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Abstract. Many combinatorial optimisation problems can be modellgdhte-
ger linear programs. We consider a class of generalisedanfgograms where
the constraints are allowed to be taken from a broader sedlations (instead
of just being linear inequalities). The set of allowed relas is defined using
a many-valued logic and the resulting class of relationsehawovably strong
modelling properties. We give sufficient conditions for whmich problems are
polynomial-time solvable and we prove that they ARX-hard otherwise.

1 Introduction

Combinatorial optimisation problems can often be formedaasinteger programsin
its most general form, the aim in such a program is to assigigérs to a set of variables
such that a set of linear inequalities are satisfied and adigeal function is maximised.
That is, one wants to solve the optimisation problem

max CT.I'

Az >
r €N

whereA is anm x n rational matrixp is a rationain-vector, and: is a rationah-vector.
Itis widely acknowledged that many real-world problems bartonveniently captured
by integer programs. In its general form, integer prograngig NP-complete to solve
exactly [4].

Many restricted variants of the integer programming protdee still fairly expres-
sive and have gained much attention in the literature. Onk gestriction is to restrict
x such thate € {0, 1}"™. This problem, commonly called Mkimum 0-1 PROGRAM-
MING, is still very hard, in fact it iNPO-complete [9]. Another common restriction is
to only allowc to contain non-negative values. Under these restrictibiesgomplexity
and approximability of MxiMum 0-1 PROGRAMMING is very well-studied, cf. [3,
10]. In fact, much is known even if the constraints imposedhgyinequalityAx > b
are replaced by other types of constraints. For instancex MNES is MAXIMUM
0-1 PROGRAMMING with non-negative weights and arbitrary constraints o\er }.
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The approximability of Mix ONES has been completely classified for every Eedf
allowed constraints ovej0, 1} [10].

In this paper, we consider a class of generalised integegranoming problems
where the variable domains are finite (but not restrictedet@valued); and the con-
straints are allowed to be taken from a set of logically defingdations. The set of
relations that we consider is based regular signed logid6], where the underlying
finite domain is a totally-ordered set of integéfs. . ., d}. This logic provides us with
convenient concepts for defining a class of relations witbrngt modelling capabili-
ties. Jeavons and Cooper [8] have proved that any consttambe expressed as the
conjunction of expressions over this class of relations.igadvantage with their ap-
proach is that the resulting set of constraints may by expiiaiéy large (in the number
of tuples in the constraint to be expressed). An improvedrétlym solving the same
problem has been given by Gil et al. [5]. It takes a consthagldtion represented by
the set of all assignments/tuples that satisfies it and ¢sitpypolynomial time (in the
number of tuples) an expression that is equivalent to thggraai constraint.

The complexity of reasoning within this class of logicalbfithed relations has been
considered before in, for example, [2, 8]. However, optatien within this framework
has not been considered earlier. To make the presentatimhesi let Max SoL denote
the maximisation problem restricted to positively weightibjective functions, M
SoL denote the minimisation version of A SoL, and let Max AW SoL denote the
problem without restrictions on the weights (here, AW swfat arbitrary weights).
The reader is referred to Section 2 for exact definitions.

Let R denote the class of relations that can be defined by the megjglaed logic.
Our aim is to, given a subsét of R, classify the complexity of the optimisation prob-
lem when the constraints are restricted to relationg’irfiThus, we parameterise our
problems according to the allowed relations and we deneteettricted problems
SoL(I"), MIN SoL(I"), and Max AW SoL(I).

Our main results are: For these three problems, we give mufficonditions for
when they are polynomial-time solvable and we prove that #re APX-hard other-
wise. We also show that the tractable fragments can be effigieecognised. When a
problem isAPX-hard, then there is a constansuch that the problems cannot be ap-
proximated in polynomial time withia — ¢ for anye > 0 unlessP=NP. A direct con-
sequence is that these problems do not admit polynomia-djoproximation schemes.
This kind of dichotomy results are important in computasiboomplexity since they
can be seen as exceptions to Ladner’s [11] result; he prinegdhere exists an infinite
hierarchy of increasingly difficult problems betweleand theNP-complete problems.
Thus, the existence of a complexity dichotomy for a classroblgms cannot be taken
for granted.

There has been much research on combining integer (lineagragamming and
logic/constraint programming in order to benefit from sy#s of the respective ar-
eas (cf. [7,15]). One approach is to increase the modelingepof integer (linear)
programming by allowing models to contain logic formulasir@ork can be seen as
a crude estimation for the price, in terms of computationahplexity, that comes with
the additional expressive power of such an approach. Oultsesan also be seen as a
first step towards extending the approximability classificafor MAXx ONESin [10]



to non-Boolean domains. One of the observations of [10] was none of the (infi-
nite number) of combinatorial optimisation problems captby Max ONES have a
polynomial time approximation scheme (unl&ssNP). Our results strongly indicates
that the situation remains the same foak ONES generalised to arbitrary finite do-
mains. Our work also complement the recent dichotomy relsidtto Creignou et al. [2]
for the decision version (decide whether there is a solwtoall) of exactly the same
framework that we study in this paper.

Our results are to a certain extent based on recent algefmetivods for study-
ing constraint satisfaction problem$he use of algebraic techniques for studying such
problems has made it possible to clarify the borderline betwpolynomial-time solv-
able and intractable cases. Both our tractability and hessimesults exploit algebraic
techniques — typically, we prove a restricted base case lan éxtend the result to
its full generality via algebraic techniques. To this end, wtroduce the concept of
max-coregwhich is a variant of the algebraic and graph-theoreticepicore).

The paper is structured as follows: Section 2 contains sasie definitions of con-
straint satisfaction and logical methods for constructiogstraint languages. Section 3
presents the methods used for proving the results and the mesilts for the three
problems are presented in Sections 4 and 5. Finally, somauating remarks are given
in Section 6. Due to space limitations, many proofs have be@red to an appendix.

