
Ruling out polynomial-time approximation schemes

for hard constraint satisfaction problems

Peter Jonsson1, Andrei Krokhin2 and Fredrik Kuivinen1

1 Department of Computer and Information Science
Linköpings Universitet, SE-581 83, Linköping, Sweden

{petej|freku}@ida.liu.se
2 Department of Computer Science

Durham University, Durham, DH1 3LE, UK
andrei.krokhin@durham.ac.uk

Abstract. The maximum constraint satisfaction problem (Max CSP)
is the following computational problem: an instance is a �nite collection
of constraints on a set of variables, and the goal is to assign values to
the variables that maximises the number of satis�ed constraints. Max
CSP captures many well-known problems (such as Max k-SAT and
Max Cut) and so is NP-hard in general. It is natural to study how
restrictions on the allowed constraint types (or constraint language) af-
fect the complexity and approximability of Max CSP. All constraint
languages, for which the CSP problem (i.e., the problem of deciding
whether all constraints in an instance can be simultaneously satis�ed) is
currently known to be NP-hard, have a certain algebraic property, and
it has been conjectured that CSP problems are tractable for all other
constraint languages. We prove that any constraint language with this
algebraic property makes Max CSP hard at gap location 1, thus ruling
out the existence of a polynomial-time approximation scheme for such
problems. We then apply this result to Max CSP restricted to a single
constraint type. We show that, unless P = NP, such problems either
are trivial or else do not admit polynomial-time approximation schemes.
All our hardness results hold even if the number of occurrences of each
variable is bounded by a constant.

Keywords. maximum constraint satisfaction, complexity, approximability

1 Introduction

Many combinatorial optimisation problems are NP-hard so there has been a
great interest in constructing approximation algorithms for such problems. For
some optimisation problems, there exist collections of approximation algorithms
known as polynomial-time approximation schemes (PTAS). An optimisation
problem Π has a PTAS A if, for any �xed rational c > 1 and for any instance
I of Π, A(I, c) returns a c-approximate (i.e., within c of optimum) solution

2 P. Jonsson, A. Krokhin and F. Kuivinen

in time polynomial in |I|. There are some well-known NP-hard optimisation
problems that have the highly desirable property of admitting a PTAS: exam-
ples include Knapsack, Euclidean Tsp, and Independent Set restricted
to planar graphs [1]. It is also well-known that a large number of optimisation
problems do not admit a PTAS unless some unexpected collapse of complexity
classes occurs. For instance, problems like Max k-SAT and Independent Set
do not admit a PTAS unless P = NP [1]. We note that if Π is a problem that
does not admit a PTAS, then there exists a constant c > 1 such that Π cannot
be approximated within c in polynomial time.

Constraint satisfaction problems (CSP) [19] and its optimisation variants
have played an important role in research on approximability. Many combina-
torial problems are subsumed by the CSP framework, and examples include
problems in graph theory [10], combinatorial optimisation [13], and computa-
tional learning [7]. We will focus on a class of optimisation problems known as
themaximum constraint satisfaction problem (Max CSP). The most well-known
examples in this class are Max k-SAT and Max Cut.

Let D be a �nite set. A subset R ⊆ Dn is called a relation and n is the arity
of R. Let R

(k)
D denote the set of all k-ary relations on D and let RD = ∪∞i=1R

(i)
D .

A constraint language is a �nite subset of RD.

De�nition 1 (CSP(Γ)). The constraint satisfaction problem over the constraint
language Γ , denoted CSP(Γ), is de�ned to be the decision problem with instance
(V,C), where

� V is a �nite set of variables, and
� C is a (multi)set of constraints {C1, . . . , Cq}, in which each constraint Ci is
a pair (Ri, si) with si a list of variables of length ni, called the constraint
scope, and Ri ∈ Γ is an ni-ary relation in RD, called the constraint relation.

The question is whether there exists an assignment s : V → D which satis�es
all constraints in C. A constraint (Ri, (v1, v2, . . . , vni)) ∈ C is satis�ed by an
assignment s if the image of the constraint scope is a member of the constraint
relation, i.e., if (s(v1), s(v2), . . . , s(vni

)) ∈ Ri.

