
When Acyclicity Is Not Enough: Limitations of the Causal Graph

Anders Jonsson
Dept. Information and Communication Technologies

Universitat Pompeu Fabra
Roc Boronat 138

08018 Barcelona, Spain
anders.jonsson@upf.edu

Peter Jonsson and Tomas Lööw
Department of Computer Science
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Abstract

Causal graphs are widely used in planning to capture the in-
ternal structure of planning instances. In the past, causal
graphs have been exploited to generate hierarchical plans, to
compute heuristics, and to identify classes of planning in-
stances that are easy to solve. It is generally believed that
planning is easier when the causal graph is acyclic. In this
paper we show that this is not true in the worst case, proving
that the problem of plan existence is PSPACE-complete even
when the causal graph is acyclic. Since the variables of the
planning instances in our reduction are propositional, this re-
sult applies to STRIPS planning with negative pre-conditions.
Having established that planning is hard for acyclic causal
graphs, we study a subclass of planning instances with acyclic
causal graphs whose variables have strongly connected do-
main transition graphs. For this class, we show that plan ex-
istence is easy, but that bounded plan existence is hard, im-
plying that optimal planning is significantly harder than sat-
isficing planning for this class.

Introduction
The causal graph offers insight into the interdependence
among the variables of a planning instance. A sparse
causal graph characterizes a planning instance with few vari-
able dependencies, potentially making it easier to determine
when and how to change the value of some variable. Acyclic
causal graphs have been of particular interest, implying an
asymmetry: while changing the value of some variable v,
we do not have to worry about dependencies that other vari-
ables might have on v. This knowledge has been exploited
in a variety of ways among the planning community.

The conception of the causal graph is usually credited to
Knoblock (1994), who devised an algorithm that constructs
abstraction hierarchies for planning instances with acyclic
causal graphs. Bacchus and Yang (1994) extended this idea,
improving the chance of obtaining a hierarchical solution.
The causal graph heuristic (Helmert 2004) exploits acyclic
causal graphs to derive a lower bound on the cost to reach
the goal. When necessary, the algorithm breaks cycles in the
graph by ignoring some of the pre-conditions of each action.

Several authors have studied the computational complex-
ity of planning when the causal graph is acyclic. Bäckström
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and Nebel (1995) showed that there are planning instances
with acyclic causal graphs that have exponentially long so-
lutions. However, this does not necessarily imply that it is
hard to determine whether a solution plan exists (Jonsson
and Bäckström 1998). Williams and Nayak (1997) proposed
a reactive planner that outputs each action in polynomial
time when the causal graph is acyclic and variables are re-
versible. A similar algorithm was proposed by Jonsson and
Bäckström (1998) for the class 3S of planning instances with
acyclic causal graph and propositional variables that are ei-
ther static, splitting, or symmetrically reversible. Brafman
and Domshlak (2003) studied the class of planning instances
with propositional variables and polytree causal graphs, and
designed a polynomial-time algorithm that outputs a com-
plete solution when the causal graph has bounded indegree.
Giménez and Jonsson (2008) showed that the problem of
plan existence is NP-complete for this class when the inde-
gree is unbounded. Chen and Giménez (2008) showed that
when variables have domains of unbounded size, planning
is NP-hard for any connected causal graph, acyclic or not.

The implicit assumption common to much of the previous
work has been that planning instances with acyclic causal
graphs are easier to solve than planning instances with ar-
bitrary causal graphs. Although plan generation may take
exponential time in the worst case, the possibility has re-
mained that plan existence is easier to determine. In this
paper we prove that this assumption is false, showing that
plan existence is PSPACE-complete for planning instances
with acyclic causal graphs. This is true even if we restrict
ourselves to STRIPS with negative pre-conditions. We show
this result by exhibiting a reduction from QBF-SAT, i.e. the
problem of deciding whether or not a quantified boolean for-
mula is satisfiable. The reduction is based on intertwined
counters that simulate a nested loop. Since plan existence
is known to be PSPACE-complete for STRIPS planning (By-
lander 1994), plan existence is no easier when the causal
graph is acyclic.

We also study the problem of optimal planning for plan-
ning instances with acyclic causal graphs. The computa-
tional complexity of this problem has been considered in
the literature but it is not as well-studied as the ordinary
planning problem. Bäckström and Nebel (1995) provided
complexity results for several combinations of structural re-
strictions, although they did not explicitly refer to the causal
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graph. Helmert (2004) proved that optimal planning is NP-
complete when the causal graph is an inverted fork, even
when the domain transition graphs are strongly connected.
Katz and Domshlak (2008) showed that optimal planning is
tractable when the causal graph is a polytree and each action
has at most one prevail-condition. Jonsson (2009) showed
that optimal planning is tractable for a subclass of planning
instances with tree-reducible causal graphs.

Since optimal planning is at least as hard as satisficing
planning, our earlier result immediately implies that opti-
mal planning is PSPACE-complete when the causal graph
is acyclic. Additionally, we show that there are cases where
the plan existence problem is in P while the optimal planning
problem is computationally much harder. First, we show that
if the causal graph is acyclic and the domain transition graph
(DTG) of each variable is strongly connected, then the plan
existence problem is trivial since all planning instances that
belong to this class have a solution. We continue by showing
that optimal planning is #P-hard in this case. The complex-
ity class #P is a counting class and #SAT (the problem of
counting the number of satisfying assignments to a SAT for-
mula) is its canonical complete problem. One should note
that the full polynomial hierarchy (and consequently NP) is
a subset of P#P (i.e. polynomial time with oracle access to
#P) by Toda’s theorem (Toda 1991). It is thus likely that this
problem is much harder than the NP-complete ones. How-
ever, being #P-hard is not as strong as being PSPACE-hard;
we know that #P is included in PSPACE but we do not know
if this inclusion is strict. If we compare this result with the
aforementioned result by Helmert (2004), then we see that
lifting the restriction on the causal graph yields a consider-
ably harder problem.

