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Abstract: In the maximum constraint satisfaction problem (Max CSP), one
is given a finite collection of positive-weight constraints on overlapping sets of
variables, and the goal is to assign values from a given domain to the variables
so that the total weight of satisfied constraints is maximized. We consider this
problem and its variant Max AW CSP where the weights are allowed to be
both positive and negative, and study how the complexity of the problems de-
pends on the allowed constraint types. We prove that Max AW CSP over an
arbitrary finite domain exhibits a dichotomy: it is either polynomial-time solv-
able or NP-hard. Our proof builds on two results that may be of independent
interest: one is that the problem of finding a maximum H-colourable subdi-
graph in a given digraph is either NP-hard or trivial depending on H, and
the other a dichotomy result for Max CSP with a single allowed constraint
type.

Keywords: maximum constraint satisfaction problem, digraph H-colouring,
complexity, dichotomy
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1 Introduction and Related Work

The constraint satisfaction problem (CSP) is a powerful general framework in
which a variety of combinatorial problems can be expressed [9]. The aim in a
constraint satisfaction problem is to find an assignment of values to the vari-
ables subject to specified constraints. This framework is used across a variety of
research areas in artificial intelligence (see [14,31]), and in computer science,
including algorithmic graph theory [22], combinatorial optimization [19,20],
database theory [17,26], learning theory [5,11] and complexity theory [9,10,15].
An instance of a constraint satisfaction problem is a set of constraints applied
to certain specified subsets of variables, and the question is whether there is an
assignment to the variables such that all constraint applications are satisfied.
The problem of determining how the complexity of CSP (or of one of its many
variants) depends on the set F of constraint types (i.e., predicates) allowed in
instances has been thoroughly studied in the last years. Such parameterized
problems are denoted CSP(F). The first result of this kind was obtained by
Schaefer [29] 25 years ago, where he proved that, for all choices of F , CSP(F)
is either in P or NP-complete. Furthermore, he gave six classes of Boolean
constraints (or rather Boolean relations, or predicates) such that the problem
CSP(F) is in P if and only if all predicates in F fall entirely within any of
these classes. Similar complete classifications of the complexity of constraint
problems have been given by, for instance, Bulatov [4] (CSP(F) for domains
of size 3), Hell and Nešetřil [21] (graph H-colouring) and Creignou et al. [9]
(various versions of Boolean CSP).

Many different optimization variants of the CSP problem have been suggested.
Arguably the most well-known of them is the Max CSP problem where each
constraint is assigned a weight and the objective is to find an assignment
that maximizes the total weight of the satisfied constraints. This problem is
clearly NP-hard in general since the Max Cut problem can be viewed as a
Max CSP problem (see Example 1). Previously presented complexity results
for optimization versions of constraint satisfaction problems, parameterized
by the set of allowed constraint types, have mostly been proved under the
assumption that only non-negative weights are allowed (cf. [6,7,9,24,27]). In
the sequel, we will study such problems as well as optimization problems where
we allow arbitrary weights. We begin by defining these problems.

Throughout the article D will denote a finite set with |D| > 1. Let R
(m)
D denote

the set of all m-ary predicates over D, that is, functions from Dm to {0, 1},
and let RD =

⋃∞
m=1 R

(m)
D .

Definition 1.1 A constraint over a set of variables V = {x1, x2, . . . , xn} is
an expression of the form f(x) where
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• f ∈ R
(m)
D is called the constraint function; and

• x = (xi1 , . . . , xim) is called the constraint scope.

The constraint f is said to be satisfied on a tuple a = (ai1 , . . . , aim) ∈ Dm if
f(a) = 1.

Definition 1.2 Let F be a finite subset of RD. An instance of the problem
CSP(F) is a pair (V, C) where

• V = {x1, . . . , xn} is a set of variables taking their values from D;
• C is a collection of constraints f1(x1), . . . , fq(xq) over V , where fi ∈ F for

all 1 ≤ i ≤ q.

The question is whether there is a function ϕ : V → D which satisfies all
constraints in C.

Definition 1.3 For a finite F ⊆ RD, an instance of weighted Max CSP(F)
is a tuple (V,C, ρ) where V,C are the same as for CSP(F), and ρ : C → Z+ is
a function that assigns a positive integral weight ρi to each constraint fi(xi).
The goal is to maximize the total weight of satisfied constraints, that is, to
maximize the function f : Dn → Z+, defined by f(x1, . . . , xn) =

∑q
i=1 ρi ·fi(xi).

The optimal value of a solution to (V, C, ρ) is denoted by Opt(V,C, ρ).

In the Max AW CSP(F) problem, we allow the weights to be arbitrary (that
is, not necessarily positive) integers.

Informally speaking, each constraint specifies a property for the variables in
its scope, and the weight of a constraint in an instance of Max CSP expresses
the measure of desirability for this property to hold, and one needs to find a so-
lution with maximum overall measure of desirability. The problem Max AW
CSP can then be seen as follows: the positive weights express the measure
of desirability for certain properties to hold for the scopes of the constraints,
while the constraints with negative weights express how undesirable it is for
certain collections (scopes) of variables to have the properties described by
the corresponding constraints; the goal is, again, to maximize the overall de-
sirability. This is useful in, for example, turning constrained optimization into
unconstrained optimization which is a common task in mathematical program-
ming (cf. [28]). In brief, the constrained problem is modified so that solutions
outside the feasible region are penalized by giving them large negative weights,
and thereafter the modified problem is solved by using an algorithm for uncon-
strained optimization. Other ways of using constraints to express preferences,
with analysis of complexity, can be found in [3,6].