For a constraint language Γ ⊆ RD, the optimisation problem Max CSP(Γ)
is de�ned as follows:

De�nition 2 (Max CSP(Γ)). Max CSP(Γ) is de�ned to be the optimisation
problem with

Instance: An instance (V,C) of CSP(Γ).
Solution: An assignment s : V → D to the variables.
Measure: Number of constraints in C satis�ed by the assignment s.

We use multisets of constraints instead of just sets of constraints as we do
not have any weights in our de�nition of Max CSP. We chose to use multisets
instead of weights because bounded occurrence restrictions are easier to explain
in the multiset setting. Note that we prove our hardness results in this restricted
setting without weights and with a constant bound on the number of occurrences
of each variable.

Ruling out PTAS for hard CSPs 3

Example 1. Given a (multi)graph G = (V,E), the Max k-Cut problem, k ≥ 2,
is the problem of maximising |E′|, E′ ⊆ E, such that the subgraph G′ = (V,E′)
is k-colourable. For k = 2, this problem is known simply as Max Cut. The
problem Max k-Cut is known to be APX-complete for any k (it is Problem
GT33 in [1]), and so has no PTAS. Let Nk denote the binary disequality relation
on {0, 1, . . . , k − 1}, k ≥ 2, that is, (x, y) ∈ Nk ⇐⇒ x 6= y. To see that Max
CSP({Nk}) is precisely Max k-Cut, think of vertices of a given graph as of
variables, and apply the relation to every pair of variables x, y such that (x, y)
is an edge in the graph, with the corresponding multiplicity.

Most of the early results on the complexity and approximability of Max
CSP were restricted to the Boolean case, i.e. when D = {0, 1}. For instance,
Khanna et al. [13] characterise the approximability of Max CSP(Γ) for all
Γ over the Boolean domain. It has been noted that the study of non-Boolean
CSP gives a better understanding (when compared with Boolean CSP) of what
makes CSP easy or hard: it appears that many observations made on Boolean
CSP are special cases of more general phenomena. Recently, there has been some
major progress in the understanding of non-Boolean CSP: Bulatov has provided
a complete complexity classi�cation of the CSP problem over a three-element
domain [3] and also given a classi�cation of constraint languages that contain
all unary relations [2]. Corresponding results for Max CSP have been obtained
by Jonsson et al. [11] and Deineko et al. [8].

It has been conjectured [4] that, for all constraint languages Γ , CSP(Γ) is
either in P or is NP-complete (i.e., it cannot be NP-intermediate), and the
conjecture also speci�es the dividing line between the two cases, by means of
a certain algebraic condition. Moreover, it was shown in [4] that, for all con-
straint languages Γ satisfying this condition, the problem CSP(Γ) is indeed
NP-complete. In this paper we prove that, for such languages Γ , it is NP-hard
to tell instances of Max CSP(Γ) in which all constraints are satis�able from
instances where at most an ε-fraction of the constraints are satis�able (for some
constant ε which depends on Γ). In particular, this implies that, for such Γ , the
problem Max CSP(Γ) cannot admit a PTAS.

We then apply this result to study the case when the constraint language
Γ consist of a single relation R. We show that, for such Γ , Max CSP(Γ) is
either trivial or else does not admit a PTAS. Finally, we use this last result to
strengthen several earlier hardness results obtained in the study of Max CSP
via the algebraic property of supermodularity.

We obtain our results by techniques which are quite di�erent from the ones
used in [8, 11]. In [11] it was proved that constraint languages over a three element
domain which are cores and not supermodular (see Section 5 for a de�nition) give
rise toMax CSP-problems which do not admit a PTAS (it is in fact proved that
they are APX-hard, which implies that they do not admit a PTAS, unless P =
NP). The technique used in [11] is mainly that of strict implementations. With
strict implementations, certain new relations can be constructed from old ones
in a way that preserve the hardness of the corresponding Max CSP-problem.
That is, if Γ is a constraint language which strictly implements a relation R,

4 P. Jonsson, A. Krokhin and F. Kuivinen

then Max CSP(Γ ∪ {R}) is no harder than Max CSP(Γ). This technique can
be used to reduce the huge number of constraint languages to a set of constraint
languages which is easier to reason about. Hardness results for this smaller set
of constraint languages are then obtained from known results.

