
ity.Most of the early results on the 
omplexity and approximability of CSPand Max CSP were restri
ted to the Boolean 
ase, i.e. when D = {0, 1}.For instan
e, S
haefer [54℄ 
hara
terised the 
omplexity of CSP(Γ) for all
Γ over the Boolean domain, the approximability of Max CSP(Γ) for all Γover the Boolean domain have also been determined [20,21,38℄. It has beennoted that the study of non-Boolean CSP seems to give a better understand-ing (when 
ompared with Boolean CSP) of what makes CSP easy or hard:it appears that many observations made on Boolean CSP are spe
ial 
asesof more general phenomena. Re
ently, there has been some major progressin the understanding of non-Boolean CSP: Bulatov has provided a 
omplete
omplexity 
lassi�
ation of the CSP problem over a three-element domain[10℄ and also given a 
lassi�
ation of 
onstraint languages that 
ontain allunary relations [8℄. Corresponding results for Max CSP have been obtainedby Jonsson et al. [36℄ and Deineko et al. [24℄.We 
ontinue this line of resear
h by studying two aspe
ts of non-BooleanMaxCSP. The 
omplexity of CSP(Γ) is not known for all 
onstraint languages Γ� it is in fa
t a major open question [13,29℄. However, the pi
ture is not
ompletely unknown sin
e the 
omplexity of CSP(Γ) has been settled formany 
onstraint languages [10,11,13,14,34,35℄.It has been 
onje
tured [29℄ that for all 
onstraint languages Γ, CSP(Γ) iseither in P or is NP-
omplete, and the re�ned 
onje
ture [13℄ (whi
h we referto as the �algebrai
 CSP Conje
ture�, see �3.2 for details) also des
ribes thedividing line between the two 
ases. Re
all that if P 6= NP, then Ladner'sTheorem [44℄ states that there are problems of intermediate 
omplexity, i.e.,there are problems in NP that are not in P and not NP-
omplete. Hen
e, we
annot rule out a priori if there is a 
onstraint language Γ su
h that CSP(Γ)is neither in P nor NP-
omplete. If the algebrai
 CSP Conje
ture is true,then all NP-
omplete problems CSP(Γ) are already identi�ed; i.e., it is thetra
tability part of the 
onje
ture that is still open.In the �rst part of the arti
le we study the family of all 
onstraint languages Γsu
h that it is 
urrently known that CSP(Γ) is NP-
omplete. We prove thatea
h 
onstraint language in this family makes Max CSP(Γ) have a hard gapat lo
ation 1, even when the number of variable o

urren
e in an instan
e isbounded by a su�
iently large 
onstant (depending on Γ), see Theorem 22.4



�Hard gap at lo
ation 1� means that it is NP-hard to distinguish instan
esof Max CSP(Γ) in whi
h all 
onstraints are satis�able from instan
es whereat most an ε-fra
tion of the 
onstraints are satis�able (for some 
onstant
ε whi
h depends on Γ) 2 . This property immediately implies approximationhardness (in parti
ular, no PTAS) for the problem, even when restri
ted tosatis�able instan
es (Corollary 29). We note that, for the Boolean domain andwithout the bounded o

urren
e restri
tion, Theorem 22 follows from a resultof Khanna et al. [38, Theorem 5.14℄.Interestingly, the PCP theorem is equivalent to the fa
t that, for some 
on-straint language Γ over some �nite set D, Max CSP(Γ) has a hard gap atlo
ation 1 [4,26,56℄; 
learly, CSP(Γ) 
annot be polynomial time solvable inthis 
ase. Theorem 22 means that Max CSP(Γ) has a hard gap at lo
ation 1for any 
onstraint language su
h that CSP(Γ) is known to be NP-
omplete.Moreover, if the above mentioned 
onje
ture holds, then Max CSP(Γ) has ahard gap at lo
ation 1 whenever CSP(Γ) is not in P. Another equivalent refor-mulation of the PCP theorem states that the problemMax 3-SAT has a hardgap at lo
ation 1 [4,56℄, and our proof 
onsists of a gap preserving redu
tionfrom this problem through a version of the algebrai
 argument from [13℄.The se
ond aspe
t of Max CSP we study is the 
ase when the 
onstraintlanguage 
onsists of a single relation; this 
lass of problems 
ontains some ofthe best-studied examples ofMax CSP su
h asMax Cut andMax DiCut.Note that a full 
omplexity 
lassi�
ation of single-relation CSP is not known.In fa
t, Feder and Vardi [29℄ have proved that by providing su
h a 
lassi�
a-tion, one has also 
lassi�ed the CSP problem for all 
onstraint languages.It was proved in [37℄ that, for any non-empty relation R, the problem MaxCSP({R}) is either trivial (i.e., mapping all variables in any instan
e to thesame �xed value always satis�es all 
onstraints) or NP-hard. We strengthenthis result by proving approximation hardness (and hen
e the non-existen
eof PTAS) instead of NP-hardness (see Theorem 33), and again even with abound on the number of variable o

urren
es. Our proof uses the �rst mainresult, Theorem 22, along with the main result from [7℄. Note that, for someBoolean Max CSP problems, e.g., for Max Cut, a stronger version of The-orem 33 is known (see, e.g., [32℄). We then apply Theorem 33 to generalisesome results from [42,43℄.Raghavendra [52℄ re
ently proved an interesting result regarding the approx-imability ofMax CSP. He 
onstru
ted an approximation algorithm su
h that
2 Some authors 
onsider the promise problem Gap-CSP[ε, 1] where an instan
e isaMax CSP instan
e (V,C) and the problem is to de
ide between the following twopossibilities: the instan
e is satis�able, or at most ε · |C| 
onstraints are simultane-ously satis�able. Obviously, if a Max CSP(Γ) has a hard gap at lo
ation 1, thenthere exists an ε su
h that the 
orresponding Gap-CSP[ε, 1] problem is NP-hard.5



for any 
onstraint language Γ the solutions produ
ed by the algorithm is withina fa
tor α(Γ) + ε of the optimal value, for any ε > 0. Furthermore, assumingthe UGC and P 6= NP, he proved that for every 
onstraint language Γ theproblemMax CSP(Γ) 
annot be approximated within a fa
tor α(Γ)−ε of theoptimal value for any ε > 0 in polynomial time. Raghavendra's result is verystrong, assuming the UGC and P 6= NP it gives nearly tight approximabil-ity results for every 
onstraint language. However, it does not give any dire
tmethod for 
hara
terising the 
lasses of 
onstraint languages whi
h, e.g., doesnot admit a PTAS. Our results are less general in the sense that they apply toa smaller 
lass of 
onstraint languages and that they do not give near optimalapproximability results. However, we study a di�erent notion of hardness �hardness at gap lo
ation 1. Furthermore, there are expli
it methods for 
har-a
terising the 
lass of 
onstraint languages that are �hard�. We also do notneed any more assumptions than P 6= NP to obtain our results.Here is an overview of the arti
le: In �2 we de�ne some 
on
epts we need.Se
tion 3 
ontains the proof for our �rst result and �4 
ontains the proof ofour se
ond result. In �4.3 we strengthen some earlier published results onMaxCSP as mentioned above. We give a few 
on
luding remarks in �5.2 PreliminariesA 
ombinatorial optimisation problem is de�ned over a set of instan
es (ad-missible input data); ea
h instan
e I has a set sol(I) of feasible solutionsasso
iated with it, and ea
h solution y ∈ sol(I) has a value m(I, y). The ob-je
tive is, given an instan
e I, to �nd a feasible solution of optimum value. Theoptimal value is the largest one for maximisation problems and the smallestone for minimisation problems. A 
ombinatorial optimisation problem is saidto be an NP optimisation (NPO) problem if its instan
es and solutions 
anbe re
ognised in polynomial time, the solutions are polynomially-bounded inthe input size, and the obje
tive fun
tion 
an be 
omputed in polynomial time(see, e.g., [6℄).De�nition 4 (Performan
e ratio) A solution s ∈ sol(I) to an instan
e Iof an NPO maximization problem Π is r-approximate if
max

{

m(I, s)opt(I)
,
opt(I)

m(I, s)

}

≤ r,where opt(I) is the optimal value for a solution to I. An approximationalgorithm for an NPO problem Π has performan
e ratio R(n) if, given anyinstan
e I of Π with |I| = n, it outputs an R(n)-approximate solution.6



PO is the 
lass of NPO problems that 
an be solved (to optimality) in poly-nomial time. An NPO problem Π is in the 
lass APX if there is a polynomialtime approximation algorithm for Π whose performan
e ratio is bounded by a
onstant. The following result is well-known (see, e.g., [17, Proposition 2.3℄).Lemma 5 Let D be a �nite set. For every 
onstraint language Γ ⊆ RD,Max CSP(Γ) belongs to APX. Moreover, if a is the maximum arity of anyrelation in Γ, then there is a polynomial time approximation algorithm withperforman
e ratio |D|aDe�nition 6 (Hard to approximate) We say that a problem Π is hardto approximate if there exists a 
onstant c su
h that, Π is NP-hard to ap-proximate within c (that is, the existen
e of a polynomial-time approximationalgorithm for Π with performan
e ratio c implies P = NP).The following notion has been de�ned in a more general setting by Petrank [50℄.De�nition 7 (Hard gap at lo
ation α) Max CSP(Γ) has a hard gap atlo
ation α ≤ 1 if there exists a 
onstant ε < α and a polynomial-time redu
tionfrom an NP-
omplete problem Π to Max CSP(Γ) su
h that,
• Yes instan
es of Π are mapped to instan
es I = (V, C) su
h that opt(I) ≥
α|C|, and

• No instan
es of Π are mapped to instan
es I = (V, C) su
h that opt(I) ≤
ε|C|.Note that if a problem Π has a hard gap at lo
ation α (for any α) then

Π is hard to approximate. This simple observation has been used to proveinapproximability results for a large number of optimisation problems. See,e.g., [3,6,56℄ for surveys on inapproximability results and the related PCPtheory.2.1 Approximation Preserving Redu
tionsTo prove our approximation hardness results we use AP -redu
tions. This typeof redu
tion is most 
ommonly used to de�ne 
ompleteness for 
ertain 
lassesof optimisation problems (i.e., APX). However, no APX-hardness results area
tually proven in this arti
le sin
e we 
on
entrate on proving that problemsare hard to approximate (in the sense of De�nition 6). We will frequentlyuse AP -redu
tions and this is justi�ed by Lemma 9 below. Our de�nition of
AP -redu
tions follows [21,38℄.De�nition 8 (AP -redu
tion) Given two NPO problems Π1 and Π2 an AP -7



redu
tion from Π1 to Π2 is a triple (F,G, α) su
h that,
• F and G are polynomial-time 
omputable fun
tions and α > 0 is a 
onstant;
• for any instan
e I of Π1, F (I) is an instan
e of Π2;
• for any instan
e I of Π1, and any feasible solution s′ of F (I), G(I, s′) is afeasible solution of I;
• for any instan
e I of Π1, and any r ≥ 1, if s′ is an r-approximate solutionof F (I) then G(I, s′) is an (1 + (r− 1)α+ o(1))-approximate solution of Iwhere the o-notation is with respe
t to |I|.If su
h a triple exist we say that Π1 is AP -redu
ible to Π2. We use the notation
Π1 ≤AP Π2 to denote this fa
t.It is a well-known fa
t (see, e.g., �8.2.1 in [6℄) that AP -redu
tions 
ompose.The following simple lemma makes AP -redu
tions useful to us.Lemma 9 If Π1 ≤AP Π2 and Π1 is hard to approximate, then Π2 is hard toapproximate.Proof. Let c > 1 be the 
onstant su
h that it is NP-hard to approximate Π1within c. Let (F,G, α) be the AP -redu
tion whi
h redu
es Π1 to Π2. We willprove that it is NP-hard to approximate Π2 within