Notation
Let V be a set of variables, and letD(v) be the finite domain
of each variable v ∈ V . A partial state p is a function on a
subset of variables Vp ⊆ V that maps each variable v ∈ Vp
to a value p(v) ∈ D(v) in its domain. A state s is a partial
state such that Vs = V . The projection p | U of a partial
state p onto a subset of variables U ⊆ V is a partial state q
such that Vq = Vp∩U and q(v) = p(v) for each v ∈ Vq . The
composition p ⊕ q of two partial states p and q is a partial
state r such that Vr = Vp∪Vq , r(v) = q(v) for each v ∈ Vq ,
and r(v) = p(v) for each v ∈ Vp − Vq . Sometimes we use
(v1 = x1, . . . , vk = xk) to denote a partial state p defined
by Vp = {v1, . . . , vk} and p(vi) = xi for each vi ∈ Vp.

A planning instance is a tuple P = 〈V,A, I,G〉 where
V is a set of variables, A is a set of actions, I is an ini-
tial state, and G is a (partial) goal state. Each action a =
〈pre(a),post(a)〉 ∈ A has a pre-condition pre(a) and a
post-condition post(a), both partial states on V . Action a
is applicable in state s if s | Vpre(a) = pre(a), and applying
a in s results in a new state s′ = s⊕ post(a).

A plan is a sequence of actions 〈a1, . . . , ak〉 such that a1
is applicable in the initial state I and, for each 2 ≤ i ≤ k, ai
is applicable following the application of 〈a1, . . . , ai−1〉 in
I . The plan solves P if s(v) = G(v) holds for each v ∈ VG
in the state s that results from applying 〈a1, . . . , ak〉 in I .

The causal graph of P is a directed graph G = (V,E)
with the variables of P as nodes. There is an edge (u, v) ∈
E if and only if there exists an action a ∈ A such that u ∈
Vpre(a) ∪ Vpost(a) and v ∈ Vpost(a). In this paper we focus
on planning instances with acyclic causal graphs, implying
that each action a ∈ A is unary, i.e. satisfies |Vpost(a)| = 1,
since two or more variables in a post-condition would induce
a cycle in the causal graph.

When the variables are propositional we frequently use v
and v to denote the truth value of a variable v ∈ V instead
of referring to the values in its domain D(v). In this case, a
partial state p can be represented as a set of literals, where
each literal l is a positive or negative variable, i.e. l = v
or l = v for some v ∈ V . Given a subset of propositional
variables U ⊆ V , we define U = {v : v ∈ U} as the set of
literals obtained by negating all variables in U .

The domain transition graph (DTG) of a variable v is
a directed graph DTG(v) = (D(v), E) with the values
in the domain D(v) of v as nodes, and there is an edge
(x, y) ∈ E if and only if there exists an action a ∈ A such
that post(a)(v) = y and either v /∈ Vpre(a) or pre(a)(v) =
x. DTG(v) is strongly connected if and only if there is
a directed path between x and y for each pair of values
x, y ∈ D(v).

We define two classes of planning instances whose com-
plexity we study in the paper:

• Acyc: planning instances with acyclic causal graphs.

• SC-Acyc: the subclass of planning instances in Acyc such
that all variables have strongly connected DTGs.

Given an arbitrary planning instance P , it is easy to see
that checking if P is a member of Acyc or SC-Acyc is a
polynomial-time solvable task.

For each class of planning instancesX , we define PE(X),
the decision problem of plan existence for X , as follows:

INPUT: A planning instance P ∈ X .
QUESTION: Does there exist a plan solving P ?

We also define the decision problem BPE(X), the decision
problem of bounded plan existence for X , as follows:

INPUT: A planning instance P ∈ X and an integer K.
QUESTION: Is there a plan solving P of length at most K?

Note that PE(X) is polynomially reducible to BPE(X) since
each solvable planning instance must have a solution of
length at most K =

∏
v∈V |D(v)|.

PE(Acyc) is PSPACE-complete
In this section we prove that PE(Acyc) is PSPACE-complete
by reduction from QBF-satisfiability. A quantified Boolean
formula (QBF) is a conjunction of clauses such that the vari-
ables are bound by quantifiers, either existential or universal.
We focus on QBFs in prenex normal form, i.e. the quantifiers
alternate between existential and universal for each pair of
variables. Let QBF-SAT be the following decision problem:

INPUT: A QBF F in prenex normal form.
QUESTION: Is F satisfiable?
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1 function QSat(i, pi)
2 if i = n then
3 return Check(φ, pi ∪ {xi}) | Check(φ, pi ∪ {xi})
4 else if i is odd then
5 return QSat(i+1, pi∪{xi}) & QSat(i+1, pi∪{xi})
4 else
6 return QSat(i+1, pi∪{xi}) | QSat(i+1, pi∪{xi})

Figure 1: Algorithm QSat that checks if Fi(pi) is satisfiable.

The decision problem QBF-SAT is PSPACE-complete
(Stockmeyer and Meyer 1973).