Let us �x a �nite domain D and let UD be the set of all unary constraints on
D, that is UD = {R | R ⊆ D}. In [8] it was proved that Max CSP(Γ ∪ UD) is
APX-hard (and, therefore do not admit a PTAS) if Γ ∪UD is not supermodular
on any chain (a chain is a lattice which is a total order) on D, and tractable
(in PO) otherwise. The proof of this result uses a characterisation of relations
which are supermodular on some chain together with strict implementations.

In contrast to the two results described above, we obtain the results in the
present paper by quite di�erent means. Our main result is proved by using
perfect implementations and the associated theory of universal algebra. Universal
algebra have previously been successfully used to classify the complexity of CSPs
(we give an overview of this connection in Section 3, see also [4]). By using the
notion of hardness at gap location 1 and working with bounded occurrenceMax
CSP-problems (this was also done in [8]) we manage to prove not only NP-
hardness results, but also the impossibility of a PTAS (unless P = NP). Proofs
of our results are omitted due to space constraints.

2 Preliminaries

A combinatorial optimisation problem is de�ned over a set of instances (admis-
sible input data); each instance I has a set sol(I) of feasible solutions associated
with it, and each solution y ∈ sol(I) has a value m(I, y). The objective is, given
an instance I, to �nd a feasible solution of optimum value. The optimal value is
the largest one for maximisation problems and the smallest one for minimisation
problems.

De�nition 3 (Performance ratio). A solution s ∈ sol(I) to an instance I of
a optimisation problem Π is r-approximate if

max
{

m(I, s)
opt(I)

,
opt(I)
m(I, s)

}
≤ r,

where opt(I) is the optimal value for a solution to I. An approximation
algorithm for an optimisation problem Π has performance ratio R(n) if, given
any instance I of Π with |I| = n, it outputs an R(n)-approximate solution.

De�nition 4 (PTAS). An optimisation problem Π admits a PTAS if, for any
rational constant c > 1, there is an algorithm that, given an instance I of Π,
returns a c-approximate solution in time polynomial in |I|.

De�nition 5 (Hard to approximate). We say that a problem Π is hard to
approximate if there exists a constant c such that it is NP-hard to approximate
Π with performance ratio c.

Ruling out PTAS for hard CSPs 5

Obviously, any problem that is hard to approximate cannot admit a PTAS.
The following notion has been de�ned in a more general setting in [17].

De�nition 6 (Hard gap at location α). Max CSP(Γ) has a hard gap at
location α ≤ 1 if there exists a constant ε < α such that it is NP-hard to
decide if, for a given instance I = (V,C) of Max CSP(Γ), opt(I) ≥ α|C| or
opt(I) ≤ ε|C|.

Note that if a problem Π has a hard gap at location α (for any α) then Π is
hard to approximate. This simple observation has been used to prove inapprox-
imability results for a large number of optimisation problems. See, e.g., [1, 20]
for surveys on inapproximability results and the related PCP theory.

Petrank [17] gave an informal conjecture which states that for �natural� op-
timisation problems hardness at gap location 1 can be used to show hardness
at all other possible gap locations. Sometimes this can be done by a padding
argument. Given an instance I = (V,C) of Max CSP(Γ), we can add fresh
variables V ′ and constraints C ′ to I such that at most a constant fraction ε
of the constraints in C ′ can be satis�ed simultaneously. If we choose C ′ and
V ′ appropriately then we will obtain a proof of hardness at gap location α (for
some α which depends on ε) for Max CSP(Γ). Hence, in this sense hardness at
gap location 1 is a stronger result than hardness at any other gap location. Pe-
trank [17] give further arguments for why hardness at gap location 1 is a natural
and interesting hardness notion.

Throughout the paper, Max CSP(Γ)-k denotes the problem Max CSP(Γ)
restricted to instances where the number of occurrences of each variable is
bounded by k. Note that if a variable occurs t times in a constraint which
appears s times in an instance, then this would contribute t · s to the number of
occurrences of that variable in the instance. The bounded occurrence property
is closely related to bounding the degree in graphs. Re-considering Example 1,
the problem Max CSP({N2})-3 would correspond to Max Cut restricted to
(multi)graphs with maximum degree 3. In our hardness results, we will write
that Max CSP(Γ)-B is hard (in some sense) to denote that there is a k such
that Max CSP(Γ)-k is hard in this sense.