We will study the complexity of problems Max CSP(F) and Max AW
CSP(F). Many problems that have received considerable attention in the
literature are subsumed by Max AW CSP(F), and prominent examples are
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Max k-Cut, Max DiCut and Max k-Sat.

Example 1 The Max k-Cut problem is the problem of partitioning the set
of vertices of a given undirected graph with (positive-)weighted edges into k
subsets so as to maximize the total weight of edges with ends being in different
subsets. This problem is the same as Max CSP({neqk}), where neqk is the
binary disequality ( 6=) predicate on a k-element set, and it is known to be NP-
hard (see Problem GT33 in [1]). To see the correspondence between the two
problems, view the vertices of the graph as variables and edges as constraint
scopes. Max 2-Cut is known as simply Max Cut.

Let fdicut be the binary predicate on {0, 1} with fdicut(x, y) = 1 ⇔ x = 0, y =
1. Then, Max CSP({fdicut}) is essentially the problem Max DiCut (see
problem ND16 in [1]), which is the problem of partitioning the vertices of a
digraph with weighted arcs into two subsets V0 and V1 so as to maximize the
total weight of arcs going from V0 to V1. This problem is known to be NP-hard
as well.

If we consider Max AW CSP({neq2}) and Max AW CSP({fdicut}) instead,
we see that they correspond to Max Cut and Max DiCut generalised to
arbitrary weights, and such problems have been considered by, for instance,
Barahona et al. [2] (who point out several important applications) and Goe-
mans & Williamson [16] (who devise an approximation algorithm).

For the Boolean domain, that is, for |D| = 2, the complexity of problems
Max CSP(F) and Max AW CSP(F) has been completely classified by
Creignou [8] and Jonsson [23], respectively. In both cases, the results ap-
peared to be dichotomies in the sense every such problem is either NP-hard
or polynomial-time solvable. In this article, we prove that Max AW CSP(F)
is either polynomial-time solvable or NP-hard for any finite domain D, and
we also obtain a similar result for Max CSP(F) when F contains a sin-
gle predicate (the example above indicates that some of the most important
Max CSP(F) problems are of this kind). The only two previously published
complete classifications of complexity for versions of CSP are the results of
Dalmau and Jonsson [12] and Grohe [18] where the parameter is, informally,
the way in which variables constrain each other (that is, allowed combinations
of constraint scopes) rather than the set of allowed constraint predicates.

Recent research pointed out a strong connection between tractability in Max
CSP and the algebraic combinatorial property of supermodularity with re-
spect to a lattice ordering of the domain [7,24,27]. We show that our results
have the same dividing line: intractable problems identified in this paper do
not have this property, while the tractable cases (trivially) do.

The structure of the article is as follows: Section 2 describes our reduction
techniques. Section 3 contains the proof of the main result and it is divided
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into two parts. In the first part, we study the problem of finding maximum-
size H-colourable subdigraphs in digraphs (which is an interesting problem in
itself) – we show that it is either NP-hard or trivial depending on H. We also
show that Max CSP(F), where F consists of a single predicate, is either NP-
hard or trivial. These results are used in the second part to give a complete
classification of Max AW CSP. Section 4 exhibits some connections between
the results in Section 3 and (super)modularity.

2 Reduction techniques

We present two reduction techniques in this section. From now on, given a
subset D′ ⊂ D, we let uD′ denote a unary predicate such that uD′(d) = 1 if
and only if d ∈ D′.

2.1 Strict implementations

The first reduction technique in our NP-hardness proofs is based on strict
implementations, see [9,25] where this notion was defined and used only for
the Boolean case. We will give this definition in a different form from that
of [9,25], but it can easily be checked to be equivalent to the original one (in
the case |D| = 2).

Definition 2.1 Let Y = {y1, . . . , ym} and Z = {z1, . . . , zn} be two disjoint
sets of variables. The variables in Y are called primary and the variables in Z
auxiliary. The set Z may be empty. Let g1(y1), . . . , gs(ys), s > 0, be constraints
over Y ∪ Z. If g(y1, . . . , ym) is a predicate such that the equality

g(y1, . . . , ym) = max
Z

s∑

i=1

gi(yi)− (α− 1)

is satisfied for all y1, . . . , ym, and some fixed α ∈ Z+, then this equality is said
to be a strict α-implementation of g from g1, . . . , gs.

We use α − 1 rather than α in the above equality to ensure that this notion
coincides with the original notion of a strict α-implementation for Boolean
constraints [9,25]. The idea behind strict implementations is that they allow
one to modify instances (by substituting predicates) while keeping control over
costs of solutions. For example, assume that we have a constraint g(u, v) in an
instance of Max CSP(F), and there is a strict 2-implementation g(y1, y2) +
1 = maxz(g1(y1, z) + g2(z, y2)). Then the constraint g(u, v) can be replaced
by two constraints g1(u, z), g2(z, v) (where z is a fresh variable), and we know
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that every solution of cost c to the old instance can be modified (by choosing
an appropriate value for z) to a solution of cost c + 1 to the new instance.