As part of reducing QBF-SAT to PE(Acyc), we first de-
scribe a general algorithm for determining whether an ar-
bitrary QBF F is satisfiable. We then show how to con-
struct a planning instance that simulates this algorithm. A
key part of the construction is the ability to simulate nested
loops using planning instances with propositional variables
and acyclic causal graphs. We describe this mechanism sep-
arately since it is the most complicated part of our subse-
quent reduction. Moreover, simulating nested loops poten-
tially has other uses beyond reducing QBF-SAT to PE(Acyc).
We then present our reduction and prove its correctness.

QBF Satisfiability
In this section we describe an algorithm that solves the de-
cision problem QBF-SAT in polynomial space. Let F =
∀x1∃x2 · · · ∀xn−1∃xn · φ be a QBF in prenex normal form,
where n is an even integer, φ = (c1 ∧ · · · ∧ cr), and
ch = `1h ∨ `2h ∨ `3h is a 3-literal clause for each 1 ≤ h ≤ r.

For each 1 ≤ i ≤ n, let pi be a partial state repre-
senting an assignment to the variables x1, . . . , xi−1. Let
Fi(pi) = Qixi · · · ∀xn−1∃xn · φ(pi) denote the QBF ob-
tained from F by removing the quantifiers on x1, . . . , xi−1
and replacing x1, . . . , xi−1 in φwith the respective truth val-
ues in pi. Figure 1 describes a recursive algorithm QSat
that checks whether Fi(pi) is satisfiable for any arbitrary
1 ≤ i ≤ n and pi. The algorithm Check(φ, pn+1) returns
true if and only if the 3SAT formula φ is satisfied by the as-
signment pn+1, and the symbols | and & represent logical or
and logical and, respectively.

Lemma 1. The algorithm QSat runs in polynomial space
and returns true if and only if Fi(pi) is satisfiable.

Proof sketch. The recursive algorithm QSat essentially per-
forms a nested loop on the variables xi, . . . , xn with the
body in the inner loop described by a call to Check. The
proof follows directly from the meaning of each quantifier.
If i = n, the quantifier on xi is existential, and Fi(pi) is
satisfiable if and only if φ is satisfiable for either of the as-
signments pi ∪ {xi} or pi ∪ {xi}. If i is odd, xi is univer-
sal, so Fi(pi) is satisfiable if and only if Fi+1(pi ∪ {xi})
and Fi+1(pi ∪ {xi}) are satisfiable. Else xi is existential,
so Fi(pi) is satisfiable if and only if Fi+1(pi ∪ {xi}) or
Fi+1(pi ∪ {xi}) is satisfiable.

By sharing the memory needed to store pn+1, each recur-
sive call only needs O(log i) = O(log n) memory to repre-

Action Pre Post
a1 ∅ {a}
b1 {a} {b}
b2 {a} {b}
x1 {b} {x}
x2 {b} {x}

Action Pre Post

u11 {b, x} {u1}
u21 ∅ {u1}
u12 {b, x, u1} {u2}
u22 ∅ {u2}

Table 1: The action sets A(X) and A(X,U).

sent i, and a single bit of memory to remember the outcome
of Check or QSat for pi ∪ xi. Checking whether an assign-
ment pn+1 satisfies φ requires O(n + r) space, and the re-
cursive calls require a total of O(n log n) space. Thus QSat
runs inO(n log n+r) space, which is polynomial in F .

Note that F1(p1) = F1(∅) = F , so Lemma 1 implies that
F is satisfiable if and only if QSat(1,∅) returns true.

Nested Loops
Our aim is to construct a planning instance in Acyc that
simulates the algorithm QSat from the previous section.
To do so we first need a mechanism for simulating nested
loops. There are examples in the literature of planning in-
stances in Acyc that iterate over all assignments to n vari-
ables (Bäckström and Nebel 1995). However, none of these
guarantee that assignments are not repeated, something that
is crucial in our reduction. For this reason we have to devise
a novel mechanism for simulating nested loops.

Let X = {a, b, x} and U = {u1, u2} be two sets
of propositional variables. Given X and U , let A(X)
and A(X,U) be the two action sets defined in Table 1.
Variable x is the one whose value we wish to iterate
over, and the actions affecting a variable v ∈ V are de-
noted v1, v2, etc. Consider the planning instance P =
〈X ∪ U,A(X) ∪A(X,U), X ∪ U, {u2}〉.

To achieve u2 starting from X ∪ U we have to apply the
partial action sequence 〈u11, u12〉: u12 to achieve u2, and u11 to
achieve the pre-condition u1 of u12. The pre-condition {b, x}
of u11 is satisfied in X . To achieve the pre-condition {b, x}
of u12 we have to apply the action sequence 〈b1, x1, a1, b2〉:
x1 to make x true, b1 to achieve the pre-condition b of x1, b2
to reset b to false, and a1 to achieve the pre-condition a of
b2. Summarizing, a plan solving P is 〈u11, b1, x1, a1, b2, u12〉,
resulting in the partial state {a, b, x} on X .

A plan solving P is highly constrained: only actions x1
and a1 could be swapped around, while the order of the re-
maining actions is strict. In the following lemma we prove a
key property of plans solving P , parametrized on X and U
so that we can later apply it to other sets of variables:

Lemma 2. Given X , U , A(X), and A(X,U), no action
sequence achieving u2 starting from X ∪ U can change the
value of a variable in X before u11 or after u12.

Proof. In the partial state {a, b, x}, no action changing the
value of a variable inX is applicable. The only two such ac-
tions are b1, with pre-condition a, and x2, with pre-condition
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Action Pre Post
a22 {b1} {a2}
u110 ∅∪X2 ∪ U2 {u10}
u111 {b1, x1, u10}∪{u22} {u11}
u112 {b1, x1, u11}∪X2 ∪ U2 {u12}
u113 {u12}∪{u22} {u13}

Table 2: The set of actions B of the planning instance P2.

b. Since any action sequence starting in X ∪ U has to
achieve the partial state {a, b, x} before applying u12, it can-
not change the value of a variable in X after u12.