3 Hardness at Gap Location 1 for Max CSP

We will now present the de�nitions and basic results we need from universal
algebra. For a more thorough treatment of universal algebra in general we re-
fer the reader to [5]. The article [4] contains a presentation of the relationship
between universal algebra and constraint satisfaction problems.

An operation on a �nite set D is an arbitrary function f : Dk → D. Any
operation on D can be extended in a standard way to an operation on tuples
over D, as follows: Let f be a k-ary operation on D. For any collection of k
n-tuples, t1, t2, . . . , tk ∈ Dn, the n-tuple f(t1, t2, . . . , tk) is de�ned as follows:

f(t1, t2, . . . , tk) = (f(t1[1], t2[1], . . . , tk[1]), . . . , f(t1[n], t2[n], . . . , tk[n])),

6 P. Jonsson, A. Krokhin and F. Kuivinen

where tj [i] is the i-th component in tuple tj . An operation f : Dk → D is said
to be idempotent if f(d, d, . . . , d) = d for all d ∈ D, and it is called a projection
if there is 1 ≤ i ≤ k such that f(x) = xi, for all x = (x1, x2, . . . , xk) ∈ Dk.

Let Ri be a relation in the constraint language Γ . If f is an operation such
that for all t1, t2, . . . , tk ∈ Ri we have f(t1, t2, . . . , tk) ∈ Ri, then Ri is said to
be invariant under f . If all relations in Γ are invariant under f , then Γ is said to
be invariant under f . An operation f such that Γ is invariant under f is called
a polymorphism of Γ . The set of all polymorphisms of Γ is denoted Pol(Γ). For
a set of operations F , the set of all relations which are invariant under each
operation in F is denoted Inv(F).

Example 2. Let D = {0, 1, 2} and let R be the directed cycle on D, i.e., R =
{(0, 1), (1, 2), (2, 0)}. One polymorphism of R is the operation f : {0, 1, 2}3 →
{0, 1, 2} de�ned as f(x, y, z) = x−y+z (mod 3). This can be veri�ed by consider-
ing all possible combinations of three tuples from R and evaluating f component-
wise.

We continue by de�ning a closure operator 〈·〉 on sets of relations: for any
set Γ ⊆ RD, the set 〈Γ 〉 consists of all relations that can be expressed using
relations from Γ ∪ {EQD} (where EQD denotes the equality relation on D),
conjunction, and existential quanti�cation. Those are the relations de�nable by
primitive positive formulae (pp-formulae) using relations from Γ∪{EQD}. As an
example of a pp-formula consider the relations A = {(0, 0), (0, 1), (1, 0)} and B =
{(1, 0), (0, 1), (1, 1)}, over the boolean domain {0, 1}. With those two relations
we can construct I = {(0, 0), (0, 1), (1, 1)} with the pp-formula I(x, y) ⇐⇒ ∃z :
A(x, z) ∧B(z, y).

The sets of relations of the form 〈Γ 〉 are referred to as relational clones,
or co-clones. An alternative characterisation of relational clones is given in the
following theorem.

Theorem 1 ([18]).

� For every set Γ ⊆ RD, 〈Γ 〉 = Inv(Pol(Γ)).
� If Γ ′ ⊆ 〈Γ 〉, then Pol(Γ) ⊆ Pol(Γ ′).

By using this connection between polymorphisms and relations de�nable by
pp-formulae we obtain the following lemma. This lemma allows us to use some
of the algebraic theory, which is commonly used when studying CSP, to get
hardness results for Max CSP.

Lemma 1. Let Γ be a constraint language and let R be a relation which is
de�nable by a pp-formula using relations from Γ . If Max CSP(Γ ∪ {R})-k has
a hard gap at location 1, then Max CSP(Γ)-k′ has a hard gap at location 1 for
some integer k′.