We say that a collection of predicates F strictly implements a predicate g if,
for some α ∈ Z+, there exists a strict α-implementation of g using predicates
only from F .

Lemma 2.2 If F strictly implements a predicate g, and Max CSP(F ∪ {g})
is NP-hard, then Max CSP(F) is NP-hard as well.

Proof: We need to show that Max CSP(F ∪ {g}) is polynomial-time re-
ducible to Max CSP(F). Let

g(y1, . . . , ym) = max
Z

s∑

i=1

gi(yi)− (α− 1), (1)

where gi ∈ F for all i.

Let I be an instance of Max CSP(F ∪ {g}) corresponding to maximizing the
function

f(x1, . . . , xn) =
q∑

i=1

ρi · fi(xi). (2)

The idea is to transform it to an instance I ′ of Max CSP(F) by replacing
every constraint in I whose constraint predicate is g by its strict implemen-
tation, introducing new copies of variables from Z each time.

Assume without loss of generality that f1 = . . . = fr = g and fi ∈ F for
r + 1 ≤ i ≤ q. The constraint g(x1) in (2) can be replaced by the right-hand
side of equation (1), changing the variables accordingly. Say, if

g(x1, x2, x3) = max
z1,z2

[g1(x1, z1, z2) + g2(x2, z2, x3)]− 1

and x1 = (x1, x2, x1), then g(x1) would be replaced by

max
z1
1 ,z1

2

[g1(x1, z
1
1 , z

1
2) + g2(x2, z

1
2 , x1)]− 1.

If we do the same with every constraint g(xi), 1 ≤ i ≤ r, replacing the
primary variables by the corresponding variables from xi and using a new set
Zi of auxiliary variables every time, then we obtain that the goal in I can be
restated as that of maximizing the function

f(x1, . . . , xn) =
r∑

i=1

ρi · (max
Zi

s∑

j=1

gj(y
i
j)− (α− 1)) +

q∑

i=r+1

ρi · fi(xi) =

= max
Z1∪...∪Zr

r∑

i=1

ρi · (
s∑

j=1

gj(y
i
j)) +

q∑

i=r+1

ρi · fi(xi)− (α− 1) ·
r∑

i=1

ρi.
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Clearly, maximizing this function is the same as maximizing the function

r∑

i=1

s∑

j=1

ρi · gj(y
i
j) +

q∑

i=r+1

ρi · fi(xi).

Note that this function corresponds to an instance I ′ of Max CSP(F) over
the set of variables {x1, . . . , xn} ∪ ⋃r

i=1 Zi. Since this transformation can be
performed in polynomial time, the result follows. 2

The next lemma is a direct application of strict implementations.

Lemma 2.3 If F contains two unary predicates uS, uT such that S ∩ T = ∅,
then Max CSP(F) is polynomial-time equivalent to Max CSP(F ∪{uS∪T}).

Proof: One direction is trivial. The other direction follows from Lemma 2.2,
since uS∪T (x) = uS(x) + uT (x) is a strict 1-implementation of uS∪T (x). 2

2.2 Domain restriction

For a subset D′ ⊆ D, we denote the restriction of a predicate f to D′ by f |D′ ,
as usual. Let F|D′ = {f |D′ | f ∈ F and f |D′ is not identically 0}.

Lemma 2.4 Suppose that uD′ ∈ F for some D′ ⊆ D. If Max CSP(F|D′) is
NP-hard, then so is Max CSP(F).

Proof: Let I = (V,C, ρ) be an instance of Max CSP(F|D′) and let K =
1 +

∑
c∈C ρ(c). We will transform I into an instance I ′ of Max CSP(F) in

polynomial time, in the following way: the set V stays the same; change every
constraint fi|D′(xi) in C to fi(xi), add the constraints ci = uD′(xi), xi ∈ V , to
C, and extend ρ so that ρ(ci) = K for all new constraints ci.

Clearly, in every optimal solution to I ′, all variables are assigned values from
D′. Hence, an optimal solution to I ′ has value Opt(I) + K · |V | where Opt(I)
is the value of an optimal solution to I. 2

3 Main results

This section is divided into two subsections: in the first we classify the com-
plexity of Max CSP({h}), and in the second one we deal with Max AW
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CSP(F). We say that a predicate is trivial if it is identically 0.

3.1 Complexity of Max CSP({h})

Let F = {h}. Clearly, Max CSP({h}) can be solved in polynomial time if h is
unary. Indeed, in any instance of the problem, there is no interaction between
different variables, and hence we only need to choose an optimal value for each
individual variable. Assume from now on that h is at least binary. We shall
say that h is irreflexive if h(d, . . . , d) = 0 for all d ∈ D.