r =
1

α
(c− 1) + 1 − ε′for any ε′ > 0.Let I1 be an instan
e of Π1. Then, I2 = F (I1) is an instan
e of Π2. Givenan r-approximate solution to I2 we 
an 
onstru
t an (1 + (r − 1)α + o(1))-approximate solution to I1 using G. Hen
e, we get an 1 + (r − 1)α + o(1) =

c − αε′ + o(1) approximate solution to I1, and when the instan
es are largeenough this is stri
tly smaller than c. As c > 1 we 
an 
hoose ε′ su
h that
ε′ > 0 and c− αε′ > 1. 22.2 Redu
tion Te
hniquesThe basi
 redu
tion te
hnique in our approximation hardness proofs is basedon stri
t implementations and perfe
t implementations. Those te
hniques havebeen used before when studying Max CSP and other CSP-related prob-lems [21,36,38℄.De�nition 10 (Implementation) A 
olle
tion of 
onstraints C1, . . . , Cm overa tuple of variables x = (x1, . . . , xp) 
alled primary variables and y = (y1, . . . , yq)8




alled auxiliary variables is an α-implementation of the p-ary relation R fora positive integer α ≤ m if the following 
onditions are satis�ed:(1) For any assignment to x and y, at most α 
onstraints from C1, . . . , Cmare satis�ed.(2) For any x su
h that x ∈ R, there exists an assignment to y su
h thatexa
tly α 
onstraints are satis�ed.(3) For any x,y su
h that x 6∈ R, at most (α− 1) 
onstraints are satis�ed.De�nition 11 (Stri
t/Perfe
t Implementation) An α-implementation isa stri
t implementation if for every x su
h that x 6∈ R there exists y su
h thatexa
tly (α−1) 
onstraints are satis�ed. An α-implementation (not ne
essarilystri
t) is a perfe
t implementation if α = m.It will sometimes be 
onvenient for us to view relations as predi
ates instead. Inthis 
ase an n-ary relation R over the domain D is a fun
tion r : Dn → {0, 1}su
h that r(x) = 1 ⇐⇒ x ∈ R. Most of the time we will use predi
ateswhen we are dealing with stri
t implementations and relations when we areworking with perfe
t implementations, be
ause perfe
t implementations arenaturally written as a 
onjun
tion of 
onstraints whereas stri
t implemen-tations may naturally be seen as a sum of predi
ates. We will write stri
t
α-implementations in the following form

g(x) + (α− 1) = max
y

m
∑

i=1

gi(xi)where x = (x1, . . . , xp) are the primary variables, y = (y1, . . . , yq) are theauxiliary variables, g(x) is the predi
ate whi
h is implemented, and ea
h xiis a tuple of variables from x and y.We say that a 
olle
tion of relations Γ stri
tly (perfe
tly) implements a relation
R if, for some α ∈ Z+, there exists a stri
t (perfe
t) α-implementation of
R using relations only from Γ. It is not di�
ult to show that if R 
an beobtained from Γ by a series of stri
t (perfe
t) implementations, then it 
analso be obtained by a single stri
t (perfe
t) implementation (for the Boolean
ase, this is shown in [21, Lemma 5.8℄).The following lemma indi
ates the importan
e of stri
t implementations forMax CSP. It was �rst proved for the Boolean 
ase, but without the assump-tion on bounded o

urren
es, in [21, Lemma 5.17℄. A proof of this lemma inour setting 
an be found in [24, Lemma 3.4℄ (the lemma is stated in a slightlydi�erent form but the proof establishes the required AP -redu
tion).Lemma 12 If Γ stri
tly implements a predi
ate f , then, for any integer k,there is an integer k′ su
h that Max CSP(Γ ∪ {f})-k ≤AP Max CSP(Γ)-k′.9



Lemma 12 will be used as follows in our proofs of approximation hardness: if
Γ′ is a �xed �nite 
olle
tion of predi
ates ea
h of whi
h 
an be stri
tly im-plemented by Γ, then we 
an assume that Γ′ ⊆ Γ. For example, if Γ 
ontainsa binary predi
ate f , then we 
an assume, at any time when it is 
onve-nient, that Γ also 
ontains f ′(x, y) = f(y, x), sin
e this equality is a stri
t1-implementation of f ′.For proving hardness at gap lo
ation 1, we have the following lemma.Lemma 13 If a �nite 
onstraint language Γ perfe
tly implements a relation Rand Max CSP(Γ∪{R})-k has a hard gap at lo
ation 1, then Max CSP(Γ)-k′has a hard gap at lo
ation 1 for some integer k′.Proof. Let N be the minimum number of relations that are needed in a perfe
timplementation of R using relations from Γ.Given an instan
e I = (V, C) of Max CSP(Γ ∪ {R})-k, we 
onstru
t aninstan
e I ′ = (V ′, C ′) of Max CSP(Γ)-k′ (where k′ will be spe
i�ed below)as follows: we use the set V ′′ to store auxiliary variables during the redu
tionso we initially let V ′′ be the empty set. For a 
onstraint c = (Q, s) ∈ C, thereare two 
ases to 
onsider:(1) If Q 6= R, then add N 
opies of c to C ′.(2) If Q = R, then add the implementation of R to C ′ where any auxiliaryvariables in the implementation are repla
ed with fresh variables whi
hare added to V ′′.Finally, let V ′ = V ∪V ′′. It is 
lear that there exists an integer k′, independentof I, su
h that I ′ is an instan
e of Max CSP(Γ′)-k′.If all 
onstraints are simultaneously satis�able in I, then all 
onstraints in I ′are also simultaneously satis�able. On the other hand, if opt(I) ≤ ε|C| thenopt(I ′) ≤ εN |C| + (1 − ε)(N − 1)|C|

= (ε+ (1 − ε)(1 − 1/N)) |C ′|.The inequality holds be
ause ea
h 
onstraint in I introdu
es a group of N
onstraints in I ′ and, as opt(I) ≤ ε|C|, at most ε|C| su
h groups are 
om-pletely satis�ed. In all other groups (there are (1− ε)|C| su
h groups) at leastone 
onstraint is not satis�ed. We 
on
lude that Max CSP(Γ)-k′ has a hardgap at lo
ation 1. 2An important 
on
ept is that of a 
ore. To de�ne 
ores formally we needretra
tions. A retra
tion of a 
onstraint language Γ ⊆ RD is a fun
tion π :10



D → D su
h that if D′ is the image of π then π(x) = x for all x ∈ D′,furthermore for every R ∈ Γ we have (π(t1), . . . , π(tn)) ∈ R for all (t1, . . . , tn) ∈
R. We will say that Γ is a 
ore if the only retra
tion of Γ is the identity fun
tion.Given a relation R ∈ R

(k)
D and a subset X of D we de�ne the restri
tion of Ronto X as follows: R∣∣∣

X
= {x ∈ Xk | x ∈ R}. For a set of relations Γ we de�ne

Γ
∣

∣

∣

X
= {R

∣

∣

∣

X
| R ∈ Γ}. If π is a retra
tion of Γ with image D′, 
hosen su
h that

|D′| is minimal, then a 
ore of Γ is the set Γ
∣

∣

∣

D′

. For 
onstraint language Γ,Γ′we say that Γ retra
ts to Γ′ if there is a retra
tion π of Γ su
h that π(Γ) = Γ′.The intuition here is that if Γ is not a 
ore, then it has a non-inje
tive retra
tion
π, whi
h implies that, for every assignment s, there is another assignment πsthat satis�es all 
onstraints satis�ed by s and uses only a restri
ted set ofvalues. Consequently the problem is equivalent to a problem over this smallerset. As in the 
ase of graphs, all 
ores of Γ are isomorphi
, so one 
an speakabout the 
ore of Γ. [31℄The following simple lemma 
onne
ts 
ores with non-approximability.Lemma 14 If Γ′ is the 
ore of Γ, then, for any k,Max CSP(Γ′)-k has a hardgap at lo
ation 1 if and only if Max CSP(Γ)-k has a hard gap at lo
ation 1.Proof. Let π be the retra
tion of Γ su
h that Γ′ = {π(R) | R ∈ Γ}, where
π(R) = {π(t) | t ∈ R}. Given an instan
e I = (V, C) of Max CSP(Γ)-k,we 
onstru
t an instan
e I ′ = (V, C ′) of Max CSP(Γ′)-k by repla
ing ea
h
onstraint (R, s) ∈ C by (π(R), s).From a solution s to I ′, we 
onstru
t a solution s′ to I ′ su
h that s′(x) =
π(s(x)). Let (R, s) ∈ C be a 
onstraint whi
h is satis�ed by s. Then, thereis a tuple x ∈ R su
h that s(s) = x so π(x) ∈ π(R) and s′(s) = π(s(s)) =
π(x) ∈ π(R). Conversely, if (π(R), s) is a 
onstraint in I ′ whi
h is satis�ed by
s′, then there is a tuple x ∈ R su
h that s′(s) = π(s(s)) = π(x) ∈ π(R), and
s(s) = x ∈ R. We 
on
lude that m(I, s) = m(I ′, s′).It is not hard to see that we 
an do this redu
tion in the other way too, i.e.,given an instan
e I ′ = (V ′, C ′) of Max CSP(Γ′)-k, we 
onstru
t an instan
e
I of Max CSP(Γ)-k by repla
ing ea
h 
onstraint (π(R), s) ∈ C ′ by (R, s).By the same argument as above, this dire
tion of the equivalen
e follows, andwe 
on
lude that the lemma is valid. 2An analogous result holds for the CSP problem, i.e., if Γ′ is the 
ore of Γ,then CSP(Γ) is in P (NP-
omplete) if and only if CSP(Γ′) is in P (NP-
omplete); see [34℄ for a proof. Cores play an important role in �4, too. Wehave the following lemma: 11



Lemma 15 (Lemma 2.11 in [36℄) Let Γ′ be the 
ore of Γ. For every k,there exists k′ su
h that Max CSP(Γ′)-k ≤AP Max CSP(Γ)-k′.The lemma is stated in a slightly di�erent form in [36℄ but the proof establishesthe required AP -redu
tion.3 Hardness at Gap Lo
ation 1 for Max CSPIn this se
tion, we prove our �rst main result: Theorem 22. The proof makesuse of some 
on
epts from universal algebra and we present the relevant de�-nitions and results in �3.1 and �3.2. The proof is 
ontained in �3.3.3.1 De�nitions and Results from Universal AlgebraWe will now present the de�nitions and basi
 results we need from universalalgebra. For a more thorough treatment of universal algebra in general werefer the reader to [15,19℄. The arti
les [13,18℄ 
ontain presentations of therelationship between universal algebra and 
onstraint satisfa
tion problems.An operation on a �nite set D is an arbitrary fun
tion f : Dk → D. Anyoperation on D 
an be extended in a standard way to an operation on tuplesover D, as follows: let f be a k-ary operation on D. For any 
olle
tion of k
n-tuples, t1, t2, . . . , tk ∈ Dn, the n-tuple f(t1, t2, . . . , tk) is de�ned as follows:

f(t1, t2, . . . , tk) = (f(t1[1], t2[1], . . . , tk[1]), f(t1[2], t2[2], . . . , tk[2]), . . . ,

f(t1[n], t2[n], . . . , tk[n])),where tj[i] is the i-th 
omponent in tuple tj. If f(d, d, . . . , d) = d for all
d ∈ D, then f is said to be idempotent. An operation f : Dk → D whi
hsatis�es f(x1, x2, . . . , xk) = xi, for some i, is 
alled a proje
tion.Let R be a relation in the 
onstraint language Γ. If f is an operation su
hthat for all t1, t2, . . . , tk ∈ R we have f(t1, t2, . . . , tk) ∈ R, then R is said tobe invariant (or, in other words, 
losed) under f . If all 
onstraint relations in
Γ are invariant under f , then Γ is said to be invariant under f . An operation
f su
h that Γ is invariant under f is 
alled a polymorphism of Γ. The set of allpolymorphisms of Γ is denoted Pol(Γ). Given a set of operations F , the set ofall relations that is invariant under all the operations in F is denoted Inv(F ).Example 16 Let D = {0, 1, 2} and let R be the dire
ted 
y
le on D, i.e., R =
{(0, 1), (1, 2), (2, 0)}. One polymorphism of R is the operation f : {0, 1, 2}3 →
{0, 1, 2} de�ned as f(x, y, z) = x − y + z (mod 3). This 
an be veri�ed by12




onsidering all possible 
ombinations of three tuples from R and evaluating
f 
omponent-wise. Let K be the 
omplete graph on D. It is well known andnot hard to 
he
k that if we view K as a binary relation, then all idempotentpolymorphisms of K are proje
tions.We 
ontinue by de�ning a 
losure operator 〈·〉 on sets of relations: for anyset Γ ⊆ RD, the set 〈Γ〉 
onsists of all relations that 
an be expressed usingrelations from Γ ∪ {EQD} (where EQD denotes the equality relation on D),
onjun
tion, and existential quanti�
ation. Those are the relations de�nableby primitive positive formulae (pp-formulae). As an example of a pp-formula
onsider the relations A = {(0, 0), (0, 1), (1, 0)} and B = {(1, 0), (0, 1), (1, 1)}over the Boolean domain {0, 1}. With those two relations we 
an 
onstru
t
I = {(0, 0), (0, 1), (1, 1)} with the pp-formula