The notions of a core and a retraction play an important role in the study of
graphs, and they can easily be generalised to constraint languages. A retraction
of a constraint language Γ is a unary polymorphism π ∈ Pol(Γ) such that

Ruling out PTAS for hard CSPs 7

π(x) = x for all x in the image of π. We will say that Γ is a core if the only

retraction of Γ is the identity function. Given a relation R ∈ R
(k)
D and a subset X

of D we de�ne the restriction of R onto X as follows: R
∣∣
X

= {x ∈ Xk | x ∈ R}.
For a set of relations Γ we de�ne Γ

∣∣
X

= {R
∣∣
X
| R ∈ Γ}. If π is a retraction of

Γ with minimal image D′, then a core of Γ is the set Γ
∣∣
D′ . As in the case of

graphs, all cores of Γ are isomorphic, so one can speak about the core of Γ .
The intuition here is that if Γ is not a core, then it has a non-injective retrac-

tion π, which implies that, for every assignment s, there is another assignment
πs that satis�es all constraints satis�ed by s and uses only a restricted set of
values. Hence, the problem is equivalent to a problem over this smaller set.

Lemma 2. If Γ ′ is the core of Γ , then, for any k, Max CSP(Γ ′)-k is hard at
gap location 1 if and only if Max CSP(Γ)-k is hard at gap location 1.

The three de�nitions below closely follows the presentation in [4].

De�nition 7 (Finite algebra). A �nite algebra is a pair A = (A;F) where A
is a �nite non-empty set and F = {fA

i | i ∈ I} is a set of �nitary operations on
A.

We will only make use of �nite algebras so we will write algebra instead of
�nite algebra. An algebra is said to be non-trivial if it has more than one element.

De�nition 8 (Homomorphism of algebras). Given two algebras A = (A;FA)
and B = (B;FB) such that FA = {fA

i | i ∈ I}, FB = {fB
i | i ∈ I} and both fA

i

and fB
i are ni-ary for all i ∈ I, then ϕ : A → B is said to be an homomorphism

from A to B if

ϕ(fA
i (a1, a2, . . . , ani

)) = fB
i (ϕ(a1), ϕ(a2), . . . , ϕ(ani

))

for all i ∈ I and a1, a2, . . . , ani
∈ A. If ϕ is surjective, then B is a homomorphic

image of A.

For an operation f : Dn → D and a subset X ⊆ D we de�ne f
∣∣
X

as the
function g : Xn → D such that g(x) = f(x) for all x ∈ Xn. For a set of
operations F on D we de�ne F

∣∣
X

= {f
∣∣
X
| f ∈ F}.

De�nition 9 (Subalgebra). Let A = (A;FA) be an algebra and B ⊆ A. If
for each f ∈ FA and any b1, b2, . . . , bn ∈ B, we have f(b1, b2, . . . , bn) ∈ B, then
B = (B;FA

∣∣
B

) is a subalgebra of A.

The operations in Pol(Inv(FA)) are the term operations of A. If F consists
of the idempotent term operations of A, then the algebra (A;F) is called the
full idempotent reduct of A, and we will denote this algebra by Ac. Given a set
of relations Γ over the domain D we say that the algebra AΓ = (D;Pol(Γ)) is
associated with Γ . An algebra B is said to be a factor of the algebra A if B is a
homomorphic image of a subalgebra of A. The following theorem concerns the
hardness of CSP for certain constraint languages.

8 P. Jonsson, A. Krokhin and F. Kuivinen

Theorem 2 ([4]). Let Γ be a constraint language and let Γ ′ be its core. If the
algebra Ac

Γ ′ has a non-trivial factor whose term operations are only projections,
then CSP(Γ) is NP-hard.

It has been conjectured [4] that, for any other core languages Γ , the problem
CSP(Γ) is tractable, and this conjecture has been veri�ed in many important
cases (see, e.g., [2, 3]).

Our �rst result, Theorem 3, shows that the problems from the above theorem
are not only NP-hard, but also the corresponding optimisation problems are
hard at gap location 1, which rules out the existence of PTAS for such problems.
By Lemma 2, it is su�cient to prove this for core constraint languages.

Theorem 3. Let Γ be a core constraint language. If Ac
Γ has a non-trivial factor

whose term operations are only projections, then Max CSP(Γ)-B is hard at gap
location 1.