2 Integer programming and logic

We begin by presenting tleonstraint satisfaction probleand how it is connected with
integer programming. We continue by showing how logics carused for defining
relations suited for integer programming.

We define constraint satisfaction as follows: Let thenainD = {0,1,...,d} be
equipped with the total orddr < 1 < ... < d. The set of alln-tuples of elements
from D is denoted byD™. Any subset ofD” is called am-ary relation onD. The set
of all finitary relations ovetD is denoted byRp. A constraint language ovep is a
finite setl” C Rp. Given a relationR, we letar(R) denote the arity oRR. Constraint
languages are the way in which we specify restrictions orpoalslems. The constraint
satisfaction problem over the constraint languagelenoted GP(I"), is defined to be
the decision problem with instan¢&’, D, C'), whereV is a set of variablesD is a
domain, and”' is a set of constraint§C', ..., C,}, in which each constraint; is a
pair (o;, s;) with s; a list of variables of lengthn;, called the constraint scope, apd
anm;-ary relation over the sdb, belonging tal”, called the constraint relation.

The question is whether there exists a solutiofifaD, C) or not, that is, a function
from V' to D such that, for each constraint @, the image of the constraint scope is
a member of the constraint relation. The optimisation pFobive are going to study,
MaXx SoL, can then be defined as follows:

Definition 1. Weighted Maximum Solutioover the constraint languagg, denoted
MAX SoL(I"), is defined to be the optimisation problem with

Instance: Tuple(V, D, C,w), where(V, D, C) is aCspinstance ovel”, andw : V —
N is a weight function.



Solution: An assignmenf : V. — D to the variables such that all constraints are
satisfied.

Measure: > w(v) - f(v)

veV

We will also consider the analogous minimisation problemuNsoL and the problem
Max AW SoL where the weights are arbitrary, i.e., not assumed to benegative.
By choosingl” appropriately, many integer programming problems can bdethed

by using these problems. For instance, the well-known robINDEPENDENT SET
(where the objective is to find an independent set of maximeight in an undirected
graph) can be viewed as thea™ SoL({(0,0), (0,1),(1,0)} problem. Sometimes we
will consider problems restricted to instances where eaclable may occur at most

k times, denoted Mx SoL(I")-k. Next, we consider a framework based on regular
signed logic for expressing constraint languages usinig vhich was introduced by
Creignou et al. in [2].

Let V' be a set of variables. Far € V anda € D, the inequalitiest > o and
x < q are called positive and negative literals, respectivelgladiseis a disjunction of
literals. Aclausal patterris a multiset of the forrP = (+au, ..., +ap, —b1,...,—bg)
wherep, ¢ € N anda;, b; € D for all i. The patternP is said to benegativeif p = 0
andpositiveif ¢ = 0. The surmp + ¢, also denotedP|, is thelengthof the pattern.

A clausal languagd. is a set of clausal patterns. Given a clausal languagen
L-clauseis a pair(P,x), whereP € L is a pattern anc is a vector of not nec-
essarily distinct variables frorif such thatP| = |x|. A pair (P,x) with a pattern
P = (+ay,...,+ap, —b1,...,—by) and variablex = (z1,...,x,+4) represents the
clause(z1 > a1 V... Vxp > ap Vaprr <bi V...Va,ie < by), Wherevis the dis-
junction operator. Arl.-formulay is a conjunction of a finite number d@f-clauses. An
assignmenis a mapping : V — D assigning a domain elemehr) to each variable
x € V andl satisfiesp if and only if (I(z1) > a1 V...V I(zp) > ap V I(2py1) <
b1 V...V I(xpeq) < by) holds for every clause ip. It can be easily seen that the
literals +0 and—d are superfluous since the inequalities> 0 andx < d vacuously
hold. Without loss of generality, it is sufficient to only cder patterns and clausal
languages without such literals. We see that clausal patire nothing more than a
convenient way of specifying certain relations — consetlyewe can also use them
for defining constraint languages. Thus, we make the foligwdefinitions: Given a
clausal languagé and a clausal patter® = (+as, ..., +ap, —b1,...,—by), we let
Rel(P) denote the corresponding relation, i.Bgl(P) = {x € DP*? | (P, x) hold}
andIp = {Rel(P) | P € L}.

Itis easy to see that several well studied optimisation lerob are captured by this
framework.

Example 2.Let the domainD be {0, 1}, then Max SoL((—0,—0)) is exactly Max-
IMUM INDEPENDENTSET, and MIN SoL((+1,+1)) is exactly MNIMUM VERTEX
COVER.



3 Methods

3.1 Approximability and reductions

A combinatorial optimisation probleris defined over a séf of instancegadmissible
input data); each instandec 7 has a finite setol(I) of feasible solutionsissociated
with it. The objective is, given an instanéeto find a feasible solution afptimumvalue
with respect to some measure functian: Z x sol(I) — N. The optimal value is the
largest one fomaximisatiorproblems and the smallest one famimisationproblems.
A combinatorial optimisation problem is INPO if its instances and solutions can be
recognised in polynomial time, the solutions are polyndiytaounded in the input
size, and the measure function can be computed in polyndimial(see, e.g., [1]).

We say that a solution € sol(I) to an instancd of an NPO problemIT is r-

approximate if it is satisfyingnax { ?Fff(f)), fy’;}(?) } < r, whereoprT(I) is the optimal
value for a solution tal. An approximation algorithm for alNPO problem IT has
performance ratioR(n) if, given any instancd of IT with |I| = n, it outputs an
R(n)-approximate solution.