If a1 appears before u11, b1 is no longer applicable, mak-
ing it impossible to achieve the pre-condition {b, x} starting
from {b, x} as required by u11 and u12. Applying b1 before u11
requires b2 to satisfy the pre-condition b of u11, which in turn
requires a1. Finally, action x1 has pre-condition b, which
can only be achieved by b1. Consequently, no action chang-
ing the value of a variable in X can appear before u11.

Due to Lemma 2, a plan solving P simulates a loop on x
such that x is false before u11 and true after u12. As we will
show, we can add additional actions whose pre-conditions
control the inner structure of the loop. Actions x2, u21, and
u22 are not strictly needed to solve P ; their purpose is to show
that Lemma 2 still holds when they are present.

We next show how to simulate a nested loop on two vari-
ables x1 and x2. Let V = X1 ∪U1 ∪X2 ∪U2, where Xi =
{ai, bi, xi} for each 1 ≤ i ≤ 2, U1 = {u10, u11, u12, u13},
and U2 = {u21, u22}. Let A = A(X1) ∪ A(X2) ∪
A(X2, U2) ∪ B be a set of actions on V , where A(X1),
A(X2), and A(X2, U2) are defined as in Table 1 and B
is defined in Table 2. For clarity, the pre-conditions of
u110, . . . , u

3
10 are divided into two parts, one that controls the

loop over x1, and one that controls the body of the loop.
Consider the planning instance P2 = 〈V,A, V , {u13}〉.

Although U1 contains two variables u10 and u13 not
present in U = {u1, u2}, the structure of the actions on U1

in B is similar to A(X,U): to achieve the goal u13 starting
from X1 ∪ U1 we have to apply the partial action sequence
〈u110, u111, u112, u113〉, and the pre-conditions {b1, x1} of u111
and {b1, x1} of u112 are the same as in A(X,U). We can
thus apply Lemma 2 to the problem of achieving u13 start-
ing from X1 ∪ U1, implying that no action that changes the
value of a variable in X1 can appear before u111 or after u112.

The pre-conditions of u110 and u111 require us to achieve
u22 starting from X2 ∪ U2. Assuming that the actions for
X2 and U2 are given by A(X2) and A(X2, U2), Lemma 2
applies to this problem, implying that no action that changes
the value of a variable in X2 can appear before u121 or after
u122. However, the set B contains an additional action a22 on
X2, threatening the validity of Lemma 2. Fortunately, the
action sequence achieving u22 has to appear before action
u111. Since b1 holds in the initial state and since no action
changing the value of b1 can appear before u111, b1 has to be

a1 b1 x1

a2 b2 x2

u21 u22

u10 u11 u12 u13

Figure 2: The causal graph of the planning instance P2.

false when achieving u22, violating the pre-condition of a22.
Action u112 requires us to reset the variables in X2 ∪ V2

to false, while u113 again requires us to achieve u22. The
reset actions u221 and u222 inA(X2, U2) are applicable in any
state. When b1 is true, we can apply the action sequence
〈a22, b12, x22, a12, b22, a22〉 to reset the variables in X2 to false.
The partial action sequence achieving u22 the second time
has to appear after action u112, so a22 is again inapplicable
since b1 holds when we apply u112 and no action changing
the value of b1 can appear after u112.

Summarizing, a plan solving P2 is of the form
〈u110, π2, u111, b11, ρ2, x11, a11, b21, u112, π2, u113〉, where π2 is an
action sequence achieving u22 starting from X2 ∪ U2, and
ρ2 is an action sequence resetting the variables inX2 and V2
to false. Some of the actions can be moved around, but the
two instances of π2 have to remain before u111 and after u112.

The action sequence π2 simulates a loop on x2 that first
sets x2 to false and then to true. On the other hand, a plan
solving P2 simulates a loop on x1 that first sets x1 to false
and then to true. Since the plan contains one instance of
π2 for x1 false and one instance of π2 for x1 true, the plan
effectively simulates a nested loop on x1 and x2.

Figure 2 shows the causal graph of the planning instance
P2. For clarity, the edges from variables in X2 to u10 and
u12 have been omitted. All edges are left-to-right within the
same row of variables, or top-to-bottom between different
rows of variables, implying that the causal graph is acyclic.

It is straightforward to extend the idea to simulate a
nested loop on n variables. The idea is to introduce ac-
tion pairs such as (u110, u

1
11) and (u112, u

1
13) in P2 whose pre-

conditions control the inner structure of each loop. By care-
fully choosing these pre-conditions we ensure that Lemma 2
holds for each loop, forcing a plan to iterate over all combi-
nations of values to solve the planning instance.

Construction
In this section we describe how to construct the planning
instance in Acyc that corresponds to an arbitrary QBF for-
mula. Let F = ∀x1∃x2 · · · ∀xn−1∃xn·φ be a QBF in prenex
normal form with φ = (c1 ∧ · · · ∧ cr) and ch = `1h ∨ `2h ∨ `3h
for each 1 ≤ h ≤ r. Given F , we construct a planning
instance P = 〈V,A, I,G〉 where
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Action Pre Post
s1h {`1h, sh−1} {sh}
s2h {`2h, sh−1} {sh}
s3h {`3h, sh−1} {sh}
s4h {} {sh}
th {`1h, `2h, `3h} {t}
tr+1 {} {t}

Table 3: The actions in the set AS for 1 ≤ h ≤ r. The
pre-condition sh−1 of s1h, s2h, and s3h is omitted for h = 1.