There are four basic ingredients in the proof of Theorem 3. The �rst two are
Lemma 1 and the rather standard use of expander graphs to bound the number
of variable occurrences (see, e.g., Section 8.4.1 of [1]). We also use the following
alternative technical characterisation (obtained in the proof of Proposition 7.9
of [4]) of constraint languages satisfying the conditions of the theorem.

The not all equal relation contains the tuples (0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 1, 0),
(1, 0, 1), and (0, 1, 1), we denote this relation by NAE. We denote set of all sin-
gleton unary relations by CD, that is, for a �nite domain D we have CD =
{{(x)} | x ∈ D}.

Lemma 3. Let Γ be a core constraint language. The following are equivalent:

� The algebra Ac
Γ has a non-trivial factor whose term operations are only

projections.
� There exists a subset B of D and a surjective mapping ϕ : B → {0, 1} such
that the relational clone 〈Γ ∪CD〉 contains the relation ϕ−1(NAE) which is
the full preimage (under ϕ) of NAE.

The �nal ingredient in the proof of Theorem 3 is that the problem Max
Not-All-Equal 3Sat is hard at gap location 1, which was proved in [17].

Note that if CSP(Γ) is tractable, then Max CSP(Γ) cannot be hard at gap
location 1. Hence, if the above conjecture from [4] holds, our result describes all
problems Max CSP(Γ) that are hard at gap location 1.

It is not hard to see that hardness at gap location 1 rules out the existence
of PTAS even when Max CSP(Γ)-B is restricted to satis�able instances (i.e.,
those where all constraints can be simultaneously satis�ed).

Corollary 1. Under the assumptions of Theorem 3, there exists a constant c
(depending on Γ) such that Max CSP(Γ)-B restricted to satis�able instances
cannot be approximated within c in polynomial time (unless P = NP).

The following conjecture has been made by Feder et al. [9].

Ruling out PTAS for hard CSPs 9

Conjecture 1. For any �xed Γ such that CSP(Γ) is NP-complete, there is an
integer k such that CSP(Γ)-k is NP-complete.

Under the assumption that the dichotomy conjecture (that all problems
CSP(Γ) not covered by Theorem 2 are tractable) holds, an a�rmative answer
follows immediately from Theorem 3. So, for all constraint languages Γ such
that CSP(Γ) is currently known to be NP-complete, it is also the case that
CSP(Γ)-B is NP-complete.

4 Approximability of Single Relation Max CSP

A relation R is said to be d-valid if (d, . . . , d) ∈ R for d ∈ D, and simply
valid if it is is d-valid for some d ∈ D. It was proved in [12] that every problem
Max CSP({R}) with R neither empty nor valid isNP-hard. We strengthen this
result by proving that the problems are not only NP-hard but also cannot have
a PTAS. Note that for some Max CSP problems such approximation hardness
results are known, e.g., for Max Cut and Max DiCut (see Example 1). Our
result extends those hardness results to all possible relations.

Theorem 4. Let R ∈ RD be non-empty. If (d, . . . , d) ∈ R for some d ∈ D then
Max CSP({R}) is trivial. Otherwise, Max CSP({R})-B is hard to approxi-
mate.

For a constraint language Γ , let Aut(Γ) denote the permutation group con-
sisting of injective unary polymorphisms of Γ . Recall that a permutation group
G on a set D is called transitive if, for every d, d′ ∈ D, there exists g ∈ G
such that g(d) = d′. A digraph G = (V,E) is said to be vertex-transitive if the
permutation group Aut({E}) is transitive.

After proving a couple of lemmas which reduce the set of relations one needs
to consider to prove Theorem 4, the relations which are left are edge relations of
vertex-transitive digraphs. In [16] the following characterisation of the complex-
ity of the CSP problem for such relations was given. By deriving an algebraic
characterisation of this result we can use Theorem 3 together with certain ideas
and techniques (domain restriction, strict implementation) from [12] to prove
Theorem 4.

Theorem 5 ([16]). Let G = (V,E) be a vertex-transitive digraph which is a
core. If G is a directed cycle, then CSP({E}) is tractable. Otherwise, if G is not
a directed cycle, then CSP({E}) is NP-complete.