Let PO denote the class dfiPO problems that can be solved (to optimality) in
polynomial time. ANNPO problem!T is in the clas®@PX if there is a polynomial-time
approximation algorithm fo/ whose performance ratio is bounded by a constant.
Completeness iAPX is defined using a reduction calletiP-reduction [3,10]. An
NPO problemII is APX-hard if every problem inAPX is AP-reducible to it. If, in
addition,IT is in APX, thenII is calledAPX-completelt is well-known (and not dif-
ficult to prove) that evenAPX-hard problem isNP-hard. In our proofs it will be more
convenient for us to use another type of approximationgykéisg reduction called.-
reduction [1].

Definition 3. An NPO problemI1; is said to beL-reducibleto anNPO problemI7;
if two polynomial-time computable functiofdsand G and positive constants and-y
exist such that

(a) given any instancé of I1,, algorithm F produces an instanc€ = F(I) of II5,
such that the measure of an optimal solution fgropT(I’), is at most3 - oPT(I);

(b) givenI’ = F(I), and any solutiors’ to I’, algorithm G produces a solutior to
I such thatjmy(I,s) — oPT(I)| < 7 - |ma(I',s") — OPT(I")|, wherem, is the
measure function fofl; andms is the measure function fd.

A well-known fact (see, e.g., Lemma 8.2 in [1]) is thatlif; is L-reducible toll,
andIl; € APX then there is am P-reduction from/I; to I1,. Hence, when proving
APX-hardness results we can useeductions instead of P-reductions as long as the
problem we are reducing from is WPX. It is well-known (cf. [1, Corr. 3.13]) that if
P = NP, then noAPX-complete problem can havePTAS.

3.2 Algebraic framework

An operation onD is an arbitrary functiory : D¥ — D. Any operation onD can be
extended in a standard way to an operation on tuples Byass follows: Letf be ak-
ary operation oD and letR be ann-ary relation ovelD. For any collection of tuples,



t1,t2,...,tx € R, then-tuple f(t1,ta, ..., t) is defined as followsf (t1, . .., tx) =
(f@a[1], ... te[1]), ..., f(t1[n],. .., tx[n])) wheret;[i] is thei-th componentin tuple
t;. If fis an operation such that for all, t2,...,tx € R f(t1,t2,...,tx) € R, then
R is said to be invariant undef. If all constraint relations il are invariant undef
then[ is invariant underf. An operationf such that/" is invariant undeif is called a
polymorphism of". The set of all polymorphisms df is denotedPol(I"). Given a set
of operationg, the set of all relations that is invariant under all the apiens inF' is
denoted/nv(F). Sets of operations of the form Pl are known aglones and they
are well-studied objects in algebra (cf. [13]).

A first-order formulap over a constraint languadeis said to beprimitive positive
(or pp-formula for short) if it is of the forndx : (Ri1(x1) A ... A Rg(xx)) where
Ry,...,R; € I'andxy, . .. ,x; are vectors of variables such that{ R;) = |x;| for all
. Note that a pp-formula with m free variables defines an-ary relationkR C D™,
denotedR =,,, ¢; the relationR is the set of alin-tuples satisfying the formula.

We define a closure operatidn such that? € (I') if and only if the relationR can
be obtained fromi” by pp-formulas. The following lemma states thank SoL over
finite subsets ofI") is no harder than Mx SoL over I’ itself. The lemma provides
a strong approximation preserving reduction (sometimésd&-reduction) which is
simultaneously al P- and L-reduction and preserves membership in approximations
classes such &0 andAPX.

Lemma 4. Let " and I’ be finite constraint languages such that C (I'). If MAX
SoL(I") isinPO, thenMAx SoL(I")isinPOandifMAx SoL(I") is APX-hard then
MaAXx SoL(I") is APX-hard.

Proof. We give an approximation preserving reduction fromMSoL(I") to MAX
SoL(I"). Consider an instancé = (V, D, C,w) of MAX SoL(I"”). We transform/
into an instance’(I) = (V/, D, C’,w") of MAX SoL(I"). For every constraint’ =
(R, (v1,...,vm)) In I, R can be represented as

E'vm+1,...,z|vn : Rl(vu,...,vlm)/\-u/\Rk(vkl,...,vknk)

whereRy,..., Ry € ' U{=p}, vm+1,-..,v, are fresh variables, and1, . .., v1y,,

V21, .- Vkn, € {v1,...,0,}. Replace the constraift with the constraint$Ry, (v11,

ce s Ung )y e ooy (Rigy (Wk1s - -+ Vkiny, )y @ddop 41, ..., v, 0V, and extendo so that
Um+1, - - - Up are given weigho. If we repeat the same reduction for every constraint in
C it results in an equivalent instance ofAM SoL(I" U {=p}).

Each equality constraint can be removed by identifyingalzlgs that are forced to
be equal, replacing them with a single variable, and updatie weight functionw
accordingly. The resulting instand&I) = (V’, D,C’,w’) of MAax SoL(I") has the
same optimum ag (i.e., opT(/) = OPT(F(I))) and can be obtained in polynomial
time. Now, given a feasible solutiott for F'(I), let G(I, s) be the feasible solution
for I where: The variables ifi assigned by’ inherit their value frons’; the variables
in I which are still unassigned all occur in equality constraiand their values can
be found by simply propagating the values of the variableglvhave already been
assigned. It should be clear thatl, G(I,s")) = m(F(I), s') for any feasible solution
s’ for F(I). Hence, the functiong’ andG, as described above, is an approximation
preserving reduction from X SoL(I") to Max SoL(I'). O



The lemma above obviously holds also fonNMSoL and Max AW SoL. Also note
the following consequence: if andl" are finite constraint languages such that) =
(I'), then Max SoL(I") isAPX-hard (inPO) if and only if MAX SoL(I"") is APX-hard
(in PO).