I(x, y) ⇐⇒ ∃z : A(x, z) ∧ B(z, y).Note that pp-formulae and perfe
t implementations from De�nition 11 arethe same 
on
ept. Intuitively, 
onstraints using relations from 〈Γ〉 are exa
tlythose whi
h 
an be simulated by 
onstraints using relations from Γ in the CSPproblem. Hen
e, for any �nite subset Γ′ of 〈Γ〉, CSP(Γ′) is not harder thanCSP(Γ). That is, if CSP(Γ′) is NP-
omplete for some �nite subset Γ′ of 〈Γ〉,then CSP(Γ) is NP-
omplete. If CSP(Γ) is in P, then CSP(Γ′) is in P forevery �nite subset Γ′ of 〈Γ〉. We refer the reader to [35℄ for a further dis
ussionon this topi
.The sets of relations of the form 〈Γ〉 are referred to as relational 
lones, or
o-
lones. An alternative 
hara
terisation of relational 
lones is given in thefollowing theorem.Theorem 17 ([51℄)
• For every set Γ ⊆ RD, 〈Γ〉 = Inv(Pol(Γ)).
• If Γ′ ⊆ 〈Γ〉, then Pol(Γ) ⊆ Pol(Γ′).We will now de�ne �nite algebras and some related notions whi
h we needlater on. The three de�nitions below 
losely follow the presentation in [13℄.De�nition 18 (Finite algebra) A �nite algebra is a pair A = (A;F ) where
A is a �nite non-empty set and F is a set of �nitary operations on A.We will only make use of �nite algebras so we will write algebra instead of�nite algebra. An algebra is said to be non-trivial if it has more than oneelement.De�nition 19 (Homomorphism of algebras) Given two algebrasA = (A;FA)and B = (B;FB) su
h that FA = {fA

i | i ∈ I}, FB = {fB
i | i ∈ I} and both fA

i13



and fB
i are ni-ary for all i ∈ I, then ϕ : A → B is said to be an homomor-phism from A to B if

ϕ(fA
i (a1, a2, . . . , ani

)) = fB
i (ϕ(a1), ϕ(a2), . . . , ϕ(ani

))for all i ∈ I and a1, a2, . . . , ani
∈ A. If ϕ is surje
tive, then B is a homomor-phi
 image of A.Given a homomorphism ϕ mapping A = (A;FA) to B = (B;FB), we 
an
onstru
t an equivalen
e relation θ on A as θ = {(x, y) | ϕ(x) = ϕ(y)}. Therelation θ is said to be a 
ongruen
e relation of A. We 
an now 
onstru
t thequotient algebra A/θ = (A/θ;FA/θ). Here, A/θ = {x/θ | x ∈ A} and x/θ isthe equivalen
e 
lass 
ontaining x. Furthermore, FA/θ = {f/θ | f ∈ FA} and

f/θ is de�ned su
h that f/θ(x1/θ, x2/θ, . . . , xn/θ) = f(x1, x2, . . . , xn)/θ.For an operation f : Dn → D and a subset X ⊆ D we de�ne f ∣∣∣
X

as thefun
tion g : Xn → D su
h that g(x) = f(x) for all x ∈ Xn. For a set ofoperations F on D we de�ne F ∣∣∣
X

= {f
∣

∣

∣

X
| f ∈ F}.De�nition 20 (Subalgebra) Let A = (A;FA) be an algebra and B ⊆ A. Iffor ea
h f ∈ FA and any b1, b2, . . . , bn ∈ B, we have f(b1, b2, . . . , bn) ∈ B, then

B = (B;FA

∣

∣

∣

B
) is a subalgebra of A.The operations in Pol(Inv(FA)) are the term operations of A. If all term op-erations are surje
tive, then the algebra is said to be surje
tive. Note thatInv(FA) is a 
ore if and only if A is surje
tive [13,34℄. If F 
onsist of all theidempotent term operations of A, then the algebra (A;F ) is 
alled the fullidempotent redu
t of A, and we will denote this algebra by Ac. Given a set ofrelations Γ over the domain D we say that the algebra AΓ = (D;Pol(Γ)) isasso
iated with Γ. An algebra B is said to be a fa
tor of the algebra A if B isa homomorphi
 image of a subalgebra of A. A non-trivial fa
tor is an algebrawhi
h is not trivial, i.e., it has at least two elements.3.2 Constraint Satisfa
tion and AlgebraWe 
ontinue by des
ribing some 
onne
tions between 
onstraint satisfa
tionproblems and universal algebra. The following theorem 
on
erns the hardnessof CSP for 
ertain 
onstraint languages.Theorem 21 ([13℄) Let Γ be a 
ore 
onstraint language. If Ac

Γ has a non-trivial fa
tor whose term operations are only proje
tions, then CSP(Γ) is NP-hard. 14



The algebrai
 CSP 
onje
ture [13℄ states that, for all other 
ore languages Γ,the problem CSP(Γ) is tra
table. This 
onje
ture has been veri�ed in manyimportant 
ases (see, e.g., [8,10℄).The �rst main result of this arti
le is the following theorem whi
h states thatMax CSP(Γ)-B has a hard gap at lo
ation 1 whenever the 
ondition whi
hmakes CSP(Γ) hard in Theorem 21 is satis�ed.Theorem 22 Let Γ be a 
ore 
onstraint language. If Ac
Γ has a non-trivialfa
tor whose term operations are only proje
tions, then Max CSP(Γ)-B hasa hard gap at lo
ation 1.The proof of this result 
an be found in �3.3. Note that if the above 
onje
tureis true then Theorem 22 des
ribes all 
onstraint languages Γ for whi
h MaxCSP(Γ) has a hard gap at lo
ation 1 be
ause, obviously, Γ 
annot have thisproperty when CSP(Γ) is tra
table.There is another 
hara
terisation of the algebras in Theorem 21 whi
h 
or-responds to tra
table 
onstraint languages. To state the 
hara
terisation weneed the following de�nition.De�nition 23 (Weak Near-Unanimity Fun
tion) An operation f : Dn →

D, where n ≥ 2, is a weak near-unanimity fun
tion if f is idempotent and
f(x, y, y, . . . , y) = f(y, x, y, y, . . . , y) = . . . = f(y, . . . , y, x)for all x, y ∈ D.Hereafter we will use the a
ronym wnuf for weak near-unanimity fun
tions.We say that an algebra A admits a wnuf if there is a wnuf among the termoperations of A. We also say that a 
onstraint language Γ admits a wnufif there is a wnuf among the polymorphisms of Γ. By 
ombining a theoremby Maróti and M
Kenzie [48, Theorem 1.1℄ with a result by Bulatov andJeavons [12, Proposition 4.14℄, we get the following:Theorem 24 Let A be an idempotent algebra. The following are equivalent:

• There is a non-trivial fa
tor B of A su
h that B only has proje
tions asterm operations.
• The algebra A does not admit any wnuf.3.3 Proof of Theorem 22Let 3SAT0 denote the relation {0, 1}3 \ {(0, 0, 0)}. We also introdu
e threeslight variations of 3SAT0, let 3SAT1 = {0, 1}3 \{(1, 0, 0)}, 3SAT2 = {0, 1}3 \15



{(1, 1, 0)}, and 3SAT3 = {0, 1}3 \ {(1, 1, 1)}. To simplify the notation we let
Γ3SAT = {3SAT0, 3SAT1, 3SAT2, 3SAT3}. It is not hard to see that theproblem Max CSP(Γ3SAT ) is pre
isely Max 3Sat. It is well-known that thisproblem, even when restri
ted to instan
es in whi
h ea
h variable o

urs atmost a 
onstant number of times, has a hard gap at lo
ation 1, see e.g., [56,Theorem 7℄. We state this as a lemma.Lemma 25 ([56℄) Max CSP(Γ3SAT )-B has a hard gap at lo
ation 1.To prove Theorem 22 we will utilise expander graphs.De�nition 26 (Expander graph) A d-regular graph G is an expander graphif, for any S ⊆ V [G], the number of edges between S and V [G] \ S is at least
min(|S|, |V [G] \ S|).Expander graphs are frequently used for proving properties of Max CSP,
f. [22,49℄. Typi
ally, they are used for bounding the number of variable o
-
urren
es. A 
on
rete 
onstru
tion of expander graphs has been provided byLubotzky et al. [47℄.Theorem 27 A polynomial-time algorithm T and a �xed integer N exist su
hthat, for any k > N , T (k) produ
es a 14-regular expander graph with k(1+o(1))verti
es.There are four basi
 ingredients in the proof of Theorem 22. The �rst threeare Lemma 13, Lemma 25, and the use of expander graphs to bound thenumber of variable o

urren
es. We also use an alternative 
hara
terisation(Lemma 28) of 
onstraint languages satisfying the 
onditions of the theorem.This is a slight modi�
ation of a part of the proof of Proposition 7.9 in [13℄.The impli
ation below is in fa
t an equivalen
e and we refer the reader to [13℄for the details. Given a fun
tion f : D → D, and a relation R ∈ RD, the fullpreimage of R under f , denoted by f−1(R), is the relation {x | f(x) ∈ R}(as usual, f(x) denotes that f should be applied 
omponentwise to x). Forany a ∈ D, we denote the unary 
onstant relation 
ontaining only a by ca,i.e., ca = {(a)}. Let CD denote the set of all 
onstant relations over D, thatis, CD = {ca | a ∈ D}.Lemma 28 Let Γ be a 
ore 
onstraint language. If the algebra Ac

Γ has a non-trivial fa
tor whose term operations are only proje
tions, then there is a subset
B of D and a surje
tive mapping ϕ : B → {0, 1} su
h that the relational 
lone
〈Γ ∪ CD〉 
ontains the relations ϕ−1(3SAT0), ϕ−1(3SAT1), ϕ−1(3SAT2), and
ϕ−1(3SAT3)}.Proof. Let A′ be the subalgebra of Ac

Γ su
h that there is a homomorphism ϕfrom A′ to a non-trivial algebra B whose term operations are only proje
tions.We 
an assume, without loss of generality, that the set {0, 1} is 
ontained in16



the universe of B. It is easy to see that any relation is invariant under any pro-je
tions. Sin
e B only has proje
tions as term operations, the four relations
3SAT0, 3SAT1, 3SAT2 and 3SAT3 are invariant under the term operationsof B. It is not hard to 
he
k (see [13℄) that the full preimages of those re-lations under ϕ are invariant under the term operations of A′ and thereforethey are also invariant under the term operations of Ac