Theorem 4 can be used to classify approximability of Max CSP(Γ) for
constraint languages Γ with su�ciently many symmetries. The following result
can be derived from Theorem 4.

Corollary 2. Let Γ be a constraint language such that Aut(Γ) is transitive. If
Γ contains a non-empty relation R which is not d-valid for all d ∈ D, then Max
CSP(Γ) is hard to approximate. Otherwise, Max CSP(Γ) is trivial.

Note that the constraint languages considered in Corollary 2 can be seen as
a generalisation of vertex-transitive graphs.

10 P. Jonsson, A. Krokhin and F. Kuivinen

5 Max CSP and Supermodularity

In this section, we present two results whose proofs make use of Theorem 4.
These results strengthens earlier published results [14, 15] in various ways (e.g.,
they apply to a larger class of constraint languages or they give approximation
hardness instead of NP-hardness).

Recall that a poset P = (D,v) is a lattice if, for every x, y ∈ D, there
exist a greatest lower bound x u y and a least upper bound x t y. The algebra
L = (D;u,t) is a lattice, and x t y = y ⇐⇒ x u y = x ⇐⇒ x v y. We will
write x @ y if x 6= y and x v y. All lattices we consider will be �nite, and we will
simply refer to these algebras as lattices instead of using the more appropriate
term �nite lattices. The direct product of L, denoted by Ln, is the lattice with
domain Dn and operations acting componentwise.

De�nition 10 (Supermodular function). Let L be a lattice on D. A function
f : Dn → R is called supermodular on L if it satis�es,

f(a) + f(b) ≤ f(a u b) + f(a t b) (1)

for all a, b ∈ Dn.

The characteristic function of a n-ary relation R over the domain D is the
function f : Dn → {0, 1} such that f(x) = 1 i� x ∈ R. Call a relation supermod-
ular if its characteristic function is such. The set of all supermodular relations
on a lattice L will be denoted by SpmodL and a constraint language Γ is said
to be supermodular on a lattice L if Γ ⊆ SpmodL.

Supermodularity on lattices plays an important role in the study of Max
CSP, as all known tractable cases of Max CSP(Γ) can be explained via this
property [6, 8, 11, 15].

The next de�nition follows [6].

De�nition 11 (Generalised 2-monotone). Given a poset P = (D,v), a
relation R is said to be generalised 2-monotone on P if

x ∈ R ⇐⇒ ((xi1 v ai1) ∧ . . . ∧ (xis
v ais

)) ∨ ((xj1 w bj1) ∧ . . . ∧ (xjs
w bjs

))

where x = (x1, x2, . . . , xn) and ai1 , . . . , ais
, bj1 , . . . , bjs

∈ D, and either of the
two disjuncts may be empty.

It is not hard to verify that generalised 2-monotone relations on some lat-
tice are supermodular on the same lattice. For brevity, we will use the word
2-monotone instead of generalised 2-monotone.

The following proposition is a combination of results proved in [6] and [14].

Proposition 1.

� If Γ consists of 2-monotone relations on a lattice, then Max CSP(Γ) can
be solved in polynomial time.

Ruling out PTAS for hard CSPs 11

� Let P = (D,v) be a poset, which is not a lattice. If Γ contains all at most
binary 2-monotone relations on P, then Max CSP(Γ) is NP-hard.

We strengthen the second part of the above result as follows:

Proposition 2. Let v be a partial order, which is not a lattice order, on D. If
Γ contains all at most binary 2-monotone relations on v, then Max CSP(Γ)-B
is hard to approximate.

A diamond is a lattice L on a domain D such that |D| − 2 elements are
pairwise incomparable. That is, a diamond on |D| elements consist of a top
element, a bottom element and |D|−2 elements which are pairwise incomparable.
A chain is a lattice with total order. The following proposition is a combination
of results proved in [6] and [15].

Theorem 6. Let Γ contain all at most binary 2-monotone predicates on a lattice
L which is either a chain or a diamond. If Γ 6⊆ SpmodL, then Max CSP(Γ) is
NP-hard.

We can strengthen this result in three ways: our result applies to arbitrary
lattices, we obtain hardness of approximation instead of NP-hardness, and we
get the result for bounded occurrence instances.