The next lemma simplifies some of the forthcoming proofs &mgrioof is easy.
Lemmab. LetP = (4a1, +az, ..., +ap, —b1,...,—by) and P, = (4+a1, + min{as,
.., apt, —bi, ..., —bg). Then,APX-hardness oMAX SoL(I'p,) implies theAPX-
hardness oMAX SoL(I'p). Similarly, if P, = (+au,...,+ap, —b1, —max{bs, ...,
be}), thenAPX-hardness oMAx SoL(I'p,) impliesAPX-hardness oMAX SoL(Ip).
The same results also holds fghn SoL andMAX AW SoL.

For a relationR = {(d11,...,d1m),---,(d,-..,dwn)} @and a unary operatiofy,

Ietf(R> denOte the relatiojﬁ(R) = {(f(d11)7 ceey f(dlm))7 ey (f(dtl)a ey f(dt’m))}
Similarly, let f(I") denote the constraint languafg(R) | R € I'}.

Lemma 6. Let I" be a finite constraint language ové) and f a unary operation in
Pol(I') such thatf(d) > dforall d € D. If Max SoL(f(I")) is APX-complete, then
Max SoL(I") isAPX-hard, and ifMAX SoL(f(I")) isinPO, thensoiMAx SoL(I").

Proof. We prove that Mx SoL(f(I")) is L-reducible to Max SoL(I"). Given an in-
stancel = (V,D,C,w) of MAX SoL(f(I")) we let F(I) = (V,D’,C’,w) be the
instance of Mix SoL(I") where every constraint relatiof{ R;) occurring in a con-
straintC; € C has been replaced hy;. Given a solutions’ of F'(I), let G(1,s’) be
the solutions of I wheres(xz) = f(s'(x)) for each variable:. Sincef € Pol(I") and
f(d) > dforalld € D,we have thabPT(I) = oPT(F(I)) andopPT(I)—m(G(I,s’) <
OPT(F(I)) — m(s'). As for the other direction, we can give a reduction simitattte
one above from Mx SoL(I") to MAX SoL(f(I")) mapping optimal solutions back to
optimal solutions. Hence, if Mx SoL(f(I")) isinPO, thensois Mx SoL(I"). O

The concept of a core of a constraint langudgbas previously shown its value
when classifying the complexity of C$P). We define a related concept forA
SoL(I") and call itmax-core

Definition 7. A constraint languagd™ is a max-core if and only if there is no non-
injective unary operatiorf in Pol(I") such thatf(d) > d for all d € D. A constraint
languagel ™ is a max-core of " if and only if I’ is a max-core and” = f(I") for some
unary operationf € Pol(I") such thatf(d) > dforall d € D.

The next lemma follows directly from Lemma 6.

Lemma 8. If I'" is a max-core of " and ifMAx SoL(I") is APX-complete, the AX
SoL(I") is APX-hard and ifMAX SoL(I™) is in PO then so isMAax SoL(I').

4 Approximability of MAX SoL

In this section present sufficient conditions for whemSoL is tractable and prove
that it isAPX-hard otherwise. To do so, we need a family of operatians,, : D? —
D, u € D, defined such that

(a,b) = u if max(a,b) <wu
axula, o) = max(a,b) otherwise



Theorem 9. MAX SoL(I;) is tractable if 'y, is invariant undemax,, for someu €
D. OtherwiseMAX SoL(I;,) is APX-hard.

We divide the proof into three parts which can be found in iBast4.1-4.3.

4.1 Tractability result

Before we can prove the tractability of A& SoL(Inv(max,,)), we need to introduce
some terminology: Lek = (z1,...,2,) be a list ofr variables and lefR, x) be a
constraint orx. For any sublisk’ = (z;,, ... x;, ) of x, define therojectionof (R, x)
ontox’, denotedry (R, x), as follows:mx/ (R, x) = {assignments to (z;,,...,zi,) |
(R, (x1,...,2,)) has a solution)}. A Cspinstance is said to bpair-wise consistent
if for any pair of constraint$R, x), (R, y), mxny (R, X)) = mxny (R, y))-

Lemma 10. If Iy, is invariant undemax,, for someu € D, thenMAx SoL(I) isin
PO.

Proof. We begin by observing that if;, is invariant undemax,,, thenl;, is also invari-
ant under the unary operatiafz) = max, (x, ) (satisfying the conditiom(z) > ).
Hence, by Lemma 6, Mx SoL(I7) is in PO if MAx SoL(I7}) is in PO where
u(I'y) = I';. Now, I'; contains no tuple with an elemeat< u and hence; is
invariant undemax (since it is invariant undemax, andmax, acts asnax on ele-
ments> u). Hence, it is sufficient to give a polynomial-time algonittsolving Max
SoL(I']) for max-closed constraint languagé$ . This algorithm is a straightforward
modification of the polynomial-time algorithm for C&Rw(maxp)) presented in [8].

Let/ = (V,D,C,w) be an instance of kx SoL(I7 ). Assume! to be pair-wise
consistent. Iff contains the empty constraint, thémas no solution. Otherwise, define
f:V — Dsuchthatf (z;) = max{n,,((R,x)) | (R,x) € C},i.e.,f assignsto each
variable the maximum value it is allowed by any constrairg.&&im that thisf is a so-
lution to I. Consider any constraiiR?, x) where, say for simplicityx = (z1, ..., x.).
For each variable:;, we must have some tupte € R such thatt;[j] = f(z;) by
pair-wise consistency and the choicefofSinceR is closed undemax, the maximum
of all these tuples belong tB. This maximum tuple equalsf(z1), ..., f(z,)) and f
satisfies the constraint.