Γ. By the observationthat Ac
Γ = AΓ∪CD

and Theorem 17, this implies {ϕ−1(3SAT0), ϕ
−1(3SAT1),

ϕ−1(3SAT2), ϕ
−1(3SAT3)} ⊆ 〈Γ ∪ CD〉. 2We are now ready to present the proof of Theorem 22. Let S be a permutationgroup on the set X. An orbit of S is a subset Ω of X su
h that Ω = {g(x) |

g ∈ S} for some x ∈ X.Proof. By Lemma 13, in order to prove the theorem, it su�
es to �nd a �niteset Γ′ ⊆ 〈Γ〉 su
h that Max CSP(Γ′)-B has a hard gap at lo
ation 1.Sin
e Γ is a 
ore, its unary polymorphisms form a permutation group S on D.We 
an without loss of generality assume that D = {1, . . . , p}. It is known (seeProposition 1.3 of [55℄) and not hard to 
he
k (using Theorem 17) that Γ 
anperfe
tly implement the following relation: RS = {(g(1), . . . , g(p)) | g ∈ S}.Then it 
an also perfe
tly implement the relations EQi for 1 ≤ i ≤ p where
EQi is the restri
tion of the equality relation on D to the orbit in S whi
h
ontains i. We have
EQi(x, y) ⇐⇒ ∃z1, . . . , zi−1, zi+1, . . . , zp :RS(z1, . . . , zi−1, x, zi+1, . . . , zp)∧

RS(z1, . . . , zi−1, y, zi+1, . . . , zp).By Lemma 28, there exists a subset (in fa
t, a subalgebra) B of D and asurje
tive mapping ϕ : B → {0, 1} su
h that the relational 
lone 〈Γ ∪ CD〉
ontains ϕ−1(Γ3SAT ) = {ϕ−1(R) | R ∈ Γ3SAT}. For 0 ≤ i ≤ 3, let Ri be thepreimage of 3SATi under ϕ. Sin
e Ri ∈ 〈Γ ∪ CD〉, we 
an show that thereexists a (p+ 3)-ary relation R′
i in 〈Γ〉 su
h that

Ri = {(x, y, z) | (1, 2, . . . , p, x, y, z) ∈ R′
i}.Indeed, sin
e Ri ∈ 〈Γ∪CD〉, Ri 
an be de�ned by a pp-formulaRi(x, y, z) ⇐⇒

∃t : ψ(t, x, y, z) (here t denotes a tuple of variables) where ψ is a 
onjun
tionof atomi
 formulas involving predi
ates from Γ∪CD and variables from t and
{x, y, z}. Note that, in ψ, no predi
ate from CD is applied to one of {x, y, z}be
ause these variables 
an take more than one value in Ri. We 
an withoutloss of generality assume that every predi
ate from CD appears in ψ exa
tlyon
e. Indeed, if su
h a predi
ate appears more than on
e, then we 
an identifyall variables to whi
h it is applied, and if it does not appear at all then we 
an17



add a new variable to t and apply this predi
ate to it. Now assume without lossof generality that the predi
ate ci, 1 ≤ i ≤ p, is applied to the variable ti in ψ,and ψ = ψ1 ∧ ψ2 where ψ1 =
∧p

i=1 ci(ti) and ψ2 
ontains only predi
ates from
Γ \ CD. Let t

′ be the list of variables obtained from t by removing t1, . . . , tp.It now is easy to 
he
k that that the (p + 3)-ary relation R′
i de�ned by thepp-formula ∃t′ : ψ2(t, x, y, z) has the required property.Choose R′

i to be the (in
lusion-wise) minimal relation in 〈Γ〉 su
h that
Ri = {(x, y, z) | (1, 2, . . . , p, x, y, z) ∈ R′

i}and let Γ′ = {R′
i | 0 ≤ i ≤ 3} ∪ {EQ1, . . . , EQp}. Note that we have Γ′ ⊆ 〈Γ〉.We will need a more 
on
rete des
ription of R′

i, so we now show that
R′

i = {(g(1), g(2), . . . , g(p), g(x), g(y), g(z)) | g ∈ S, (x, y, z) ∈ Ri}.The set on the right-hand side of the above equality must be 
ontained in R′
ibe
ause R′

i is invariant under all operations in S. On the other hand, if a tuple
b = (b1, . . . , bp, d, e, f) belongs to R′

i, then there is a permutation g ∈ S su
hthat (b1, . . . , bp) = (g(1), . . . , g(p)) (otherwise, the interse
tion of this relationwith RS ×D
3 ∈ 〈Γ〉 would give a smaller relation with the required property).Now note that the tuple (1, . . . , p, g−1(d), g−1(e), g−1(f)) also belongs to R′

iimplying, by the 
hoi
e of R′
i, that (g−1(d), g−1(e), g−1(f)) ∈ Ri. Therefore,the relation R′

i is indeed as des
ribed above.By Lemma 25, there is an integer l su
h that Max CSP(Γ3SAT )-l has a hardgap at lo
ation 1. By Lemma 14, Max CSP(ϕ−1(Γ3SAT ))-l has the sameproperty (be
ause Γ3SAT is the 
ore of ϕ−1(Γ3SAT )). To 
omplete the proof,we will now AP -redu
e Max CSP(ϕ−1(Γ3SAT ))-l to Max CSP(Γ′)-l′ where
l′ = max{14p + 1, l} (re
all that p = |D| is a 
onstant). Take an arbitraryinstan
e I = (V, C) of Max CSP(ϕ−1(Γ3SAT ))-l, and build an instan
e I ′ =
(V ′, C ′) of Max CSP(Γ′) as follows: introdu
e new variables u1, . . . , up, andrepla
e ea
h 
onstraint Ri(x, y, z) in I by R′

i(u1, . . . , up, x, y, z). Note thatevery variable, ex
ept the ui's, in I ′ appears at most l times. We will now useexpander graphs to 
onstru
t an instan
e I ′′ ofMax CSP(Γ′) with a 
onstantbound on the number of o

urren
es for ea
h variables.Let q be the number of 
onstraints in I and let q′ = max{N, q}, where Nis the 
onstant in Theorem 27. Let G = (W,E) be an expander graph (
on-stru
ted in polynomial time by the algorithm T (q′) in Theorem 27) su
h that
W = {w1, w2, . . . , wm} and m ≥ q. The expander graph T (q′) has q′(1 + o(1))verti
es. Hen
e, there is a 
onstant α su
h that T (q′) has at most αq verti
es.For ea
h 1 ≤ j ≤ p, we introdu
e m fresh variables wj

1, w
j
2, . . . , w

j
m into I ′′. Forea
h edge {wi, wk} ∈ E and 1 ≤ j ≤ p, introdu
e p 
opies of the 
onstraint

EQj(w
j
i , w

j
k) into C ′′. Let C1, C2, . . . , Cq be an enumeration of the 
onstraints18



in C ′. Repla
e uj by wj
i in Ci for all 1 ≤ i ≤ q. Finally, let C∗ be the union ofthe (modi�ed) 
onstraints in C ′ and the equality 
onstraints in C ′′. It is 
learthat ea
h variable o

urs in I ′′ at most l′ = max{14p + 1, l} times (as G is14-regular).Clearly, a solution s to I satisfying all 
onstraints 
an be extended to a solutionto I ′′, also satisfying all 
onstraints, by setting s(wj

i ) = j for all 1 ≤ i ≤ mand all 1 ≤ j ≤ p.On the other hand, if m(I, s) ≤ ε|C|, then let s′ be an optimal solution to I ′′.We will prove that there is a 
onstant ε′ < 1 (whi
h depends on ε but not on
I) su
h that m(I ′′, s′) ≤ ε′|C∗|.We �rst prove that, for ea
h 1 ≤ j ≤ p, we 
an assume that all variables in
W j = {wj

1, w
j
2, . . . , w

j
m} have been assigned the same value by s′ and that all
onstraints in C ′′ are satis�ed by s′. We show that given a solution s′ to I ′′,we 
an 
onstru
t another solution s2 su
h that m(I ′′, s2) ≥ m(I ′′, s′) and s2satis�es all 
onstraints in C ′′.Let aj be the value that at leastm/p of the variables inW j have been assignedby s′. We 
onstru
t the solution s2 as follows: s2(w

j
i ) = aj for all i and j, and

s2(x) = s′(x) for all other variables.If there is some j su
h that X = {x ∈ W j | s′(x) 6= aj} is non-empty,then, sin
e G is an expander graph, there are at least p · min(|X|, |W j \X|)
onstraints in C ′′ whi
h are not satis�ed by s′. Note that by the 
hoi
e of
X, we have |W j \X| ≥ m/p whi
h implies p · min(|X|, |W j \X|) ≥ |X|. By
hanging the value of the variables inX, we will make at most |X| non-equality
onstraints in C∗ unsatis�ed be
ause ea
h of the variables in W j o

urs in atmost one non-equality 
onstraint in C∗. In other words, when the value of thevariables in X are 
hanged we gain at least |X| in the measure as some of theequality 
onstraints in C ′′ will be
ome satis�ed, furthermore we lose at most
|X| by making at most |X| 
onstraints in C∗ unsatis�ed. We 
on
lude that
m(I ′, s2) ≥ m(I ′, s′). Thus, we may assume that all equality 
onstraints in C ′′are satis�ed by s′.Sin
e the expander graph G is 14-regular and has at most αq verti
es, it has atmost 14

2
αq edges. Hen
e, the number of equality 
onstraints in C ′′ is at most

7αqp, and |C ′′|/|C ′| ≤ 7αp. We 
an now bound m(I ′′, s2) as follows:
m(I ′′, s2) ≤ opt(I ′) + |C ′′| ≤

ε|C ′| + |C ′′|

|C ′| + |C ′′|
(|C ′| + |C ′′|) ≤

ε+ 7αp

1 + 7αp
(|C ′| + |C ′′|).Sin
e |C∗| = |C ′| + |C ′′|, it remains to set ε′ = ε+7αp

1+7αp
. 219



We �nish this se
tion by using Theorem 22 to answer, at least partially, twoopen questions. The �rst one 
on
erns the 
omplexity of CSP(Γ)-B. In par-ti
ular, the following 
onje
ture has been made by Feder et al. [28℄.Conje
ture: For any �xed Γ su
h that CSP(Γ) is NP-
omplete there is aninteger k su
h that CSP(Γ)-k is NP-
omplete.Under the assumption that the algebrai
 CSP 
onje
ture (that all problemsCSP(Γ) not 
overed by Theorem 21 are tra
table) holds, an a�rmative answerfollows immediately from Theorem 22. So for all 
onstraint languages Γ su
hthat CSP(Γ) is 
urrently known to be NP-
omplete it is also the 
ase thatCSP(Γ)-B is NP-
omplete.The se
ond result 
on
erns the approximability of equations over non-abeliangroups. Petrank [50℄ has noted that hardness at gap lo
ation 1 implies thefollowing: suppose that we restri
t ourselves to instan
es of Max CSP(Γ)su
h that there exist solutions that satisfy all 
onstraints, i.e. we 
on
entrateon satis�able instan
es. Then, there exists a 
onstant c (depending on Γ) su
hthat no polynomial-time algorithm 
an approximate this problem within c.We get the following result for satis�able instan
es:Corollary 29 Let Γ be a 
ore 
onstraint language and let A be the algebraasso
iated with Γ. Assume there is a fa
tor B of Ac su
h that B only haveproje
tions as term operations. Then, there exists a 
onstant c su
h that MaxCSP(Γ)-B restri
ted to satis�able instan
es 
annot be approximated within cin polynomial time.We will now use this observation for studying a problem 
on
erning groups.Let G = (G, ·) denote a �nite group with identity element 1G. An equationover a set of variables V is an expression of the form w1 · . . .·wk = 1G, where wi(for 1 ≤ i ≤ k) is either a variable, an inverted variable, or a group 
onstant.Engebretsen et al. [27℄ have studied the following problem:De�nition 30 (EqG) The 
omputational problem EqG (where G is a �nitegroup) is de�ned to be the optimisation problem withInstan
e: A set of variables V and a 
olle
tion of equations E over V .Solution: An assignment s : V → G to the variables.Measure: Number of equations in E whi
h are satis�ed by s.The problem Eq1
G[3℄ is the same as EqG ex
ept for the additional restri
tionsthat ea
h equation 
ontains exa
tly three variables and no equation 
ontainsthe same variable more than on
e. Their main result was the following inap-proximability result:Theorem 31 (Theorem 1 in [27℄) For any �nite group G and 
onstant ε >20