If h is binary, then it can be considered as a digraph H = (VH , AH) where VH =
D and (a, b) ∈ AH ⇔ h(a, b) = 1. Recall that, given a digraph H = (VH , AH),
a digraph G = (VG, AG) is called H-colourable if there exist a homomorphism
from G to H, that is, a mapping ϕ : VG → VH such that (ϕ(x), ϕ(y)) ∈ AH

whenever (x, y) ∈ AG. In this case, we write G → H. Note that when h is
binary then the problem Max CSP({h}) can be represented as follows:

Max H-col
Instance: Digraph G = (V,A) with weights wa ∈ Z+, a ∈ A.
Goal: Find a maximum weight H-colourable subdigraph of G, that is, A′ ⊆ A
with maximum total weight

∑
a∈A′ wa such that the digraph G′ = (V, A′) is

H-colourable.

Indeed, consider the vertices of G as variables, and introduce a constraint
h(x, y), with weight wa, for every arc a = (x, y) ∈ AG. This gives a precise
correspondence between the two problems.

Recall that a digraph H is called a core if every homomorphism from H
into itself is injective (that is, an automorphism). It is well known that every
digraph H has a unique (up to isomorphism) subdigraph H ′ such that H → H ′

and H ′ is a core. In this case, the problems Max H-col and Max H ′-col
are equivalent, and hence we may without loss of generality assume that H is
a core.

Let, for simplicity, D = {0, . . . , p−1} and let h be an arbitrary binary predicate
on D. If H is a digraph associated with h as described above then we say that
h is a core if H is a core.

For any d ∈ D, define subsets d+ and d− of D by the rules a ∈ d+ ⇔ h(d, a) = 1
and a ∈ d− ⇔ h(a, d) = 1. Let U = {ud+ , ud− | d ∈ D}.

Lemma 3.1 Let h be a core. If Max CSP({h} ∪ U) is NP-hard, then so is
Max CSP({h}).
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Proof: Consider the digraph H associated with h. Let I = (V,C, ρ) be an
instance of Max CSP({h} ∪ U) and let K = 1 +

∑
c∈C ρ(c). Modify I to get

an instance I ′ of Max CSP({h}) as follows:

(1) Introduce fresh variables x′0, . . . , x
′
p−1, construct the following set of con-

straints {h(x′i, x
′
j) | h(i, j) = 1}, and add these constraints to C with

weight K each.
(2) Replace each constraint of the form ud+(x) in I by the constraint h(x′d, x)

without changing the weights. Similarly, replace every constraint ud−(x)
by h(x, x′d) without changing the weights.

Note that the scopes of constraints introduced in step 1 form a digraph G′

(with VG′ = {x′0, . . . , x′p−1}) isomorphic to H. Take an optimal solution ϕ to
I ′. All constraints introduced in step 1 must be satisfied by ϕ. Hence, since
H is a core, ϕ|VG′ is an isomorphism from G′ onto H. Define π : VH → VH as
follows: π(i) = j whenever ϕ(x′j) = i. Clearly, π is an automorphism (i.e., a
injective endomorphism) of H. Moreover, ϕ′ = πϕ is also an optimal solution
to I ′ which, in addition, satisfies the condition ϕ′(x′i) = i for all i ∈ D.

The construction in step 2 ensures that every optimal solution ψ (say, with
value m) to I can be extended, by letting ψ(x′i) = i for all i ∈ D, to a
solution to I ′ with value m + K · |AH |. Since ϕ is optimal for I ′, it fol-
lows that the restriction of ϕ′ onto V is an optimal solution to I. Therefore,
Opt(I ′) = Opt(I) + K · |AH | where Opt(I) and Opt(I ′) are values of optimal
solutions to I and I ′, respectively. Thus, this is a polynomial-time reduction
from Max CSP({h} ∪ U) to Max CSP({h}). 2

We will now prove the classification result for Max CSP({h}) where h is
binary; the basic idea is to use the predicate h to strictly implement certain
unary predicates and then apply the previous lemma.

Lemma 3.2 Let h : D2 → {0, 1} be a non-trivial predicate. If h(d, d) = 1
for some d ∈ D, then Max CSP({h}) is trivial. Otherwise (that is, if h is
irreflexive), it is NP-hard.

Proof: If h(d, d) = 1 for some d ∈ D, then the assignment mapping every
variable to d satisfies all constraints in any instance. Hence, Max CSP({h})
is trivial. Assume now that h is irreflexive. As explained above in this subsec-
tion, we may now assume that h is a core (obviously, the core of an irreflexive
digraph is also irreflexive). We will prove the result by induction on |D|. If
|D| = 2, then h(x, y) is one of neq2(x, y), fdicut(x, y), fdicut(y, x) (see Exam-
ple 1), so we are done. Assume that |D| > 2 and, for all irreflexive non-trivial
predicates on smaller domains, the result holds. We consider three cases:
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Case 1: There exists a v ∈ D such that |v+| > 1.
If h|v+ is nontrivial, then Max CSP({h|v+}) is NP-hard by the inductive
assumption, so the problem Max CSP(h, v+) is NP-hard by Lemma 2.4, so
Max CSP({h}) is NP-hard by Lemma 3.1. Hence, we assume that h|v+ is
trivial and note that D 6= v+ ∪ {v} since h is a core.