Assume now that there exists a functigh: V' — D such thatf’ satisfies all
constraints irC' and """, w(z;) - f'(z;) > > i, w(x;) - f(z;). Sincew(z;) > 0 for
everyz; € V, this implies that there exists at least one variahlsuch thatf’(x;) >
f(z;). However, this is impossible by the choicefof

To conclude the prooff can be constructed i®0(|C|%a?) time (wherea is the
maximum arity of the constraints i) by Corollary 4.3 in [8]. O

4.2 APX-hardness results

We will show that wheneveP is a negative pattern containing at least two literals, then
Max SoL(Rel(P)) is APX-hard. We begin by presenting afX-hardness result for
the patterr{—0, —1) over the domairD = {0, 1, 2}. The reduction is based on the well
knownAPX-complete maximisation problem Ak -E3SaT-5:



Instance: SetU of variables, collectior of disjunctive clauses containing exacly
literals each, and where each variable occurs at mbstes.

Solution: A truth assignment fot/.

Measure: Number of clauses satisfied by the truth assignment.

Lemma1l. LetD = {0,1,2} andr = {(z,y) € D? | x <0V y < 1}, Then MAX
SoL(r)-11 is APX-complete.

Proof. Membership inAPX follows from the fact that the all- assignment is &-
approximation. We provAPX-hardness by giving d&-reduction (withd = 14 and

~v = 1) from MAX-E33AT-5 to MAax SoL(r). The reduction relies on the following
‘gadget’: LetV = {4, B,C,a,b,c} be a set of variables and impose the following
constraints:

r(A,B),r(B,C),r(C,A),r(A,a),r(B,b),r(C,c).

One can see thatax{)_ ., M(v) | M is a satisfying assignment= 7 and the opti-
mum appears if and only if exactly one df B, C is assigned the value

Let I be an arbitrary Mx-E3SaT-5 instance withn clauses”, .. ., C,,. Construct a
Max SoL(r) instanceF'(I) = (X, D, C,w) as follows:

1 1 1 1 1 1 m m m .m ,.m ., m
X ={X}, X5, X5,27, 25,23, ..., X{", X" X o, aft x5},

w(z) = 1forallz € X, and introduce a gadget o}, X3, X34, 2%, 2%, z% (as defined
above) for each clause; = {I%,13,1i}. Finally, the clauses are connected by adding
the constraints(X}, X ) andr(X%, X?) whenevei! = -7,

By well-known arguments, at least half of the clauses in ataimce of MX-
E3SaT-5 can be satisfied s < 20pPT(I). We also know thabpPT(F(I)) < Tm
since each gadget corresponding to a clause contributessat no the measure of any
solution toF'(I). It follows thatopPT(#(1)) < 14 - oPT(/) and we can choose = 14.

Now, givenF'(I) and a solutiors to F'(I), let s’ = G(F(I), s) be the solution to
I (the instance of Mx-3SaT) defined as followss’(z) = true if there exists a literal
I =z ands(X}) = 2, s'(v) = false if there exists a literal; = ~z ands(X}) = 2,
ands’(xz) = false for all other variables:. First we note that’(x) is well-defined; any
two contradictory literals are prevented from being assifthe same truth value by the
constraints introduced in the last step in the construaifafi(7).

We will show thatopT(I) — m(I,s") < oPT(F(I)) —m(F(I),s) andy = 1lisa
valid parameter in thé&-reduction. We begin by showing thabT(F'(I)) — opPT(I) >
6m. If oPT(I) = k, i.e., k clauses (but no more) can be satisfied, then each of the
satisfied clauses contains a true Iitel!;'alln each of the satisfied claus€s we choose
one true literal (sag/j») and assigr2 to the corresponding variabJ’éj in the correspond-
ing gadgetG; (on variableq X{, X3, X4, 1, x4, 2}) in F(I). Assignl to 2, 2 to the
other twoz® variables, and to the two unassigned ® variables. In each gadgét;
corresponding to an unsatisfied cladde(in oPT(I)), assign0 to all the X/ variables
and2 to all thex’ variables. The resulting solution #6(7) shows that

OPT(F(I)) > Tk+6(m—k)=k+6m



andopT(F(I)) — oPT(I) > 6m sincek = oPT(I). Assume now that
oPT(I) —m(I,s) > OPT(F(I)) — m(F(I),s"),

or, equivalentlym(F(I),s") — m(I,s) > 6m. Itis easy to reach a contradiction from
this sooPT(I) — m(I,s) < OPT(F(I)) — m(F(I),s’) andy = 1 is a valid parameter
in the L-reduction. Also note that no variable occurs more thatimes in the resulting
instancef’(I) of MAX SoL(r). O

By combining the notion of max-cores and Lemma 11, we cangd®X-hardness
for all negative patterns of length at least two:

Lemma 12. If (—¢1,...,—ci) € L, k > 2,thenMAx SoL(I;,) is APX-hard.

4.3 Proof of Theorem 9

Proof. Arbitrarily choose a clausal languade If a pattern(—c;, —ca, ..., —ck), k >

2, exists inL, then Max SoL(I) is APX-hard by Lemma 12. Hence, we can assume
that for eachP € L such thajP| > 2, it holds thatP contains at least one positive
literal. If all patterns inL are of length 1, then Mx SoL(I;) is tractable sincd, is
invariant under the operationax. Thus, we assume thatcontains at least one pattern
of length strictly greater than one. Let

uw=min{max U | U C D is definable by a pp-formula ovéf; }

Let+ be a pp-formula defining the s&t i.e.,U(x) = 3x : ¢(z;x) andmax U = u. If
there exists a pattef@¥-as, ..., +ap, —b1,...,—bq), ¢ > 2, anda; > u for all ¢, then
there is a pp-formula that implements the relatiel((—b1, ..., —by)):