0, it is NP-hard to approximate Eq1
G[3℄ within |G| − ε.Engebretsen et al. left the approximability of Eq1

G[3℄ for satis�able instan
esas an open question. We will give a partial answer to the approximability ofsatis�able instan
es of EqG .It is not hard to see that for any integer k, the equations with at most kvariables over a �nite group 
an be viewed as a 
onstraint language. For agroup G, we denote the 
onstraint language whi
h 
orresponds to equationswith at most three variables by ΓG. Hen
e, for any �nite group G, the problemMax CSP(ΓG) is no harder than EqG .Goldmann and Russell [30℄ have shown that CSP(ΓG) is NP-hard for every�nite non-abelian group G. This result was extended to more general algebrasby Larose and Zádori [45℄. They also showed that for any non-abelian group G,the algebra A = (G;Pol(ΓG)) has a non-trivial fa
tor B su
h that B only hasproje
tions as term operations. We now 
ombine Larose and Zádori's resultwith Theorem 22:Corollary 32 For any �nite non-abelian group G, EqG has a hard gap atlo
ation 1.Thus, there is a 
onstant c su
h that no polynomial-time algorithm 
an approx-imate satis�able instan
es of EqG better than c. There also exists a 
onstant
k (depending on the group G) su
h that the result holds for instan
es withvariable o

urren
e bounded by k.
4 Approximability of Single Relation Max CSPIn this se
tion, we will prove the following theorem:Theorem 33 Let R ∈ R

(n)
D be non-empty. If (d, . . . , d) ∈ R for some d ∈ D,then Max CSP({R}) is solvable in linear time. Otherwise, Max CSP({R})-

B is hard to approximate.Proof. The tra
tability part of the theorem is trivial. It was shown in [36℄that any non-empty non-valid relation of arity n ≥ 2 stri
tly implements abinary non-empty non-valid relation. Hen
e, by Lemma 12, it is su�
ient toto prove the the hardness part for binary relations. It is often 
onvenient toview binary relations as digraphs. The proof for vertex-transitive digraphs ispresented in �4.1, and for the remaining digraphs in �4.2. 221



Re
all that a digraph is a pair (V,E) su
h that V is a �nite set and E ⊆ V ×V .A graph is a digraph (V,E) su
h that for every pair (x, y) ∈ E we also have
(y, x) ∈ E. Let R ∈ RD be a binary relation. As R is binary it 
an be viewedas a digraph G with vertex set V [G] = D and edge set E[G] = R. We willmix freely between those two notations. For example, we will sometimes write
(x, y) ∈ G with the intended meaning (x, y) ∈ E[G].Let G be a digraph, R = E[G], and let Aut(G) denote the automorphismgroup of G. If Aut(G) is transitive (i.e., 
ontains a single orbit), then we saythat G is vertex-transitive. If D 
an be partitioned into two sets, A and B,su
h that for any x, y ∈ A (or x, y ∈ B) we have (x, y) 6∈ R, then R (and
G) is bipartite. The dire
ted 
y
le of length n is the digraph G with vertexset V [G] = {0, 1, . . . , n − 1} and edge set E[G] = {(x, x + 1) | x ∈ V [G]},where the addition is modulo n. Analogously, the undire
ted 
y
le of length nis the graph H with vertex set V [H ] = {0, 1, . . . , n− 1} and edge set E[H ] =
{(x, x+1) | x ∈ V [H ]}∪{(x+1, x) | x ∈ V [H ]} (also in this 
ase the additionsare modulo n). The undire
ted path with two verti
es will be denoted by P2.4.1 Vertex-transitive DigraphsWe will now ta
kle non-bipartite vertex-transitive digraphs and prove thatthey give rise to Max CSP problems whi
h are hard at gap lo
ation 1. To dothis, we make use of the algebrai
 framework whi
h we used and developed in�3. We will also use a theorem by Barto, Kozik, and Niven [7℄ on the 
omplexityof CSP(G) for digraphs G without sour
es and sinks. A vertex v in a digraphis a sour
e if there is no in
oming edge to v. Similarly, a vertex v is a sink ifthere is no outgoing edge from v.Theorem 34 ([7℄) If G is a 
ore digraph without sour
es and sinks whi
hdoes not retra
t to a disjoint union of dire
ted 
y
les, then G admits no wnuf.>From this result we derive the following 
orollary.Corollary 35 Let H be a vertex-transitive 
ore digraph whi
h is non-empty,non-valid, and not a dire
ted 
y
le. Then, Max CSP({H})-B has a hard gapat lo
ation 1.Proof. Let v and u be two verti
es in H . As H is vertex-transitive the in- andout-degrees of u and v must 
oin
ide, and hen
e the in- and out-degrees of vmust be the same. Hen
e, H does not have any sour
es or sinks. Furthermore,as H is vertex-transitive and a 
ore it follows that it is 
onne
ted. The resultnow follows from Theorem 34, Theorem 24, and Theorem 22. 222



The next lemmas help to deal with the remaining vertex-transitive graphs, i.e.those that retra
t to a dire
ted 
y
le.Lemma 36 If G is the undire
ted path with two verti
es P2, or an undire
ted
y
le Ck, k > 2, then Max CSP({G})-B is hard to approximate.Proof. If G = P2, then the result follows from Example 3. If G = Ck and kis even, then the 
ore of Ck is isomorphi
 to P2 and the result follows fromLemmas 15, 9 
ombined with Example 3.From now on, assume that G = Ck, k is odd, and k ≥ 3. We will show that we
an stri
tly implement Nk, i.e., the inequality relation. We use the followingstri
t implementation
Nk(z1, zk−1) + (k − 3) = max

z2,z3,...,zk−2

Ck(z1, z2) + Ck(z2, z3) + . . .+

Ck(zk−3, zk−2) + Ck(zk−2, zk−1).It is not hard to see that if z1 6= zk−1, then all k − 2 
onstraints on the righthand side 
an be satis�ed. If z1 = zk−1, then k− 3 
onstraints are satis�ed bythe assignment zi = z1 + i− 1, for all i su
h that 1 < i < k − 1 (the additionand subtra
tion are modulo k). Furthermore, no assignment 
an satisfy all
onstraints. To see this, note that su
h an assignment would de�ne a path
z1, z2, . . . , zk−1 in Ck with k − 2 edges and z1 = zk−1. This is impossible sin
e
k − 2 is odd and k − 2 < k .The lemma now follows from Lemmas 12 and 9 together with Example 3. 2Lemma 37 If G is a digraph su
h that (x, y) ∈ E[G] ⇒ (y, x) 6∈ E[G],then Max CSP({H})-B ≤AP Max CSP({G})-B, where H is the undire
tedgraph obtained from G by repla
ing every edge in G by two edges in opposingdire
tions in H.Proof. H(x, y) + (1 − 1) = G(x, y) +G(y, x) is a stri
t implementation of Hand the result follows from Lemma 12. 2Lemma 38 If G is a non-empty non-valid vertex-transitive digraph, thenMax CSP({G})-B is hard to approximate.Proof. By Lemmas 15 and 9, it is enough to 
onsider 
ores. For dire
ted 
y-
les, the result follows from Lemmas 36 and 37, and, for all other digraphs,from Corollary 35. 223



4.2 General DigraphsWe now deal with digraphs that are not vertex-transitive.Lemma 39 If G is a bipartite digraph whi
h is neither empty nor valid, thenMax CSP({G})-B is hard to approximate.Proof. If there are two edges (x, y), (y, x) ∈ E[G], then the 
ore of G is iso-morphi
 to P2 and the result follows from Lemmas 9 and 15 together withExample 3. If no su
h pair of edges exist, then Lemmas 9 and 37 redu
e this
ase to the previous 
ase where there are two edges (x, y), (y, x) ∈ E[G]. 2We will use a te
hnique known as domain restri
tion [24℄ in the sequel. Fora subset D′ ⊆ D, let Γ
∣

∣

∣

D′

= {R
∣

∣

∣

D′

| R ∈ Γ and R∣∣∣
D′

is non-empty}. Thefollowing lemma was proved in [24, Lemma 3.5℄ (the lemma is stated in aslightly di�erent form there, but the proof together with [6, Lemma 8.2℄ andLemma 5 implies the existen
e of the required AP -redu
tion).Lemma 40 If D′ ⊆ D and D′ ∈ Γ, then Max CSP(Γ
∣

∣

∣

D′

)-B ≤AP MaxCSP(Γ)-B.Typi
ally, we will let D′ be an orbit in the automorphism group of a graph.We are now ready to present the three lemmas that are the building blo
ksof the main lemma in this se
tion, Lemma 44. Let G be a digraph. For a set
A ⊆ V [G], we de�ne A+ = {j | (i, j) ∈ E[G], i ∈ A}, and A− = {i | (i, j) ∈
E[G], j ∈ A}.Lemma 41 If a 
onstraint language Γ 
ontains two unary predi
ates S, Tsu
h that S ∩ T = ∅, then Γ stri
tly implements S ∪ T .Proof. Let U = S ∪ T . Then U(x) + (1 − 1) = S(x) + T (x) is a stri
t imple-mentation of U(x). 2Lemma 42 Let H be a 
ore digraph and Ω an orbit in Aut(H). Then, Hstri
tly implements Ω+ and Ω−.Proof. Assume that H ∈ RD where D = {1, 2, . . . , p} and (without loss ofgenerality) assume that 1 ∈ Ω. We 
onstru
t a stri
t implementation of Ω+;the other 
ase 
an be proved in a similar way. Consider the fun
tion

g(z1, . . . , zp) =
∑

H(i,j)=1

H(zi, zj).24



Sin
e H is a 
ore, it follows that g(a1, . . . , ap) = |E[H ]| if and only if thefun
tion mapping i to ai, i = 1, . . . , p, is an automorphism of H . This alsoimplies that a ne
essary 
ondition for g(a1, . . . , ap) = |E[H ]| is that a1 isassigned some element in the orbit 
ontaining 1, i.e. the orbit Ω. We 
laimthat Ω+ 
an be stri
tly implemented as follows:
Ω+(x) + (α− 1) = max

z
(H(z1, x) + g(z))where z = (z1, z2, . . . , zp) and α = |E[H ]| + 1.Assume �rst that x ∈ Ω+ and 
hoose y ∈ Ω su
h thatH(y, x) = 1. Then, thereexists an automorphism σ su
h that σ(1) = y and H(z1, x)+g(z) = 1+ |E[H ]|by assigning variable zi, 1 ≤ i ≤ p, the value σ(i).If x 6∈ Ω+, then there is no y ∈ Ω su
h that H(y, x) = 1. If the 
onstraint