• V =
⋃n

i=1 (Xi ∪ Ui) ∪ S,

• Xi = {ai, bi, xi} for each 1 ≤ i ≤ n,

• Ui = {ui0, ui1, vi1, ui2, vi2, ui3, vi3} for each 1 ≤ i ≤ n,

• S = {s1, . . . , sr, t},
• A =

⋃n
i=1A(Xi) ∪B ∪AS ,

• I = V and G = {u13}.
The purpose of the variable set

⋃n
i=1 (Xi ∪ Ui) and action

set
⋃n

i=1A(Xi)∪B is to simulate a nested loop on the vari-
ables x1, . . . , xn of the QBF F . Simultaneously, the vari-
ables in Ui keep track of whether or not each Fi(pi) is satis-
fiable. For each assignment pn+1 to x1, . . . , xn, the variable
set S and action set AS test whether φ is satisfied.

Table 3 shows the actions in the setAS . The pre-condition
sh−1 of actions s1h, s2h, and s3h is omitted for h = 1. For each
1 ≤ h ≤ r, literals `1h, `2h, and `3h should be replaced with
the corresponding variable among x1, . . . , xn, appropriately
negated. To make sh true we first have to make sh−1 true.
The actions are defined such that we can achieve sr starting
from S if and only if φ is satisfied by the current assign-
ment to x1, . . . , xn, and we can achieve t if and only if φ is
unsatisfied. Each variable can be reset to false in any state.

Table 4 shows the actions in the set B. For each 1 ≤
i < n, action a2i+1 allows resetting ai+1 to false whenever
bi is true. For each 1 ≤ i ≤ n, B also contains actions
with empty pre-conditions resetting each variable in Ui to
false; we omit these action definitions to save space. Just
as before, we divide pre-conditions into two parts: one that
controls the loop and one that controls the body of the loop.
For each 1 ≤ i ≤ n, the actions on Ui are similar to those in
A(X,U), but four distinct action sequences are possible:

〈u1i0, u1i1, u1i2, u1i3〉, making u13 true,
〈u1i0, u1i1, u1i2, v1i3〉, making v13 true,
〈u1i0, v1i1, v1i2, v2i3〉, making v13 true,
〈u1i0, v1i1, v1i2, v3i3〉, making v13 true.

All four sequences have the same pre-conditions on Xi,
causing Lemma 2 to apply to each of them. Just like in the
planning instance P2, the pre-conditions also require achiev-
ing u(i+1)3 or v(i+1)3 twice starting fromXi+1∪Ui+1, caus-
ing a plan solving P to simulate a nested loop on x1, . . . , xn.
The inner loop is defined by the actions on Un, which are

Action Pre Post
a2i+1 {bi} {ai+1}
u1i0 ∅∪Xi+1 ∪ Ui+1 {ui0}
u1i1 {bi, xi, ui0}∪{v(i+1)3} {ui1}
v1i1 {bi, xi, ui0}∪{u(i+1)3} {vi1}
u1i2 {bi, xi, ui1}∪Xi+1 ∪ Ui+1 {ui2}
v1i2 {bi, xi, vi1}∪Xi+1 ∪ Ui+1 {vi2}
u1i3 {ui2}∪{v(i+1)3} {ui3}
v1i3 {ui2}∪{u(i+1)3} {vi3}
v2i3 {vi2}∪{v(i+1)3} {vi3}
v3i3 {vi2}∪{u(i+1)3} {vi3}
u1n0 ∅∪S {un0}
u1n1 {bn, xn, un0}∪{t} {un1}
v1n1 {bn, xn, un0}∪{sr} {vn1}
u1n2 {bn, xn, un1}∪S {un2}
v1n2 {bn, xn, vn1}∪S {vn2}
u1n3 {un2}∪{t} {un3}
v1n3 {un2}∪{sr} {vn3}
v2n3 {vn2}∪{t} {vn3}
v3n3 {vn2}∪{sr} {vn3}

Table 4: The actions in the set B for 1 ≤ i < n.

identical to those for Ui, i < n, except the pre-conditions
require achieving sr or t twice starting from S.

The four action sequences for Ui are mutually exclusive.
At each iteration, the applicable sequence is determined by
whether we can achieve u(i+1)3 (sr) or v(i+1)3 (t) starting
from Xi+1 ∪ Ui+1 (S) for xi and xi. Although the action
definitions for Ui are symmetric, the meaning of the vari-
ables is different for universal and existential variables. For
odd i, xi is universal, and if the QBF Fi(pi) is satisfiable we
can make ui3 true starting from Xi ∪ Ui, else vi3. For even
i, xi is existential, and if Fi(pi) is satisfiable we can make
vi3 true, else ui3. For i = 1, variables v11, v12, v13 and their
actions can be omitted since making v13 true is possible if
and only if we cannot reach the goal state u13.

Figure 3 shows the causal graph of the planning problem
P . We have omitted many vertical edges, but it is easy to
verify that all edges are left-to-right within the same row of
variables, or top-to-bottom between different rows of vari-
ables, implying that the causal graph is acyclic. All edges in-
duced by the actions for Xi are already present in the graph.
For S, the edges not shown are those associated with the lit-
erals of each clause, i.e. each edge is from a variable among
x1, . . . , xn to either sh or t. The edges to Ui not shown are
from bi, xi, and Ui+1 or, in the case of i = n, from S.