(ylgbl\/...\/ngbq)zpp
Jz:(z>aV...Vz>a,Vyn <bi V... Vy, <by) A U(z)

so Max SoL(I) is APX-hard by Lemmata 4 and 12. If this is not the case, then
we show thatl;, is invariant undeinax, and, by Lemma 10, that Mx SoL(I) is
tractable. Arbitrarily choose a pattedd € L. If |[P| > 2, then we have two cases:
Assume first that? = (+aq,...) for somea; < w. Sincemax,(a,b) > wu for all
choices oty, b, Rel(P) is invariant undemax,, . Otherwise P = (+as, . .., +ap, —b1)
anda; > u for all i. We see that; > u by the definition ofu sinceRel((—b;)) can be
implemented by a pp-formula:

(i <b)=pIz:(z>a1V...Vz>a,Vy <b) AU(2)

Arbitrarily choose two tuple§ts, . . ., tp11), (th, . . ., 1, 1) from Rel(P). If there exists
at;, 1 < i < p, such that; > a;, then(maxu(tl,t’l),...,maxu(tp+1,t;,+1)) is in
Rel(P). The situation is analogous if there exists;al < ¢ < p, such that, > a;.
Assume now that for all < i < p,¢; < a; andt; < a;. This implies that, ., < b;
andty,; < by If max(tpi1,t,,1) < u, thenmax, (tp41,t,,1) = v and Rel(P) is
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invariant undemax, sinceby > . If max(t,41,t,,1) > u, thenmax, (t,41,t,,1) =
max(t,1,t,,1) @ndRel(P) is invariant undemax, also in this case.

We are left with the unary patterns in Assume thal® = (+r) for somer; in this
case,Rel(P) is trivially invariant undetnax,,. If P = (—r), thenr must satisfyr > u
by the definition ofu. Arbitrarily choose two elements b € (—r). If max(a,b) < u,
thenmax,, (a, b) = v andRel(P) is invariant undemax,, sincer > w. If max(a, b) >
u, thenmax,, (a, b) = max(a, b) andRel(P) is invariant undemax,, . O

By inspecting the previous proof, we see that a constraimguage!, is closed
undermax,, v € D, if and only if each patterr? € L satisfy at least one of the
following conditions: (1)P = (+a1,...) anda; < u; (2) P = (+a1,...,+ap, —b1),
ai,...,ap > u, andb; > u; (3) P = (+a); or (4) P = (—a) anda > u. This makes
it easy to check whether Mk SoL(I'.) is tractable or not: test if the condition above
holds for some: € D. If so, MAX SoL(I;) is tractable and, otherwise, A% SoL (1)
is APX-hard by Theorem 9. Obviously, this test can be performedlgnomial time
in the size ofL and D. A simple algorithm that is polynomial in the size B! also
exists, but note thalt;, can be exponentially larger thdnand D.

5 Approximability of MIN SoL and MAx AW SoL

We now turn our attention to the two problemaMSoL (i.e., the minimization ver-
sion of Max SoL) and Max AW SoL (i.e., MAX SoL without the restriction of non-
negative weights). We see, for instance, thanMsoL((+1,+1)) (over the domain
D = {0, 1}) is the same problem as the minimum vertex cover problem.

Obviously, the tractability results for Mx SoL can be transferred to theIM SoL
setting with only minor modifications: If;, is invariant undemin,, for someu € D,
then MiN SoL(Ip) is inPO. The operationsin, andmax,, are symmetrically defined.
By combining this with certain hardness results, one caxeptioe following:

Theorem 13. MIN SoL(I,) is in PO if Iy, is invariant undenmnin,, for someu € D.
Otherwise MIN SoL(I7,) is APX-hard.

Note that it easy to check whethenSoL(I.) is tractable or not: the algorithm is
similar to the algorithm for checking tractability of Ax SoL(I).

We continue by presenting sufficient and necessary comditfor tractability of
MAX AW SoL.

Theorem 14. MAX AW SoL(I,) isin POIf Iy, is invariant under bothnax andmin.
Otherwise MAX SoL(I,) is APX-hard.

The tractability part is based on supermodular optimisafiz}] while the inap-
proximability results are proved by appropriate redudifnom Max SoL and MIN
SoL.

! The size of a constraint languagieover domainD is roughly>" . - |R| - log |D| - ar(R).
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6 Conclusions and Open Questions

We have presented dichotomy results for the approximglofiM AX SoL, MIN SoL,
and Max AW SoL when they are restricted to constraint languages expréssegu-
lar signed logic. The results were partly obtained by exjpigicertain algebraic meth-
ods that have previously not been widely used for studyingrogation problems.

One way to extend this work is to provide a more fine-grainegr@aamability
analysis of these problems. In the case of boolean domaiok,an analysis has been
performed by Khanna et al. [10]; they prove that for any cea€ allowed relations,
the problem is either (1) polynomial-time solvable, £ X-complete, (3poly-APX-
complete, (4) finding a solution of measure > 0l8-hard; or (5) finding any solution is
NP-hard. Another venue for future research would be investitiee approximability of
MaXx (AW) SoL(I") for arbitrary finite domain constraint languageési.e., constraint
languages not necessarily expressed by regular signed logi
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A Proof of Lemma 12

The proof of Lemma 12 is based on Lemmas 15 and 16.
Lemma 15. If (—a, —b) € L wherea < b, thenMAX SoL(I)-11 is APX-complete.

Proof. Let d = max D and recall thatt < b < d. Membership inPAPX follows from
the fact that the alb-assignment is % < d approximate solution.
As for APX-hardness, first consider the operatjoan D defined as follows:

a fzx<a,
fley=<q¢b ifa<z<b
d ifb<z<d.

Itis readily verified thalf € Pol(R), f(x) > « forallz € D, and thatR’ = f(R) is a
max-core. More specifically,

R' ={(a,a),(a,b), (b,a), (b,b), (a,d),(d,a),(d,b)}.