Arbitrarily choose a vertex w ∈ v+ and note that v+ ∩ w− = ∅ since h|v+ is
trivial. If v+ ∪ w−  D, then Max CSP({h}) is NP-hard by the inductive
assumption (h|v+∪w−(v, w) = 1) and Lemmas 3.1 and 2.4, arguing as above. If
h|w− is nontrivial, then Max CSP({h}) is NP-hard by the same argument.
Otherwise, h(x, y) = 1 only if x ∈ w− and y ∈ v+. Assume there exist w1 ∈ w−

and v1 ∈ v+ such that h(w1, v1) = 0. Then, |v−1 | < |w−| and v+ ∪ v−1  D. We
see that h|v+∪v−1

(v, v1) = 1 and v+ ∩ v−1 = ∅. Then, Max CSP({h|v+∪v−1
}) is

NP-hard by the inductive assumption and Max CSP(h, v+ ∪ v−1 ) is NP-hard
by Lemma 2.4. Consequently, Max CSP(h, v+, v−1 ) is NP-hard by Lemma 2.3
and Max CSP({h}) is NP-hard by Lemma 3.1. Finally, if h(x, y) = 1 when-
ever x ∈ w− and y ∈ v+, then H is bipartite. Since h is a core, we have |D| = 2
which is a contradiction.

Case 2: There exists v ∈ D such that |v−| > 1.
This case is analogous to the previous case.

Case 3: Every v ∈ D satisfies |v+| ≤ 1 and |v−| ≤ 1.
Pick any v, w ∈ D such that h(v, w) = 1 and note that, since {v} = w− and
{w} = v+, predicates u{v} and u{w} are members of U . By the inductive as-
sumption, Max CSP({h|{v,w}) is NP-hard. As above, we apply Lemmas 2.3,
3.1, and 2.4 to obtain NP-hardness of Max CSP({h}). 2

Finally, we extend the previous lemma to predicates of arbitrary arity via an
inductive argument.

Theorem 3.3 Let h ∈ R
(n)
D , n ≥ 2. If h(d, . . . , d) = 1 for some d ∈ D,

then Max CSP({h}) is trivial. If h is nontrivial and irreflexive, then Max
CSP({h}) is NP-hard.

Proof: If h(d, . . . , d) = 1 for some d ∈ D, then the assignment mapping
every variable to d satisfies all constraints in any instance. Assume that
h is nontrivial and irreflexive and show that Max CSP({h}) is NP-hard.
The proof is by induction on n (the arity of h). The basis when n = 2
was proved in Lemma 3.2. Assume that the result holds for n = k, k ≥
2. We show that it holds for n = k + 1. Assume first that there exists
(a1, . . . , ak+1) ∈ Dk+1 such that h(a1, . . . , ak+1) = 1 and |{a1, . . . , ak+1}| ≤ k.
We assume without loss of generality that ak = ak+1 and consider the predicate
h′(x1, . . . , xk) = h(x1, . . . , xk, xk). Note that this is a strict 1-implementation
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of h′, that h′(d, . . . , d) = 0 for all d ∈ D, and that h′ is nontrivial since
h′(a1, . . . , ak) = 1. Consequently, Max CSP({h′}) is NP-hard by the induc-
tion hypothesis, and Max CSP({h}) is NP-hard by Lemma 2.2.

Assume now that |{a1, . . . , ak+1}| = k + 1 whenever h(a1, . . . , ak+1) = 1. Con-
sider the predicate h′(x1, . . . , xk) = maxy h(x1, . . . , xk, y), and note that this
is a strict 1-implementation of h′. We see that h′(d, . . . , d) = 0 for all d ∈ D
(due to the condition above) and h′ is non-trivial since h is non-trivial. We
can once again apply the induction hypothesis and draw the conclusion that
Max CSP({h′}) and Max CSP({h}) are NP-hard. 2

3.2 Complexity of Max AW CSP(F)

Theorem 3.6 contains the classification result for Max AW CSP(F); its proof
is based on Lemmas 3.4 and 3.5.

Given a predicate f : Dk → {0, 1}, we say that a variable xi, 1 ≤ i ≤ k, is
fictitious in f(x1, . . . , xk) if

f(a1, . . . , ai−1, ai, ai+1, . . . , an) = f(a1, . . . , ai−1, a
′
i, ai+1, . . . , an)

for all choices of a1, . . . , ai−1, ai, a
′
i, ai+1, . . . , ak ∈ D, and xi is called essential

otherwise. We call an n-ary predicate f essentially unary if there is a subset
D′ ⊆ D and an index 1 ≤ i ≤ n such that f(x1, . . . , xn) = uD′(xi) for all
x1, . . . , xn ∈ D; in other words, f(x1, . . . , xn) = 1 if and only if xi ∈ D′. Note
that a predicate is essentially unary if and only if at most one of its variables
is essential.

For a predicate f , let f = 1− f .

Lemma 3.4 Let f be a predicate that is not essentially unary. Then, Max
CSP({f, f}) is NP-hard.