Proof
We proceed to prove that the planning problem P has a solu-
tion if and only if the formula F is satisfiable. We first show
that the variables in S and actions in AS correspond to the
algorithm Check that tests whether the formula φ is satisfied

121



a1 b1 x1

a2 b2 x2

an bn xn

s1 s2 sr t

un0 un1 un2 un3

vn1 vn2 vn3

u10 u11 u12 u13

Figure 3: The causal graph of the planning problem P . For
clarity, many vertical edges have been omitted.

given the current assignment pn+1 to x1, . . . , xn.

Lemma 3. Given an assignment pn+1 to x1, . . . , xn, start-
ing in S it is possible to set sr to true iff φ is satisfied, and t
to true iff φ is unsatisfied.

Proof. By induction on 1 ≤ h ≤ r. For h = 1, actions
s11, s

2
1, s

3
1, t

1 are such that it is possible to set s1 to true iff
clause c1 is satisfied, and t to true iff c1 is unsatisfied. For
h > 1, the induction hypothesis states that we can set sh−1
to true iff clauses c1, . . . , ch−1 are satisfied, and t to true
iff at least one clause is unsatisfied. If sh−1 is true, actions
s1h, s

2
h, s

3
h, t

h are such that we can set sh to true iff ch is
satisfied, and t to true iff ch is unsatisfied.

We next prove that, given some assignment pi to the vari-
ables x1, . . . , xi−1, making ui3 or vi3 true starting from
Xi ∪ Ui tells us whether or not Fi(pi) is satisfiable, effec-
tively simulating the algorithm QSat in Table 1.

Lemma 4. For each 1 ≤ i ≤ n, given an assignment pi to
x1, . . . , xi−1, starting from Xi ∪ Ui we can make ui3 true
iff i is odd and Fi(pi) is satisfiable or i is even and Fi(pi) is
unsatisfiable, else we can make vi3 true.

Proof. By induction on 1 ≤ i ≤ n. For i = n, we can
make un3 true iff we can make t true starting from S for
xn and xn. Due to Lemma 3, this corresponds to φ being
unsatisfied, which causes Fn(pn) to be unsatisfiable. We
can make vn3 true iff we can make sr true starting from S
for either xn or xn, which corresponds to φ being satisfied,
implying that Fn(pn) is satisfiable since xn is existential.

For 1 ≤ i < n, we can make ui3 true iff we can make
v(i+1)3 true starting from Xi+1 ∪ Ui+1 for xi and xi. If i
is odd, the induction hypothesis states that Fi+1(pi ∪ {xi})

and Fi+1(pi ∪ {xi}) are satisfiable, implying that Fi(pi) is
satisfiable since xi is universal. If i is even, Fi+1(pi ∪{xi})
and Fi+1(pi ∪ {xi}) are unsatisfiable, implying that Fi(pi)
is unsatisfiable since xi is existential.

Conversely, we can make vi3 true iff we can make u(i+1)3

true starting from Xi+1 ∪ Ui+1 for either xi or xi. If i is
odd, the induction hypothesis states that Fi+1(pi ∪ {xi})
or Fi+1(pi ∪ {xi}) is unsatisfiable, implying that Fi(pi) is
unsatisfiable since xi is universal. If i is even, by induction
Fi+1(pi ∪ {xi}) or Fi+1(pi ∪ {xi}) is satisfiable, implying
that Fi(pi) is satisfiable since xi is existential.

We are now ready to prove the main result of this section:

Theorem 1. PE(Acyc) is PSPACE-complete.

Proof. Let F be an arbitrary QBF on n variables and r
clauses in prenex normal form. We can construct the plan-
ning instance P in polynomial time given F . A plan solving
P simulates a nested loop on x1, . . . , xn. Lemma 4 states
that since i = 1 is odd, we can make u13 true starting from
X1 ∪ U1 if and only if the QBF F1(∅) = F is satisfiable,
implying that P has a solution if and only if F is satisfiable.

We have given a polynomial-time reduction from QBF-
SAT, a PSPACE-complete problem, to PE(Acyc). Member-
ship in PSPACE follows from the fact that each planning
instance has a solution of length at most

∏
v∈V |D(v)|.

Corollary 5. BPE(Acyc) is PSPACE-complete.

Proof. Hardness follows from Theorem 1 and the fact that
PE(Acyc) is polynomially reducible to BPE(Acyc). Mem-
bership follows from the same argument as before.

BPE(SC-Acyc) is #P-hard
In this section we study the complexity of plan exis-
tence and bounded plan existence when the causal graph
is acyclic and the DTG of each variable is strongly
connected. We first show that the decision problem
PE(SC-Acyc) is in P by proving that all planning instances
in SC-Acyc have a solution. We then show that the de-
cision problem BPE(SC-Acyc) is #P-hard, which implies
that BPE(SC-Acyc) is hard for the polynomial hierarchy
PH. Note that we, as is customary, define #P-hardness
with respect to polynomial-time Turing reductions: we say
that a problem X is #P-hard if and only if #P ⊆ PX .
Our result generalizes that of Helmert (2004), who showed
that bounded plan existence is NP-hard for the subclass of
SC-Acyc with inverted fork causal graphs.

Lemma 6. For each planning instance P in SC-Acyc, there
exists a plan that solves P (and PE(SC-Acyc) is in P).

Proof. By induction on the cardinality |V |. If |V | = 1, the
resulting planning instance has a single variable, and the fact
that DTG(v) is strongly connected implies that we can al-
ways reach any value in D(v) from any other value. Thus P
has a solution regardless of the values of I and G.