H(z1, x) is to be satis�ed, then z1 must be 
hosen su
h that z1 6∈ Ω. We havealready observed that su
h an assignment 
annot be extended to an automor-phism of H and, 
onsequently, H(z1, x) + g(z) < 1 + |E[H ]| whenever z1 6∈ Ω.However, the assignment zi = i, 1 ≤ i ≤ p, makes H(z1, x) + g(z) = |E[H ]|sin
e the identity fun
tion is an automorphism of H . 2Lemma 43 If H is a 
ore digraph and Ω an orbit in Aut(H), then, for every
k, there is a k′ su
h that Max CSP({H|Ω})-k ≤AP Max CSP({H})-k′.Proof. Let V [H ] = {1, 2, . . . , p} and arbitrarily 
hoose one element d ∈ Ω.Let I = (V, C) be an arbitrary instan
e of Max CSP({H|Ω})-k and let V =
{v1, . . . , vn}. Let k′ = k|E[H ]|+k. We 
onstru
t an instan
e I ′ = (V ′∪V, C ′∪
C) of Max CSP({H})-k′ as follows: for ea
h variable vi ∈ V :(1) Add fresh variables w1

i , . . . , w
d−1
i , wd+1

i , . . . , wp
i to V ′ and let wd

i denotethe variable vi.(2) For ea
h (a, b) ∈ E[H ], add k 
opies of the 
onstraint H(wa
i , w

b
i ) to C ′.It is 
lear that I ′ is an instan
e ofMax CSP({H})-k′. (If some vertex i ∈ V [H ]o

ur in every edge in H , then wd

i o

ur at most k|E[H ]|+k times in I ′. Thisis the worst 
ase given by the 
onstru
tion above.)Let s′ be a solution to I ′. For an arbitrary variable vi ∈ V , if there is some
onstraint in C ′ whi
h is not satis�ed by s′, then we 
an get another solution
s′′ by modifying s′ so that every 
onstraint in C ′ is satis�ed (if H(wa

i , w
b
i ) isa 
onstraint whi
h is not satis�ed by s′ then set s′′(wa

i ) = a and s′′(wb
i ) = b).We will denote this polynomial-time algorithm by P ′, so s′′ = P ′(s′). The
orresponding solution to I will be denoted by P (s′), so P (s′)(vi) = P ′(s′)(wd

i ).25



The algorithm P may make some of the 
onstraints involving vi unsatis�ed (atmost k 
onstraints will be made unsatis�ed as vi o

urs in at most k 
onstraintsin I). However, the number of 
opies, k, of the 
onstraints in C ′ implies that
m(I ′, s′) ≤ m(I ′, P ′(s′)). In parti
ular, this means that any optimal solutionto I ′ 
an be used to 
onstru
t another optimal solution whi
h satis�es all
onstraints in C ′.Hen
e, for ea
h vi ∈ V , all 
onstraints from step 2 are satis�ed by s′′ =
P ′(s′). As H is a 
ore, s′′ restri
ted to w1

i , . . . , w
p
i (for any vi ∈ V ) indu
esan automorphism of H . Denote the automorphism by f : V [H ] → V [H ] andnote that f 
an be de�ned as f(x) = s′′(wx

i ). Furthermore, s′′(wd
i ) ∈ Ω for all

wd
i ∈ V sin
e d ∈ Ω.To simplify the notation we let l = |E[H ]|. By a straightforward probabilisti
argument we have opt(I) ≥ l

p2 |C|. Using this fa
t and the argument abovewe 
an bound the optimum of I ′ as follows:opt(I ′) ≤ opt(I) + kl|V |

≤ opt(I) + k2l|C|

≤ opt(I) + k2p2opt(I)

= (1 + k2p2)opt(I).

>From Lemma 5 we know that there exists a polynomial-time approximationalgorithm A for Max CSP(H
∣

∣

∣

Ω
). Let us assume that A is a c-approximationalgorithm, i.e., it produ
es solutions whi
h are c-approximate in polynomialtime. We 
onstru
t the algorithm G in the AP -redu
tion as follows:

G(I, s′) =











P (s′) if m(I, P (s′)) ≥ m(I, A(I)),

A(I) otherwise.We see that opt(I)/m(I, G(I, s′)) ≤ c. Let s′ be an r-approximate solutionto I ′. As m(I ′, s′) ≤ m(I ′, P ′(s′)), we get that P ′(s′) is an r-approximatesolution to I ′, too. Furthermore, sin
e P ′(s′) satis�es all 
onstraints introdu
edin step 2, we have opt(I ′) −m(I ′, P ′(s′)) = opt(I) −m(I, P (s′)). Let β =26



1 + k2p2 and note thatopt(I)

m(I, G(I, s′))
=

m(I, P (s′))

m(I, G(I, s′))
+
opt(I ′) −m(I ′, P ′(s′))

m(I, G(I, s′))

≤ 1 +
opt(I ′) −m(I ′, P ′(s′))

m(I, G(I, s′))

≤ 1 + c ·
opt(I ′) −m(I ′, P ′(s′))opt(I)

≤ 1 + cβ ·
opt(I ′) −m(I ′, P ′(s′))opt(I ′)

≤ 1 + cβ ·
opt(I ′) −m(I ′, P ′(s′))

m(I ′, P ′(s′))
≤ 1 + cβ(r − 1).

2Lemma 44 Let H be a non-empty non-valid digraph with at least two verti
eswhi
h is not vertex-transitive. Then Max CSP({H})-B is hard to approxi-mate.Proof. The proof is by indu
tion on the number of verti
es, |V [H ]|. If |V [H ]| =
2 then the result follows from Lemma 39. Assume now that |V [H ]| > 2 andthe lemma holds for all digraphs with a smaller number of verti
es. Note thatif H is not a 
ore then the 
ore of H has fewer verti
es or is vertex-transitive.In either 
ase, the result follows. So assume that H is a 
ore.We 
laim that either (a) Max CSP({H})-B is hard to approximate, or (b)there exists a proper subset X of V su
h that |X| ≥ 2, H∣∣∣

X
is non-empty, H∣∣∣

Xis non-valid and for every k there exists a k′ su
h that Max CSP({H
∣

∣

∣

X
})-k

≤AP Max CSP({H})-k′. Sin
e the 
ore of H∣∣∣
X
either is vertex-transitive orhas fewer verti
es than H , the lemma will follow from this 
laim.We now split the proof of the 
laim into three 
ases.Case 1: There exists an orbit Ω1 ( V [H ] su
h that Ω+

1 
ontains atleast one orbit.If H∣∣∣
Ω1

is non-empty, then we get the result from Lemma 43 and the indu
tionhypothesis, sin
e Ω1 ( V [H ] (we 
annot have |Ω1| = 1 be
ause then H would
ontain a loop). Assume that H∣∣∣
Ω1

is empty. As H∣∣∣
Ω1

is empty, we get that Ω+
1is a proper subset of V [H ] with at least two elements. If H∣∣∣

Ω+

1

is non-empty,then we get the result from Lemmas 42, 12 and 40. Hen
e, we assume that
H
∣

∣

∣

Ω+

1

is empty. 27



Arbitrarily 
hoose an orbit Ω2 ⊆ Ω+
1 and note that Ω+

1 ∩ Ω−
2 = ∅ sin
e H∣∣∣

Ω+

1is empty. If Ω+
1 ∪ Ω−

2 ( V [H ], then we get the result from Lemmas 42, 12,41 and 40 be
ause H∣∣∣
Ω+

1
∪Ω−

2

is non-empty. Hen
e, we 
an assume without lossof generality that Ω+
1 ∪ Ω−

2 = V [H ], and sin
e Ω+
1 ∩ Ω−

2 = ∅, we have anpartition of V [H ] into the sets Ω+
1 and Ω−

2 . Using the same argument as for
Ω+

1 , we 
an assume that H∣∣∣
Ω−

2

is empty. Therefore, Ω+
1 ,Ω−

2 is a partition of
V [H ] and H∣∣∣

Ω+

1

,H∣∣∣
Ω−

2

are both empty. This implies that H is bipartite and weget the result from Lemma 39.Case 2: There exists an orbit Ω1 ⊂ V [H ] su
h that Ω−
1 
ontains atleast one orbit.This 
ase is analogous to the previous 
ase.Case 3: For every orbit Ω ⊆ V [H ], neither Ω+ nor Ω− 
ontains anyorbits.Pi
k any two orbits Ω1 and Ω2 (not ne
essarily distin
t). Assume that thereare x ∈ Ω1 and y ∈ Ω2 su
h that (x, y) ∈ E[H ]. Let z be an arbitrary vertexin Ω2. Sin
e Ω2 is an orbit of H , there is an automorphism ρ ∈ Aut(H) su
hthat ρ(y) = z, so (ρ(x), z) ∈ E[H ]. Furthermore, Ω1 is an orbit of Aut(H) so

ρ(x) ∈ Ω1. Sin
e z was 
hosen arbitrarily, we 
on
lude that Ω2 ⊆ Ω+
1 . However,this 
ontradi
ts our assumption that neither Ω+

1 nor Ω−
1 
ontains any orbit.We 
on
lude that for any pair Ω1, Ω2 of orbits and any x ∈ Ω1, y ∈ Ω2, wehave (x, y) 6∈ E[G]. This implies that H is empty and Case 3 
annot o

ur. 2We will now give a simple example on how Theorem 33 
an be used for study-ing the approximability of 
onstraint languages.Corollary 45 Let Γ be a 
onstraint language su
h that Aut(Γ) 
ontains asingle orbit. If Γ 
ontains a non-empty k-ary, k > 1, relation R whi
h is not

d-valid for all d ∈ D, thenMax CSP(Γ)-B is hard to approximate. Otherwise,Max CSP(Γ) is tra
table.Proof. If a relation R with the properties des
ribed above exists, then MaxCSP(Γ)-B is hard to approximate by Theorem 33 (note that R 
annot be
d-valid for any d). Otherwise, every k-ary, k > 1, relation S ∈ Γ is d-valid forall d ∈ D. If Γ 
ontains a unary relation U su
h that U ( D, then Aut(Γ)would 
ontain at least two orbits whi
h 
ontradi
t our assumptions. It followsthat Max CSP(Γ) is trivially solvable. 228



Note that the 
onstraint languages 
onsidered in Corollary 45 may be seen asa generalisation of vertex-transitive graphs.4.3 Max CSP and SupermodularityIn this se
tion, we will prove two results whose proofs make use of Theorem 33.The �rst result (Proposition 51) 
on
erns the hardness of approximatingMaxCSP(Γ) for Γ whi
h 
ontains all at most binary relations whi
h are 2-monotone(see �4.3.1 for a de�nition) on some partially ordered set whi
h is not a latti
eorder. The other result, Theorem 53, states that Max CSP(Γ) is hard to ap-proximate if Γ 
ontains all at most binary supermodular predi
ates on somelatti
e and in addition 
ontains at least one predi
ate whi
h is not supermod-ular on the latti
e.These results strengthens earlier published results [42,43℄ in various ways (e.g.,they apply to a larger 
lass of 
onstraint languages or they give approximationhardness instead of NP-hardness). In �4.3.1 we give a few preliminaries whi
hare needed in this se
tion while the new results are 
ontained in �4.3.2.4.3.1 PreliminariesRe
all that a partial order ⊑ on a domain D is a latti
e order if, for every
x, y ∈ D, there exist a greatest lower bound x ⊓ y and a least upper bound
x ⊔ y. The algebra L = (D;⊓,⊔) is a latti
e, and x ⊔ y = y ⇐⇒ x ⊓ y =
x ⇐⇒ x ⊑ y. We will write x ⊏ y if x 6= y and x ⊑ y. All latti
es we 
onsiderwill be �nite, and we will simply refer to these algebras as latti
es instead ofusing the more appropriate term �nite latti
es. The dire
t power of L, denotedby Ln, is the latti
e with domain Dn and operations a
ting 
omponentwise.De�nition 46 (Supermodular fun
tion) Let L be a latti
e. A fun
tion f :
Ln → R is 
alled supermodular on L if it satis�es,

f(a) + f(b) ≤ f(a ⊓ b) + f(a ⊔ b) (1)for all a, b ∈ Ln.The set of all supermodular predi
ates on a latti
e L will be denoted bySpmodL and a 
onstraint language Γ is said to be supermodular on a latti
e
L if Γ ⊆ SpmodL. We will sometimes use an alternative way of 
hara
terisingsupermodularity:Theorem 47 ([25℄) An n-ary fun
tion f is supermodular on a latti
e L ifand only if it satis�es inequality (1) for all (a1, a2, . . . , an), (b1, b2, . . . , bn) ∈ Lnsu
h that 29