Proof: Note that an argument is fictitious in f if and only if it is such in f .
We may without loss of generality assume that the arity of f is even, say 2k.
Moreover, we can assume that f contains at most one fictitious argument if
k > 1 and no fictitious arguments if f is binary. To justify these assumptions,
note that we can repeatedly maximize f and f over any one of their fictitious
arguments to strictly 1-implement predicates g and g, respectively, with less
fictitious arguments. We stop this process when there is at most one fictitious
variable left and the arity of the obtained predicate is even. Since, by the
assumption of the theorem, f initially has at least 2 essential variables, the
obtained predicate has the required properties. If initially f is of odd arity and
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has no fictitious variables, then we can add one by strict 1-implementation
g(x1, . . . , x2k) = f(x1, . . . , x2k−1).

Consider the following two functions fi : D2k → {0, 1, 2}:

f1(x,y) = max
a∈Dk

[f(x, a) + f(y, a)]

f2(x,y) = max
a∈Dk

[f(a,x) + f(a,y)]

We show that at least one of them is a strict 2-implementation of a predicate
Fi : D2k → {0, 1}, that is, Fi(x,y) = fi(x,y) − 1 for some 1 ≤ i ≤ 2.
Assume to the contrary that this does not hold, that is, for i = 1, 2, there
exist xi,yi ∈ Dk such that fi(xi,yi) = 0. Then,

(1) for all a ∈ Dk, f(x1, a) = 0 and f(y1, a) = 0; and
(2) for all a′ ∈ Dk, f(a′,x2) = 0 and f(a′,y2) = 0.

We see that for all a′, f(a′,x2) = 0 so f(a′,x2) = 1. However, for all a,
f(y1, a) = 0 so by setting a = x2 and a′ = y1 we obtain a contradiction. We
can consequently assume that at least one of the implementations above is a
strict 2-implementation of a predicate Fi. Assume that F1 is strictly imple-
mented; the other case is analogous.

Claim 1: F1 is irreflexive
Assume F1(d, . . . , d) = 1 for some d ∈ D. This implies that there exists an
a ∈ Dk such that f(d, . . . , d, a) = 1 and f(d, . . . , d, a) = 1 which is impossible.

Claim 2: F1 is nontrivial
Assume to the contrary that F1(x,y) = 0 for all x,y ∈ Dk. Then, for all
x,y, a ∈ Dk, exactly one of f(x, a) and f(y, a) equals 1. If there exist s, t,u ∈
Dk such that f(t, s) = 1 and f(u, s) = 0, then f(t, s) = f(u, s) = 1 which
leads to a contradiction and F1 is nontrivial. Otherwise, for all s ∈ Dk, it
holds that either f(t, s) = 1 for all t ∈ Dk, or f(t, s) = 0 for all t ∈ Dk. In
other words, the first k arguments in f are fictitious. By our assumptions on
f , it has at most one fictitious variable, and none at all if it is binary. Thus,
we reach a contradiction.

We have thus obtained a nontrivial, irreflexive, and at least binary predicate
F1 via strict implementations, so NP-hardness of Max CSP({f, f}) follows
from Theorem 3.3 and Lemma 2.2. 2

For F ⊆ RD, let F̃ = {f, f | f ∈ F}.

Lemma 3.5 The problems Max AW CSP(F) and Max CSP(F̃) are poly-
nomial-time equivalent for any F ⊆ RD,
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Proof: Let I be an instance of Max CSP(F̃) corresponding to maximizing
the function

∑q
i=1 ρi · fi(xi). For 1 ≤ i ≤ q, define f ′i to be fi if fi ∈ F , and

f i otherwise. Furthermore, for 1 ≤ i ≤ q, let ρ′i be ρi if fi ∈ F , and −ρi

otherwise. Finally, let K =
∑

fi 6∈F ρi. Now it is not hard to see that

q∑

i=1

ρ′i · f ′i(xi) =
∑

fi∈F
ρi · fi(xi) +

∑

fi 6∈F
(−ρi)(1− fi(xi)) =

q∑

i=1

ρi · fi(xi)−K.

It is clear that I is equivalent to the instance I ′ of Max AW CSP(F) corre-
sponding to maximizing the function

∑q
i=1 ρ′i · f ′i(xi).

The other direction is very similar. Let I be an instance of Max AW CSP(F)
corresponding to maximizing the function

∑q
i=1 ρi ·fi(xi). For 1 ≤ i ≤ q, define

f ′i to be fi if ρi > 0, and f i otherwise. For 1 ≤ i ≤ q, let ρ′i = |ρi|. Let
K =

∑
ρi<0 ρ′i. Again, it is not hard to see that

q∑

i=1

ρi · fi(xi) =
q∑

i=1

ρ′i · f ′i(xi)−K.

It is clear that I is equivalent to the instance I ′ of Max CSP(F̃) correspond-
ing to maximizing the function

∑q
i=1 ρ′i · f ′i(xi). 2

Theorem 3.6 Let F ⊆ RD. If every predicate in F is essentially unary, then
the problem Max AW CSP(F) is tractable. Otherwise, Max AW CSP(F)
is NP-hard.