Theorem 7. Let Γ contain all at most binary 2-monotone predicates on an ar-
bitrary lattice L. If Γ 6⊆ SpmodL, then Max CSP(Γ)-B is hard to approximate.

Acknowledgements. The authors would like to thank Gustav Nordh for com-
ments which have improved the presentation of this paper. Peter Jonsson is par-
tially supported by the Center for Industrial Information Technology (CENIIT)
under grant 04.01, and by the Swedish Research Council (VR) under grant 621-
2003-3421. Andrei Krokhin is supported by the UK EPSRC grant EP/C543831/1.
Fredrik Kuivinen is supported by the National Graduate School in Computer
Science (CUGS), Sweden.

References

1. G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and
M. Protasi. Complexity and approximation: Combinatorial Optimization Problems
and their Approximability Properties. Springer, 1999.

2. A. Bulatov. Tractable conservative constraint satisfaction problems. In Proceedings
of the 18th Annual IEEE Symposium on Logic in Computer Science (LICS '03),
pages 321�330, 2003.

3. A. Bulatov. A dichotomy theorem for constraint satisfaction problems on a 3-
element set. J. ACM, 53(1):66�120, 2006.

4. A. Bulatov, P. Jeavons, and A. Krokhin. Classifying the complexity of constraints
using �nite algebras. SIAM J. Comput., 34(3):720�742, 2005.

5. S. Burris and H. Sankappanavar. A Course in Universal Algebra. Springer Verlag,
Berlin, 1981.

12 P. Jonsson, A. Krokhin and F. Kuivinen

6. D. Cohen, M. Cooper, P. Jeavons, and A. Krokhin. Supermodular functions and
the complexity of Max CSP. Discrete Appl. Math., 149(1-3):53�72, 2005.

7. V. Dalmau and P. Jeavons. Learnability of quanti�ed formulas. Theor. Comput.
Sci., (306):485�511, 2003.

8. V. Deineko, P. Jonsson, M. Klasson, and A. Krokhin. Supermodularity on chains
and complexity of maximum constraint satisfaction. In European Conference on
Combinatorics, Graph Theory and Applications (EuroComb '05), volume AE of
DMTCS Proceedings, pages 51�56. Discrete Mathematics and Theoretical Com-
puter Science, 2005. Full version available as �The approximability of Max CSP
with �xed-value constraints�, arXiv.org:cs.CC/0602075.

9. T. Feder, P. Hell, and J. Huang. List homomorphisms of graphs with bounded
degrees. Discrete Math., 307:386�392, 2007.

10. P. Hell and J. Ne²et°il. Graphs and Homomorphisms. Oxford University Press,
2004.

11. P. Jonsson, M. Klasson, and A. Krokhin. The approximability of three-valued Max
CSP. SIAM J. Comput., 35(6):1329�1349, 2006.

12. P. Jonsson and A. Krokhin. Maximum H-colourable subdigraphs and constraint
optimization with arbitrary weights. J. Comput. System Sci., 73(5):691�702, 2007.

13. S. Khanna, M. Sudan, L. Trevisan, and D. P. Williamson. The approximability of
constraint satisfaction problems. SIAM J. Comput., 30(6):1863�1920, 2000.

14. A. Krokhin and B. Larose. Maximum constraint satisfaction on diamonds. Tech-
nical Report CS-RR-408, University of Warwick, UK, 2004.

15. A. Krokhin and B. Larose. Maximum constraint satisfaction on diamonds. In Prin-
ciples and Practice of Constraint Programming (CP '05), pages 388�402. Springer,
2005.

16. G. MacGillivray. On the complexity of colouring by vertex-transitive and arc-
transistive digraphs. SIAM J. Discret. Math., 4(3):397�408, 1991.

17. E. Petrank. The hardness of approximation: Gap location. Computational Com-
plexity, 4:133�157, 1994.

18. R. Pöschel and L. Kaluºnin. Funktionen- und Relationenalgebren. DVW, Berlin,
1979.

19. F. Rossi, P. van Beek, and T. Walsh, editors. Handbook of Constraint Programming.
Elsevier, 2006.

20. L. Trevisan. Inapproximability of combinatorial optimization problems, 2004.
arXiv.org:cs.CC/0409043.