We know from Lemma 8 that Mx SoL(R) is APX-hard if MAX SOL(R') is
APX-complete. Hence, to prove thatA® SoL(R) is APX-hard, it is sufficient to
prove that Max SoL(R') is APX-complete. We give atL-reduction (with parame-
ters@ = d andy = 1) from the APX-complete problem Mx SoL(r)-11, where
r = {(0,0),(0,1),(0,2),(1,0),(1,1),(2,0),(2,1)} is the relation in Lemma 11, to
MAX SoL(R/).

Given an instancé of MAax SoL(r), let F'(I) be the instance of Mx SoL(R’)
where all occurrences ofhas been replaced /. For any feasible solutiosi for F'(I)
let G(1,s") be the solution foff where all variables assignedare instead assignéd
all variables assignefilare instead assigndd and all variables assignedare instead
assigne®. We havepprT(F(I)) < d-opPT(I) and

oPT(I) —m(I,G(I,s")) < oPT(F(I)) — m(F(I),s),

hences = d andy = 1 are valid parameters in thereduction. Thus, Mx SoL(I7,)
is APX-hard when—a, —b) € L anda < b. 0

We prove the next lemma by a reduction from &f@X-complete problem independent
set restricted to graphs of maximum degid&6].

Instance: Undirected graple: = (V, E') with maximum degre8.
Solution: A setV’ C V such that for alb, w € V’, (v,w) ¢ E.
Measure: Cardinality of V.

We may also, without loss of generality, assume that thelgrapder consideration do
not contain any isolated vertices.

Lemma 16. MAX SOL(I{_q,—q))-3 is APX-complete even if all weights equil
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Proof. We begin by showing membershipAPX. Let! = (V, D, C, w) be an arbitrary
instance of M\X SOL(I{_,,—q))-3 such that all weights equaland letd = max D. If
a > 0, then the all-1 assignment isdaapproximation of. If a = 0, then construct a
graph(V, E') where(v,v') € E if and only if (Rel((—0, —0), (v,v"))) € C. Clearly,
oPT(I) = d - |M| whereM C V is an independent set {i of maximum size. Since
the graph is of maximum degre®, the independent set problem can be approximated
within 4/3 in polynomial time [12, Theorem 13.7] andA% SoL(I'_,, _,))-3 can be
approximated withintd/3.

We continue by showingPX-hardness: consider the following operatipon D:

a ifzx<a,
flx) = {d otherwise.

It can be seen that € Pol(R), f(z) > x forall x € D, and thatR’ = f(R) =
{(a,a),(a,d), (d,a)} is a max-core. We know from Lemma 8 thataM SoL(R) is
APX-hard if Max SoL(R') is APX-complete. Hence, to prove thatAM SoL(R) is
APX-hard, it is sufficient to prove that Mk SoL(R’) is APX-hard.

We give anL-reduction (with3 = 4b andy = ;1) from the APX-complete
problem NDEPENDENTSET-3 to MAX SoL(R’). Given an instancé = (V, E) of IN-
DEPENDENTSET-3, let F'(I) = (V, D, C, w) be the instance of Mx SoL(R’) where,
for each edgév;, v;) € E, we add the constrai®’(x;, z;) to C and let all variables
have weightl. For any feasible solutios for F'(I), let G(I, s") be the solution fod
where all vertices corresponding to variables assigrinds” form the independent set.
We have|V|/4 < opT(I) andoPT(F(I)) < b|V| soOPT(F(I)) < 4bopT(I). Thus,
[ = 4bis an appropriate parameter.

Let K be the number of variables being sebtim an arbitrary solutios’ for F'(I).
Then,

|oPT(I) —m(I,G(I,s"))| = oPT(I) — K
and

|OPT(F (1)) — m(F(I),s")] = (b—a)(oPT(I) — K)
o)

|oPT(I) — m(I,G(I,s")| = % - |oPT(F(I)) — m(F(I),s")]

—a

andy = ;L is an appropriate parameter. THigreduction ensures thatAk SoL(R’)
is APX-hard.

By combining Lemma 5 with either Lemma 15 or Lemma 16, we saedh nega-
tive patterns of length at least 2 are hard and Lemma 12 issgrov

B Approximability of MIN SoL

We prove that MN SoL(I") is APX-hard unlesd" is invariant undeinin,, for some
u € D.
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Lemma 17. Let (P, x) be the constraint
(.%’1 >a1V---Vax; Zap\/aciﬂ Sbl\/---\/mj qu)
and let(P, x) be the constraint
(.%’1 <d—-a1V---Vu Sd—apvxi+1 Zd—bl\/---\/mj Zd—bq)

whered = max D. Then, an assignmestsatisfieg P, x) if and only if (P, x) is satis-
fied bys wheres(x) = d — s(z) for all z € x.

Proof. To realise this, assume without loss of generality #iat) > a; (i.e.,s satisfies
(P, x) by fulfilling z; > a41), which is equivalent to-s(z;) < —ay (ord — s(z;) <
d — a1) and hence satisfies(P,x) by satisfyingz; < d — a;. The other direction
works analogously. a

In the next proof, we will exploit the minimum vertex coveoptem.

Instance: Undirected vertex-weighted gragh= (V, E, w).

Solution: A vertex cover forG, i.e., a subset” C V such that, for each edde, v) €
E, atleast one of, andv belongs to/”.

Measure: Weight of the vertex cover, i.€},, ., w(v).

Lemma 18. MIN SOL(I (44, 44))-11 is APX-complete.

Proof. We begin by showing membership APX. Let I = (V, D, C,w) be an arbi-
trary instance of NN SoL (/4 ++)) and assume that> a. Now, construct a vertex-
weighted grapl{V, E,w) where(v,v") € E if and only if (Rel((—0, —0), (v,v"))) €
C. Clearly,|M|-b > oPT(I) whereM C V is a vertex cover ifiz of minimum weight.
The minimum weight vertex cover problem is approximablehimi2 [17] which im-
plies that MN SOL(I(44 ++)) is approximable withir2b.