Proof: If every predicate in F is essentially unary, then, in any instance,
there is no variable that constrains any other variable. So, it is possible to
greedily choose the value of each variable such that the weight of satisfied
constraints is maximized – this yields an optimal solution to the given in-
stance. This process can obviously be carried out in polynomial time. If F
contains a predicate f which is not essentially unary, then Max CSP({f, f})
is NP-hard by Lemma 3.4 and the result follows from Lemma 3.5. 2

4 Connections with (super)modularity

Recent studies of the complexity and approximability of Max CSP [7,24,27]
have employed the algebraic property of supermodularity on lattices [30]. In
this section we investigate how this property relates to the results given in
previous sections.

14



Recall that a partial order on D is called a lattice if every two elements a, b ∈ D
have a greatest common lower bound a u b (meet) and a least common upper
bound atb (join). Every lattice can be considered as an algebra L = (D,u,t)
with operations meet and join. For more information about lattices, see [13].

If, for 1 ≤ i ≤ n, Li is a lattice on a set Di, then the product lattice L1×. . .×Ln

is defined on D1×. . .×Dn by extending the operations component-wise, that is,
by setting, for a = (a1, . . . , an) and b = (b1, . . . , bn), aub = (a1ub1, . . . , anubn)
and a t b = (a1 t b1, . . . , an t bn). A function f : D1 × . . . ×Dn → R is said
to be supermodular on L1 × . . .× Ln if

f(a) + f(b) ≤ f(a u b) + f(a t b)

for all a,b. A function f is called submodular if the reverse inequality holds,
and modular if it is both super- and submodular (that is, the above inequality
is an equality). Modular functions are also sometimes called valuations [30].

Given a lattice L on D, let Ln denote the n-th power of L, that is, the product
of n copies of L. Since predicates on D are functions Dn → {0, 1}, it makes
sense to speak about modular, super- and submodular predicates on L. We
shall say that a set F ⊆ RD is modular, super- or submodular on L if all
predicates in F have the corresponding property.

Recall that a distributive lattice is a lattice that can be represented by subsets
of a set, with operations being set-theoretic intersection and union. Further-
more, a diamond is a lattice with the following structure: one element is greater
than all other elements, one element is smaller than all others, and all other
elements are pairwise incomparable. Diamonds with at least 5 elements are
not distributive [13].

It is known that if F only contains predicates that are supermodular on some
lattice L, which is distributive or a diamond, then Max CSP(F) is tractable
(see [7,27], respectively) and there is evidence that all polynomial-time solv-
able cases of Max CSP can be uniformly described by using the concept of
supermodularity, at least when the domains are small [7,24]. Moreover, all
known tractable cases of Max CSP(F) enjoy this property, while all known
hard cases do not.

We will now show that, in all hardness results for Max CSP(F) obtained in
this paper, the set F is not supermodular on any lattice.

Proposition 4.1 If f ∈ R
(n)
D , n ≥ 2, is nontrivial and irreflexive, then it is

not supermodular on any lattice on D.

Proof: Let L = (D,u,t) be any lattice on D. Let a = (a1, a2, a3, . . . , an),
f(a) = 1, and assume that the number ta = |{a1, . . . , an}| of distinct entries
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in a is minimal among all tuples satisfying f . Since f is irreflexive, not all
ai’s are the same. Assume without loss of generality that a1 6= a2. Let b =
(a2, a1, a3, . . . , an). Since the operations u and t of any lattice are obviously
commutative, we have a1 u a2 = a2 u a1 and a1 t a2 = a2 t a1. Moreover, we
have ai u ai = ai t ai = ai for all 3 ≤ i ≤ n. Hence, taub, tatb < ta, and we
have f(a u b) = f(a t b) = 0 by the assumption on a.

Thus, f(a) + f(b) 6≤ f(a u b) + f(a t b). 2

We will now show that, for any F , the set F̃ = {f, f | f ∈ F} is not supermod-
ular on any lattice on D unless every f in F (and hence in F̃) is essentially
unary. We remark that every (essentially) unary predicate is (trivially) su-
permodular on any totally ordered lattice. Now, it is easy to check from the
definitions that a predicate f is supermodular on a lattice if and only if f is
submodular on it. It follows that if F̃ is supermodular on some lattice L, then
it is modular on L. In the rest of this section we will show that any modular
predicate on a lattice is essentially unary.

We will use the following result of Topkis (see Theorem 2.6.4 [30]): A chain is
a totally ordered lattice. Let Xi, 1 ≤ i ≤ n, be chains, and X = X1× . . .×Xn.
A function f : X → R is said to be separable if there exist unary functions
gi : Xi → R such that f(x1, . . . , xn) =

∑n
i=1 gi(xi) for all xi’s.

Theorem 4.2 ([30]) A real-valued function f on X is modular on X if and
only if it is separable.

Corollary 4.3 Let X be as above. If f is modular on X and the range of f
is {0, 1}, then f is essentially unary.

Recall that every finite lattice L has the greatest element 1L and the least
element 0L. We will denote the elements (0L, . . . , 0L) and (1L, . . . , 1L) of Ln

by 0L and 1L, respectively.

Theorem 4.4 If L is a lattice on D, then every modular predicate on L is
essentially unary.

Proof: Let f be a modular predicate on L. We may assume that f is n-ary,
n ≥ 2, and takes both values 0 and 1, since otherwise there is nothing to
prove.