(1) ai = bi with one ex
eption, or(2) ai = bi with two ex
eptions, and, for ea
h i, the elements ai and bi are
omparable in L.The following de�nition �rst o

urred in [17℄.De�nition 48 (Generalised 2-monotone) Given a poset P = (D,⊑), apredi
ate f is said to be generalised 2-monotone on P if
f(x) = 1 ⇐⇒ ((xi1 ⊑ ai1)∧ . . .∧ (xis ⊑ ais))∨ ((xj1 ⊒ bj1)∧ . . .∧ (xjs

⊒ bjs
))where x = (x1, x2, . . . , xn) and ai1 , . . . , ais, bj1 , . . . , bjs

∈ D, and either of thetwo disjun
ts may be empty.It is not hard to verify that generalised 2-monotone predi
ates on some latti
eare supermodular on the same latti
e. For brevity, we will use the word 2-monotone instead of generalised 2-monotone.The following theorem follows from [24, Remark 4.7℄. The proof in [24℄ usesthe 
orresponding unbounded o

urren
e 
ase as an essential stepping stone;see [21℄ for a proof of this latter result.Theorem 49 (Max CSP on a Boolean domain) Let D = {0, 1} and Γ ⊆
RD be a 
ore. If Γ is not supermodular on any latti
e on D, thenMax CSP(Γ)-
B is hard to approximate. Otherwise, Max CSP(Γ) is tra
table.4.3.2 ResultsThe following proposition is a 
ombination of results proved in [17℄ and [42℄.Proposition 50
• If Γ 
onsists of 2-monotone relations on a latti
e, then Max CSP(Γ) 
anbe solved in polynomial time.
• Let P = (D,⊑) be a poset whi
h is not a latti
e. If Γ 
ontains all at mostbinary 2-monotone relations on P, then Max CSP(Γ) is NP-hard.We strengthen the se
ond part of the above result as follows:Proposition 51 Let ⊑ be a partial order, whi
h is not a latti
e order, on
D. If Γ 
ontains all at most binary 2-monotone relations on ⊑, then MaxCSP(Γ)-B is hard to approximate.Proof. Sin
e ⊑ is a non-latti
e partial order, there exist two elements a, b ∈ Dsu
h that either a ⊓ b or a ⊔ b do not exist. We will give a proof for the �rst
ase and the other 
ase 
an be handled analogously.30



Let g(x, y) = 1 ⇐⇒ (x ⊑ a) ∧ (y ⊑ b). The predi
ate g is 2-monotone on Pso g ∈ Γ. We have two 
ases to 
onsider: (a) a and b have no 
ommon lowerbound, and (b) a and b have at least two maximal 
ommon lower bounds.In the �rst 
ase g is not valid. To see this, note that if there is an element
c ∈ D su
h that g(c, c) = 1, then c ⊑ a and c ⊑ b, and this means that c is a
ommon lower bound for a and b, a 
ontradi
tion. Hen
e, g is not valid, andthe proposition follows from Theorem 33.In 
ase (b) we will use the domain restri
tion te
hnique from Lemma 40 to-gether with Theorem 33. In 
ase (b), there exist two distin
t elements c, d ∈ D,su
h that c, d ⊑ a and c, d ⊑ b. Furthermore, we 
an assume that there is no el-ement z ∈ D distin
t from a, b, c su
h that c ⊑ z ⊑ a, b, and, similarly, we 
anassume there is no element z′ ∈ D distin
t from a, b, d su
h that d ⊑ z′ ⊑ a, b.Let f(x) = 1 ⇐⇒ (x ⊒ c) ∧ (x ⊒ d). This predi
ate is 2-monotone on P.Note that there is no element z ∈ D su
h that f(z) = 1 and g(z, z) = 1, butwe have f(a) = f(b) = g(a, b) = 1. By restri
ting the domain to D′ = {x ∈
D | f(x) = 1} with Lemma 40, the result follows from Theorem 33. 2A diamond is a latti
e L on a domainD su
h that |D|−2 elements are pairwisein
omparable. That is, a diamond on |D| elements 
onsist of a top element, abottom element and |D| − 2 elements whi
h are pairwise in
omparable. Thefollowing result was proved in [43℄.Theorem 52 Let Γ 
ontain all at most binary 2-monotone predi
ates on somediamond L. If Γ 6⊆ SpmodL, then Max CSP(Γ) is NP-hard.By modifying the original proof of Theorem 52, we 
an strengthen the resultin three ways: our result applies to arbitrary latti
es, we prove inapproxima-bility results instead of NP-hardness, and we prove the result for boundedo

urren
e instan
es.Theorem 53 Let Γ 
ontain all at most binary 2-monotone predi
ates on anarbitrary latti
e L. If Γ 6⊆ SpmodL, then Max CSP(Γ)-B is hard to approxi-mate.Proof. Let f ∈ Γ be a predi
ate su
h that f 6∈ SpmodL. We will �rst provethat f 
an be assumed to be at most binary. By Theorem 47, there is a unaryor binary predi
ate f ′ 6∈ SpmodL whi
h 
an be obtained from f by substitutingall but at most two variables by 
onstants. We present the initial part of theproof with the assumption that f ′ is binary and the 
ase when f ′ is unary
an be dealt with in the same way. Denote the 
onstants by a3, a4, . . . , an andassume that f ′(x, y) = f(x, y, a3, a4, . . . , an).31



Let k ≥ 5 be an integer and assume that Max CSP(Γ ∪ {f ′})-k is hard toapproximate. We will prove that Max CSP(Γ)-k is hard to approximate byexhibiting an AP -redu
tion from Max CSP(Γ ∪ {f ′})-k to Max CSP(Γ)-
k. Given an instan
e I = (V, C) of Max CSP(Γ ∪ {f ′})-k, where C =
{C1, C2, . . . , Cq}, we 
onstru
t an instan
e I ′ = (V ′, C ′) of Max CSP(Γ)-
k as follows:(1) for any 
onstraint (f ′,v) = Cj ∈ C, introdu
e the 
onstraint (f,v′) into

C, where v′ = (v1, v2, y
j
3, . . . , y

j
n), and add the fresh variables yj

3, y
j
4, . . . , y

j
nto V ′. Add two 
opies of the 
onstraints yj

i ⊑ ai and ai ⊑ yj
i for ea
h

i ∈ {3, 4, . . . , n} to C ′.(2) for other 
onstraints, i.e., (g,v) ∈ C where g 6= f ′, add (g,v) to C ′.It is 
lear that I ′ is an instan
e ofMax CSP(Γ)-k. If we are given a solution s′to I ′, we 
an 
onstru
t a new solution s′′ to I ′ by letting s′′(yj
i ) = ai for all i, jand s′′(x) = s′(x), otherwise. Denote this transformation by P , so s′′ = P (s′).It is not hard to see that m(I ′, P (s′)) ≥ m(I ′, s′).From Lemma 5 we know that there is a 
onstant c and polynomial-time c-approximation algorithm A for Max CSP(Γ ∪ {f ′}). We 
onstru
t the algo-rithm G in the AP -redu
tion as follows:

G(I, s′) =











P (s′)
∣

∣

∣

V
if m(I, P (s′)

∣

∣

∣

V
) ≥ m(I, A(I)),

A(I) otherwise.We see that opt(I)/m(I, G(I, s′)) ≤ c.By Lemma 5, there is a 
onstant c′ su
h that for any instan
e I of MaxCSP(Γ), we have opt(I) ≥ c′|C|. Furthermore, due to the 
onstru
tion of I ′and the fa
t that m(I ′, P (s′)) ≥ m(I ′, s′), we haveopt(I ′) ≤ opt(I) + 4(n− 2)|C|

≤ opt(I) +
4(n− 2)

c′
· opt(I)

≤ opt(I) ·

(

1 +
4(n− 2)

c′

)

.

Let s′ be an r-approximate solution to I ′. As m(I ′, s′) ≤ m(I ′, P (s′)), we getthat P (s′) also is an r-approximate solution to I ′. Furthermore, sin
e P (s′)satis�es all 
onstraints introdu
ed in step 1, we have opt(I ′)−m(I ′, P (s′)) =32



opt(I) −m(I, P (s′)
∣

∣

∣

V
). Let β = 1 + 4(n− 2)/c′ and note thatopt(I)

m(I, G(I, s′))
=
m(I, P (s′)

∣

∣

∣

V
)

m(I, G(I, s′))
+
opt(I ′) −m(I ′, P (s′))

m(I, G(I, s′))

≤ 1 +
opt(I ′) −m(I ′, P (s′))

m(I, G(I, s′))

≤ 1 + c ·
opt(I ′) −m(I ′, P (s′))opt(I)

≤ 1 + cβ ·
opt(I ′) −m(I ′, P (s′))opt(I ′)

≤ 1 + cβ ·
opt(I ′) −m(I ′, P (s′))

m(I ′, P (s′))
≤ 1 + cβ(r − 1).We 
on
lude that Max CSP(Γ)-k is hard to approximate if Max CSP(Γ ∪

{f ′})-k is hard to approximate.We will now prove that Max CSP(Γ)-B is hard to approximate under theassumption that f is at most binary. We say that the pair (a, b) witnesses thenon-supermodularity of f if f(a) + f(b) 6≤ f(a ⊓ b) + f(a ⊔ b).Case 1: f is unary. As f is not supermodular on L, there exists elements
a, b ∈ L su
h that (a, b) witnesses the non-supermodularity of f .Note that a and b 
annot be 
omparable be
ause we would have {a⊔b, a⊓b} =
{a, b}, and so f(a⊔b)+f(a⊓b) = f(a)+f(b) 
ontradi
ting the 
hoi
e of (a, b).We 
an now assume, without loss of generality, that f(a) = 1. Let z∗ = a ⊓ band z∗ = a ⊔ b. Note that the two predi
ates u(x) = 1 ⇐⇒ x ⊑ z∗ and
u′(x) = 1 ⇐⇒ z∗ ⊑ x are 2-monotone and, hen
e, 
ontained in Γ. By usingLemma 40, it is therefore enough to prove approximation hardness for MaxCSP(Γ

∣

∣

∣

D′

)-B, where D′ = {x ∈ D | z∗ ⊑ x ⊑ z∗}.Sub
ase 1a: f(a) = 1 and f(b) = 1. At least one of f(z∗) = 0 and f(z∗) = 0must hold.Assume that f(z∗) = 0, the other 
ase 
an be handled in a similar way. Let
g(x, y) = 1 ⇐⇒ [(x ⊑ a) ∧ (y ⊑ b)] and note that g is 2-monotone so g ∈ Γ.Let d be an arbitrary element inD′ su
h that g(d, d) = 1. >From the de�nitionof g we know that d ⊑ a, b so d ⊑ z∗ whi
h implies that d = z∗. Furthermore, wehave g(a, b) = 1, f(a) = f(b) = 1, and f(z∗) = 0. Let D′′ = {x ∈ D′ | f(x) =