If |V | = n > 1, choose a variable v ∈ V without in-
coming edges in the causal graph G. Such a variable exists
since G is acyclic. Let W = V − {v}, and let A | W =
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Action Pre Post
svij (s = scj) (s = svi )
scij (s = svi ) (s = scj)
v1i Vi−1 ⊕ (s = svi ) (vi = 0)
v2i Vi−1 ⊕ (s = svi ) (vi = 1)

c1ik Ci−1 ⊕ (s = sci , `
1
k, `

2
k, `

3
k) (ci = 0)

c2ik Ci−1 ⊕ (s = sci , `
1
k, `

2
k, `

3
k) (ci = 1)

Table 5: The actions of the planning instance P .

{〈pre(a) |W, post(a)〉 : a ∈ A, Vpost(a) ⊆ W} be the
projection of the actions in A onto W . Compute a solution
to the planning instance 〈W,A |W, I |W,G |W 〉. Such a
solution exists by induction hypothesis since |W | < n.

If we convert the actions in the resulting plan back to A,
some of them might have pre-conditions on v. To com-
pute a solution to P we can now simply insert actions on
v that achieve these pre-conditions. Such actions exist since
DTG(v) is strongly connected and since no actions on v
have a pre-condition on other variables (else v would have
an incoming edge in the causal graph). If v ∈ VG, also insert
actions that satisfy the goal state G(v) on v.

We now turn to the problem of optimal planning for
the class SC-Acyc. We first define the decision problem
ATLEAST-UNSAT as follows:

INPUT: A 3SAT formula F and an integer K.
QUESTION: Is the formula F unsatisfied by at least K dis-
tinct variable assignments?

We show that ATLEAST-UNSAT is polynomially reducible
to BPE(SC-Acyc). Given an arbitrary 3SAT formula F with
r clauses and n variables and an integerK, construct a plan-
ning instance P = 〈V,A, I,G〉 with

• V = {s, v1, . . . , vn, c1, . . . , cn},
• D(s) = {sv1, . . . , svn, sc1, . . . , scn},
• D(vi) = D(ci) = {0, 1} for each 1 ≤ i ≤ n,

• I = (s = sc1, v1 = 0, . . . , vn = 0, c1 = 0, . . . , cn = 0),

• G = (v1 = 0, . . . , vn−1 = 0, vn = 1)⊕
⊕ (c1 = x1, . . . , cn = xn).

Variables v1, . . . , vn and c1, . . . , cn act as two Gray coun-
ters. For each 1 ≤ i ≤ n, we define the partial state
Vi = (v1 = 0, . . . , vi−1 = 0, vi = 1) and the partial state
Ci = (c1 = 0, . . . , ci−1 = 0, ci = 1) that are part of the
pre-condition of actions that change the values of these vari-
ables. Variables v1, . . . , vn represent the variables of the for-
mula F , and the goal state Vn implies that the counter has
to iterate from 0 to 2n− 1, thus enumerating all possible as-
signments to v1, . . . , vn. The values x1, . . . , xn in the goal
state are such that the partial state (c1 = x1, . . . , cn = xn)
encodes the integer K for the counter c1, . . . , cn.

Table 5 shows the actions of the planning instance P ,
where the indices are in the ranges 1 ≤ i ≤ n, 1 ≤ j ≤ n,
and 1 ≤ k ≤ r. The actions on variable s are such that

s

v1 v2 vn

c1 c2 cn

Figure 4: The causal graph of the planning instance P .

it always alternates between “v-values” (svi ) and “c-values”
(scj). The actions on v1, . . . , vn are those associated with a
Gray counter (Bäckström and Nebel 1995), but with an ad-
ditional pre-condition on s, whose “v-value” must be appro-
priately set. The actions on c1, . . . , cn are also those associ-
ated with a Gray counter, and require that the corresponding
“c-value” of s is set. However, these actions also require
that at least one clause is unsatisfied by the current assign-
ment to v1, . . . , vn. For each 1 ≤ k ≤ r, the literal `1k should
be replaced by a pre-condition vi = 0 or vi = 1, and so on.

Lemma 7. As long as F is not a tautology, P is in SC-Acyc.

Proof. Figure 4 shows the causal graph of the planning in-
stance P . All edges are either left-to-right within the same
row of variables, or top-to-bottom between different rows of
variables, implying that the causal graph is acyclic.

For variable s, DTG(s) is strongly connected since the
actions allow us to move from any “v-value” to any “c-
value” and vice versa. For each 1 ≤ i ≤ n, DTG(vi) is
also strongly connected since actions v1i and v2i are from 0
to 1 and from 1 to 0, respectively. Intuitively, this means that
the Gray counter represented by v1, . . . , vn can count both
up and down, meaning that we can move freely between any
two assignments to v1, . . . , vn.

The Gray counter represented by c1, . . . , cn can also
count both up and down. However, the pre-condition
(`1k, `

2
k, `

3
k) is unsatisfiable if clause k is a tautology, which in

effect means that the corresponding action can never be ap-
plied. As long as there exists at least one clause that is not a
tautology, there is at least one pair of actions c1ik and c2ik such
thatDTG(ci) is strongly connected for each 1 ≤ i ≤ n.

Lemma 8. ATLEAST-UNSAT is polynomially reducible to
BPE(SC-Acyc).