An element a ∈ L is said to cover another element a′ ∈ L, denoted a′ ≺ a, if
a′ < a and there is no a′′ ∈ L with a′ < a′′ < a.

First we show that there exist two elements, a = (a1, . . . , an) and b =
(b1, . . . , bn), in Ln such that f(a) = 0, f(b) = 1, and ai = bi for all posi-
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tions i except one, where one of ai, bi covers the other in L.

Assume that f(0L) = 0. Then, in Ln, there is an unrefinable chain, say 0L =
u1 ≺ u2 ≺ . . . ≺ us, between 0L and some element us such that f(us) = 1.
Clearly, there is some 1 ≤ j ≤ s − 1 such that f(uj) = 0 and f(uj+1) = 1.
It is easy to see that, since uj ≺ uj+1 in Ln, all coordinates of uj and uj+1,
except one, coincide, and in this one component the coordinate of uj+1 covers
the coordinate of uj. So we get the required elements a and b. If f(0L) = 1,
then the argument is very similar.

Assume without loss of generality that a and b differ in the first component,
that is, a = (a1, a2, . . . , an) and b = (a′1, a2, . . . , an) where a1 ≺ a′1 (the case
a′1 ≺ a1 is very similar). We will show that f essentially depends only on its
first coordinate.

For 2 ≤ i ≤ n, let Xi = {ai, 1L}, and let X1 = {a1, a
′
1}. It is easy to see

that every Xi is a chain. Furthermore, X = X1 × . . . × Xn is a sublattice
of Ln. Clearly, the restriction of f to X is a modular function on X. By
Corollary 4.3, the function f |X is essentially unary. Moreover, by the choice of
a and b, we have that f |X = g(x1) for some unary predicate g on X1 such that
g(a1) = 0 and g(a′1) = 1. In particular, it follows that f(a1, 1L, . . . , 1L) = 0
and f(a′1, 1L, . . . , 1L) = 1.

Assume first that f(1L) = 1. Let c2, . . . , cn be arbitrary elements from L.
For 2 ≤ i ≤ n, let X ′

i = {ci, 1L}, and let X ′
1 = {a1, 1L}. Furthermore, let

X ′ = X ′
1× . . .×X ′

n. As above, each X ′
i is a chain, and X ′ is a sublattice of Ln.

Let f ′ = f |X′ . Clearly, f ′ is modular on X ′. Moreover, since f(1L) = 1 and
f(a1, 1L, . . . , 1L) = 0, Corollary 4.3 implies that f ′ = g′(x1) for some g′ such
that g′(1L) = 1. Hence, f ′(1L, c2, . . . , cn) = 1. We infer that f(1L, x2, . . . , xn) =
1 for all x2, . . . , xn ∈ D.

Pick any elements d1, d2, . . . , dn ∈ D such that f(d1, d2, . . . , dn) = 0. For
1 ≤ i ≤ n, let X ′′

i = {di, 1L}, and let X ′′ = X ′′
1 × . . .×X ′′

n. By restricting f to
X ′′ and using Corollary 4.3 together with equalities f(d1, d2, . . . , dn) = 0 and
f(1L, d2, . . . , dn) = 1, we infer, as above, that f(d1, 1L, . . . , 1L) = 0.

We now take arbitrary e2, . . . , en ∈ D and show that f(d1, e2, . . . , en) = 0.
For 2 ≤ i ≤ n, let X ′′′

i = {ei, 1L}, and let X ′′′
1 = {d1, 1L}. Furthermore, let

X ′′′ = X ′′′
1 × . . . × X ′′′

n . By restricting f to X ′′′, we can apply Corollary 4.3
again. From the equalities f(1L, e2, . . . , en) = 1, f(1L, 1L, . . . , 1L) = 1, and
f(d1, 1L, . . . , 1L) = 0, we conclude that f(d1, e2, . . . , en) = 0.

We have shown that, for any d1 ∈ D, if f(d1, d2, . . . , dn) = 0 for some
d2, . . . , dn ∈ D, then we have f(d1, x2, . . . , xn) = 0 for all x2, . . . , xn. Thus,
f essentially depends only on its first coordinate.
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If f(1L) = 0, then the argument is similar, simply exchange 0 and 1 through-
out, and use a′1 instead of a1. 2

5 Conclusion

We have proved that Max AW CSP over an arbitrary finite domain is ei-
ther polynomial-time solvable or NP-hard, and that the same holds for Max
CSP({f}) where f is an arbitrary predicate on some finite domain. In order
to prove these results, we showed that finding a maximum H-colourable subdi-
graph in a given digraph is either NP-hard or trivial depending on H. We have
also pointed out some connections between our work and (super)modularity.

Allowing negative weights appeared to have drastic effect on the complexity
of Max CSP, since only essentially trivial cases remained tractable. On the
positive side, the obtained results agree with ideas of supermodularity-based
direction of research in Max CSP [7,24,27]. We believe that further progress
in classifying the complexity of Max CSP will be made along the road of
integrating methods from algebraic lattice theory and classical combinatorial
optimization, with Max CSP being a point of a new connection between the
two research areas.
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