1}. By applying Theorem 33 to g|D′′, we see that Max CSP(Γ
∣

∣

∣

D′′

)-B is hardto approximate. Now Lemma 40 implies the result for Max CSP(Γ
∣

∣

∣

D′

)-B,and hen
e for Max CSP(Γ)-B. 33



Sub
ase 1b: f(a) = 1 and f(b) = 0. In this 
ase, f(z∗) = 0 and f(z∗) = 0holds.If there exists d ∈ D′ su
h that b ⊏ d ⊏ z∗ and f(d) = 1, then we get f(a) = 1,
f(d) = 1, a⊔d = z∗ and f(z∗) = 0, so this 
ase 
an be handled by Sub
ase 1a.Assume that su
h an element d does not exist.Let u(x) = 1 ⇐⇒ b ⊑ x. The predi
ate u is 2-monotone so u ∈ Γ. Let h(x) =
f |D′(x)+u|D′(x). By the observation above, this is a stri
t implementation. ByLemmas 12 and 9, it is su�
ient to prove the result for Γ′ = Γ|D′∪{h}. This 
anbe done exa
tly as in the previous sub
ase, with D′′ = {x ∈ D′ | h(x) = 1}.Case 2: f is binary. We now assume that Case 1 does not apply. By Theo-rem 47, there exist a1, a2, b1, b2 su
h that

f(a1, a2) + f(b1, b2) 6≤ f(a1 ⊔ b1, a2 ⊔ b2) + f(a1 ⊓ b1, a2 ⊓ b2) (2)where a1, b1 are 
omparable and a2, b2 are 
omparable. Note that we 
annothave a1 ⊑ b1 and a2 ⊑ b2, be
ause then the right hand side of (2) is equalto f(b1, b2) + f(a1, a2) whi
h is a 
ontradi
tion. Hen
e, we 
an without loss ofgenerality assume that a1 ⊑ b1 and b2 ⊑ a2.As in Case 1, we will use Lemma 40 to restri
t our domain. In this 
ase, wewill 
onsider the subdomain D′ = {x ∈ D | z∗ ⊑ x ⊑ z∗} where z∗ = a1 ⊓ b2and z∗ = a2⊔ b1. As the two predi
ates uz∗(x) and uz∗(x), de�ned by uz∗(x) =
1 ⇐⇒ x ⊑ z∗ and uz∗(x) = 1 ⇐⇒ z∗ ⊑ x, are 2-monotone predi
ates andmembers of Γ, Lemma 40 tells us that it is su�
ient to prove hardness forMax CSP(Γ′)-B where Γ′ = Γ

∣

∣

∣

D′

.We de�ne the fun
tions ti : {0, 1} → {ai, bi}, i = 1, 2 as follows:
• t1(0) = a1 and t1(1) = b1;
• t2(0) = b2 and t2(1) = a2.Hen
e, ti(0) is the least element of ai and bi and ti(1) is the greatest elementof ai and bi.Our strategy will be to redu
e a 
ertain Boolean Max CSP problem to MaxCSP(Γ′)-B. De�ne three Boolean predi
ates as follows: g(x, y) = f(t1(x), t2(y)),
c0(x) = 1 ⇐⇒ x = 0, and c1(x) = 1 ⇐⇒ x = 1. One 
an verify that MaxCSP({c0, c1, g})-B is hard to approximate for ea
h possible 
hoi
e of g, byusing Theorem 49; 
onsult Table 1 for the di�erent possibilities of g.The following 2-monotone predi
ates (on D′) will be used in the redu
tion:
hi(x, y) = 1 ⇐⇒ [(x ⊑ z∗) ∧ (y ⊑ ti(0))] ∨ [(z∗ ⊑ x) ∧ (ti(1) ⊑ y)], i = 1, 2.34



Table 1Possibilities for g.
x y t1(x) t2(y) g(x, y)

0 0 a1 b2 0 0 0 0 1

0 1 a1 a2 1 1 0 1 1

1 0 b1 b2 1 0 1 1 1

1 1 b1 a2 1 0 0 0 0The predi
ates h1, h2 are 2-monotone so they belong to Γ′. We will also usethe following predi
ates:
• Ld(x) = 1 ⇐⇒ x ⊑ d,
• Gd(x) = 1 ⇐⇒ d ⊑ x, and
• Nd,d′(x) = 1 ⇐⇒ (x ⊑ d) ∨ (d′ ⊑ x)for arbitrary d, d′ ∈ D′. These predi
ates are 2-monotone.Let w be an integer su
h that Max CSP({g, c0, c1})-w is hard to approx-imate; su
h an integer exists a

ording to Theorem 49. Let I = (V, C),where V = {x1, x2, . . . , xn} and C = {C1, . . . , Cm}, be an instan
e of MaxCSP({g, c0, c1})-w. We will 
onstru
t an instan
e I ′ of Max CSP(Γ′)-w′,where w′ = 8w + 5, as follows:1. For every Ci ∈ C su
h that Ci = g(xj, xk), introdu
e(a) two fresh variables yi

j and yi
k,(b) the 
onstraint f(yi

j, y
i
k),(
) 2w + 1 
opies of the 
onstraints Lb1(y

i
j), Ga1

(yi
j), Na1,b1(y

i
j),(d) 2w + 1 
opies of the 
onstraints La2

(yi
k), Gb2(y

i
k), Nb2,a2

(yi
k), and(e) 2w + 1 
opies of the 
onstraints h1(xj , y

i
j), h2(xk, y

i
k).2. for every Ci ∈ C su
h that Ci = c0(xj), introdu
e the 
onstraint Lz∗(xj),and3. for every Ci ∈ C su
h that Ci = c1(xj), introdu
e the 
onstraint Gz∗(xj).The intuition behind this 
onstru
tion is as follows: due to the bounded o

ur-ren
e property and the quite large number of 
opies of the 
onstraints in steps1
, 1d and 1e, all of those 
onstraints will be satis�ed in �good� solutions. Theelements 0 and 1 in the Boolean problem 
orresponds to z∗ and z∗, respe
-tively. This may be seen in the 
onstraints introdu
ed in steps 2 and 3. The
onstraints introdu
ed in step 1
 essentially for
e the variables yi

j to be either
a1 or b1, and the 
onstraints in step 1d work in a similar way. The 
onstraintsin step 1e work as bije
tive mappings from the domains {a1, b1} and {a2, b2}to {z∗, z

∗}. For example, h1(xj , y
i
j) will set xj to z∗ if yi

j is a1, otherwise if yi
jis b1, then xj will be set to z∗. Finally, the 
onstraint introdu
ed in step 1b
orresponds to g(xj, xk) in the original problem.35



It is 
lear that I ′ is an instan
e of Max CSP(Γ′)-w′. Note that due to thebounded o

urren
e property of I ′, a solution whi
h does not satisfy all 
on-straints introdu
ed in steps 1
, 1d and 1e 
an be used to 
onstru
t a newsolution whi
h satis�es those 
onstraints and has a measure whi
h is greaterthan or equal to the measure of the original solution. We will denote thistransformation of solutions by P .Given a solution s′ to I ′, we 
an 
onstru
t a solution s = G(s′) to I by, forevery x ∈ V , letting s(x) = 0 if P (s′)(x) = z∗ and s(x) = 1, otherwise.Let M be the number of 
onstraints in C of type g. We have that, for anarbitrary solution s′ to I ′, m(I ′, P (s′)) = m(I, G(s′)) + 8(2w + 1) · M ≥
m(I ′, s′). Furthermore, opt(I ′) = opt(I) + 8(2w + 1)M .Now, assume that opt(I ′)/m(I ′, s′) ≤ ε′. Then opt(I ′)/m(I ′, P (s′)) ≤ ε′and opt(I) + 8(2w + 1)M

m(I, G(s′)) + 8(2w + 1)M
≤ ε′ ⇒opt(I) ≤ ε′m(I, G(s′)) + (ε′ − 1)8(2w + 1)M ⇒opt(I)

m(I, G(s′))
≤ ε′ +

8(2w + 1)M(ε′ − 1)

m(I, G(s′))
.Furthermore, by standard arguments, we 
an assume that m(I, G(s′)) ≥

|C|/c, for some 
onstant c. We get,opt(I)

m(I, G(s′))
≤ ε′ + 8(2w + 1)c(ε′ − 1).Hen
e, a polynomial time approximation algorithm forMax CSP(Γ′)-w′ withperforman
e ratio ε′ 
an be used to obtain ε′′-approximate solutions, where

ε′′ is given by ε′ + 8(2w + 1)c(ε′ − 1), for Max CSP({c0, c1, g})-w in polyno-mial time. Note that ε′′ tends to 1 as ε′ approa
hes 1. This implies that MaxCSP(Γ′)-w′ is hard to approximate be
ause Max CSP({c0, c1, g})-w is hardto approximate. 2

5 Con
lusions and Future WorkThis arti
le has two main results: the �rst one is thatMax CSP(Γ) has a hardgap at lo
ation 1 whenever Γ satis�es a 
ertain 
ondition whi
h makes CSP(Γ)NP-hard. This 
ondition 
aptures all 
onstraint languages whi
h are 
urrentlyknown to make CSP(Γ) NP-hard. This 
ondition has also been 
onje
turedto be the dividing line between tra
table (in P) CSPs and NP-hard CSPs.36



The se
ond result is that single relation Max CSP is either trivial or hard toapproximate.It is possible to strengthen these results in a number of ways. The followingpossibilities applies to both of our results.We have paid no attention to the 
onstant whi
h we prove inapproximabilityfor. That is, given a 
onstraint language Γ, what is the smallest 
onstant csu
h thatMax CSP(Γ) is not approximable within c−ε for any ε > 0 in poly-nomial time? For some relations a lot of work has been done in this dire
tion,
f. [6,32,40,56℄ for more details. As mentioned in the introdu
tion Raghaven-dra's result [52℄ give almost optimal approximability results for all 
onstraintlanguages, assuming the UGC. The methods used to obtain good 
onstants arebased on sophisti
ated PCP 
onstru
tions, semide�nite programming and theUGC. We note that these te
hniques are very di�erent from the ones we haveused in this paper. At present it seems di�
ult to use the algebrai
 te
hniquesto obtain good 
onstants.We have a 
onstant number of variable o

urren
es in our hardness results,but the 
onstant is unspe
i�ed. For some problems, for exampleMax 2Sat, itis known that allowing only three variable o

urren
es still makes the problemhard to approximate (even APX-hard) [6℄. This is also true for some otherMax CSP problems su
h asMax Cut [1℄. However, there are CSP problemswhi
h are NP-hard but whi
h be
omes easy if the number of variable o

ur-ren
es are restri
ted to three. In parti
ular, it is known that for ea
h k ≥ 3there is an integer f(k) su
h that if s ≤ f(k) then k-Sat-s (the satis�abilityproblem with 
lauses of length k and at most s o

urren
es of ea
h variable)is trivial (every instan
e is satis�able) and otherwise, if s > f(k), then theproblem is NP-
omplete. Some bounds are also known for f but the exa
tbehaviour remains unknown [41℄. As every instan
e is satis�able the 
orre-sponding maximisation problem Max k-Sat-s is also trivial for s ≤ f(k).This leads to the following problem: �nd the smallest integer k(Γ) su
h thatMax CSP(Γ)-k(Γ) is hard to approximate, for 
onstraint languages Γ whi
hsatis�es the 
ondition in Lemma 21 (so Csp(Γ) isNP-
omplete). One 
an alsoask the same question for a single non-empty non-valid relation R: �nd thesmallest integer k(R) so that Max CSP({R})-k(R) is hard to approximate.One of the main open problems is to 
lassify Max CSP(Γ) for all 
onstraintlanguages Γ, with respe
t to tra
tability of �nding an optimal solution. The
urrent results in this dire
tion [17,24,36,43℄ seems to indi
ate that the 
on
eptof supermodularity is of 
entral importan
e for the 
omplexity of Max CSP.However, the problem is open on both ends � we do not know if supermod-ularity implies tra
tability and neither do we know if non-supermodularityimplies non-tra
tability. Here �non-tra
tability� should be interpreted as �notin PO� under some suitable 
omplexity-theoreti
 assumption, the questions37



of NP-hardness and approximation hardness are, of 
ourse, also open.A
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