Proof. Let (F,K) be an arbitrary instance of ATLEAST-
UNSAT. We can construct the planning instance P in poly-
nomial time given F and K. The corresponding instance of
BPE(SC-Acyc) is given by (P,NA), where NA = 3 · 2n −
3 +K and n is the number of variables of the formula F .
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We first note that it follows by the properties of the Gray
counter that any plan needs at least 3 · 2n − 4 actions for
v1, . . . , vn to reach the goal state Vn: 2n − 1 actions for
incrementing the counter and 2(2n − 1) − 1 = 2 · 2n − 3
actions for setting the appropriate “v-value” of s. Since the
second Gray counter then has at mostK+1 steps to countK
times in order to get its variables to the correct state we can
conclude that that neither counter can ever count backwards
since we could not have enough steps left to get to the goal
state. The extra step might be needed to set s to scj in case the
formula is unsatisfied by the last assignment to v1, . . . , vn.

Note also that the second counter cannot count the same
unsatisfying assignment twice since it is limited to changing
the value of one variable at a time, so to count an assignment
twice we would have to change s to some svi and then to
some scj before we count up again. Doing this takes 2 extra
steps, but this is impossible since the plan length guarantees
that we have at most K + 1 steps to count K times.

We remark that due to Lemma 7, the reduction from
ATLEAST-UNSAT to BPE(SC-Acyc) is only valid when F
is not a tautology. However, given an arbitrary 3SAT for-
mula F , we can check (in polynomial time) whether or not
it is a tautology: simply verify that each clause in F con-
tains some variable together with its negation. If F is indeed
a tautology then F has at least K unsatisfying assignments
for each 0 ≤ K ≤ 2n, so the answer to the corresponding
instance of ATLEAST-UNSAT is always “yes”.

Now consider the counting problem #3SAT, defined as:

INPUT: A 3SAT formula F .
OUTPUT: The number of assignments that satisfy F .

The counting problem #3SAT is known to be complete for
the complexity class #P (Valiant 1979).

Theorem 2. #3SAT is in PBPE(SC-Acyc).

Proof. Any instance F of #3SAT has between 0 and 2n−1
satisfying assignments, where n is the number of vari-
ables of the formula. Since ATLEAST-UNSAT reduces to
BPE(SC-Acyc), we can perform a binary search over the
range [0, 2n − 1] to find the exact number of non-satisfying
assignments for F in linear time. Consequently, we can also
find the number of satisfying assignments and it follows that
#3SAT can be solved in linear time given an oracle for
BPE(SC-Acyc).

Corollary 9. The polynomial time hierarchy is a subset of
PBPE(SC-Acyc).

Proof. It follows from Theorem 2 and the fact that #3SAT

is #P-complete that P#P = P#3SAT ⊆ PPBPE(SC-Acyc)
.

Toda’s Theorem (Toda 1991) states that PH ⊆ P#P, which

gives us PH ⊆ PPBPE(SC-Acyc)
= PBPE(SC-Acyc).

Discussion

We have proved that the plan existence problem is PSPACE-
complete when restricted to instances with acyclic causal
graphs. Our proof is largely based on one conceptually
simple idea: nondeterministic choices can be replaced by
enumerating all possible choices. Implementing this idea
in such a weak “programming language” as propositional
planning is non-trivial, though, and our solution is based
on making several counters to interact in complex ways. It
is not surprising that the planning instance constructed in
the reduction is complicated and difficult to characterise in
graph-theoretical terms. Hence, it may be worthwhile to try
to obtain alternative proofs that leads to instances with dif-
ferent (and hopefully simpler) causal graphs. An interesting
question along these lines is the following: let PE(C) de-
note the plan existence problem restricted to instances such
that their casual graphs are members of C, and let Cn de-
note the directed chain on n vertices. Now, is it the case that
PE({C1,C2, . . .}) is PSPACE-complete? It is known that
PE({C1,C2, . . .}) is NP-hard even if the variable domains
are restricted to five elements (Giménez and Jonsson 2009)
but there are no results yet indicating that this problem is
indeed harder.

We may take this idea one step further and try to fully
characterise the sets of graphs C such that PE(C) is PSPACE-
complete. This may appear to be an overly difficult prob-
lem but it should not be deemed completely hopeless: recall
that Chen and Giménez (2008) have, under the complexity-
theoretic assumption that nu-FPT 6= W[1], exactly charac-
terised the sets of graphs C such that PE(C) is in P. Hence,
their result may be viewed as a characterisation of the prob-
lems in the “easy” end of the hardness spectrum while a
characterisation of the PSPACE-complete problems would
be a summary of the other end of the spectrum. We also
note that their result leaves room for significant improve-
ments since they only prove that sets of graphs that do not
satisfy the tractability condition are not in P. In fact, there
exists a set of graphs C such that PE(C) is NP-intermediate,
i.e. PE(C) is not in P and PE(C) is not NP-hard. Clearly,
a characterisation of the PSPACE-complete graphs (and also
of the X-complete graphs for other complexity classes X
within PSPACE) would be an interesting refinement of their
result.

We finally note that it may be much easier to study sets
of acyclic graphs instead of general graphs. The following
could be a first step: identify the sets of acyclic graphs C
such that PE(C) is NP-complete without imposing any other
constraints on, for instance, domain sizes? Examples ex-
ist in the literature (cf. Helmert 2004) but they are scarce.
However, recall that if we allow other side constraints (such
as restricting domain sizes or otherwise put restrictions on
the DTGs), then there are plenty of examples in the lit-
erature. Examples include directed-path singly connected
causal graphs with domain size two (Brafman and Domsh-
lak 2003). Naturally, this kind of studies can be performed
with other complexity classes in mind—probably, the most
interesting result would be to characterise the acyclic graphs
that make PE tractable.
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