We continue with the hardness result. ldet= max D, R = Rel((+a, +b)), and
R = Rel((—(d — a), —(d — b)). We give anL-reduction from Mxx SoL(R) to MIN
SoL(R) with parameterg3 = 12d andy = 1. If a # b, then MAX SOL(R) is
APX-complete by Lemma 15 and if = b, then Max SoL(R)-3 is APX-complete
by Lemma 16. Hence, we provaPX-hardness by ai.-reduction from either Mx
SoL(R) or MAX SoL(R)-3 depending om andb.

Given an instancd = (V, D, C,w) of either Max SoL(R) or MAX SOL(R)-
3 where all variables have weight let #'(I) be the instance of Mi SOL(I' 4, 44))
where all occurrences @ are replaced by and all variables are given weightGiven
a solutions to F'(I) let G(1, s) be the solution td defined as followsG(I, s)(z) =
d— s(z) for all variablesr. Consider an arbitrary constraifit = (z; < a1 Vz; < b1),
then, by Lemma 17, an assignmensatisfiesC; if and only if the assignmert =
G(I, S), satisfiei_'i = (mi >d—a1 V T; >d— bl)

Since no variable occurs more thahntimes inI we haveoprT(/) > % OPT(F(I))
< 12d-oPT(I), andg = 12d is a valid parameter in the-reduction. Moreover, given
a solutions to F'(I), we havem(F(I),s) = |V|d — m(I,G(I,s)). Furthermore, we
haveopT(F'(I)) = |V|d — oPT(I). By these identities, it follows that:

oPT(I) — m(I,G(1,s)) = |V|d—oPT(I) — (|V|d —m(I,G(I,s))) =

15



=m(F(I),s) — oPT(F(I)),

and|oPT(I) — m(I,G(I,s))| < |oPT(F(I)) — m(F(I),s)|. Thus,y = 1 is a valid
parameter in thé-reduction. a

Lemma 19. If (4+b1,...,+b,) € L andg > 2, thenMIN SoL(I7,) is APX-hard.
Proof. APX-hardness follows from Lemmata 5 and 18. O

The proof of the main theorem for M SoL(I.) is analogous to the corresponding
proof for MAx SoL([,) and is therefore omitted.

Theorem 20. MIN SoL(I,) is in POif Iy, is invariant undennin,, for someu € D.
Otherwise MIN SoL(I,) is APX-hard.

C Approximability of MAX AW SoL

In this section, we give sufficient conditions for the tranility of M AX AW SoL and
prove that it iSAPX-hard otherwise.

Theorem 21. MAx AW SoL (1) isin POIif Iy, is invariant under bothnax andmin.
Otherwise MAX SoL(I7,) is APX-hard.

The tractability part is proved in Section C.1 and the renmgiparts can be found in
Section C.2

C.1 Tractability results

The polynomial-time algorithm is based on supermodulaingipaition so we begin by
giving some preliminaries. A partial order on a Sétis called alattice if every two
elementsa,b € X have a greatest common lower bound1 b (meet) and a least
common upper bound ! b (join). Then every lattice can be considered as an algebra
L = (X, N, ) with operations meet and join.

A function f : X — R is said to besupermodulaon L if

f(@)+ f(b) < f(alb)+ f(aUb)

foralla,b € L. A function f is calledsubmodulaif the reverse inequality holds, and
modularif it is both super- and submodular (that is, the above inktyuia an equality).

Given a finite sel’/, aring family is a collection) of subsets of/ such thai) is
closed under intersection and union. Clearly, every rimgilfais a lattice.

Theorem 22. [14]2 LetV be a ring family over a finite sét and letf : V — R be
a polynomial-time computable supermodular function onlétiice (V, N, U). Assume
the following is known:

2 The results are presented as the equivalent problem of risinigna submodular function. See
also [19].
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1. for eachv € V, the maximal sebd/,, in V that contain (if any);
2. the maximal set/ in V.

Then, the set* € V that maximiseg can be found in polynomial time.
Lemma 23. MAX AW SoL(I7,) isin POIf Iy, is invariant under bothnax andmin.

Proof. Let I = (X, D, C,w) be an instance of Mx AW SoL(I.), wherel is in-

variant under bothmax andmin, andV = {z1,...,z,}. Consider the lattic&. =
(L,n,U) whereL C Z" are the solutions td and for everya = (aq,...,a,),b =
(bl,...,bn) €L,

aMb = (min(ay,b1),...,min(a,, b))
and
alUb = (max(ai,b1), ..., max(ay,, by)).

We also see that the functigh: D™ — Z defined such that
flay,. ... z,) = Zwi T
=1

is modular (and consequently supermodular)®rArbitrarily choosea = (a4, ...,
an),b = (b1,...,b,) € Landnote thatax(a;, b;)+min(a;, b;) = a;+b;, 1 <i < n.
Consequently,

n

f(anb)+ flaub) = (w; - min(a;, b;) + w; - max(a;, b;)) =

— Zw “(a;i +b;) = f(a) + f(b).

Finally, we construct a ring family that represent§. We choosé” = {(i,d) | 1 <
i <n, d € D} as base set and an elemant (ay,...,a,) € Lis represented by

0{(i,d) |d e Dandd < a;}.

i=1

Itis easy to see that corresponds to intersection ando union. For each = (i,d) €

V', we can in polynomial time (remember thaM SoL(I/nv(max) is a tractable prob-
lem) find the maximal elemeni/,, € V containingv as follows: Solve the Mx SoL
instancel’ = (X, D, C,w’) wherew'(z;) = 1 andw(z) = 0 wheneverz # z;. If
w'(oPT(I")) < d, thenM, = oPT(I') and, otherwise)/, is undefined. Similarly, the
maximal element iV can be found in polynomial time. Consequently, Theorem 22 is
applicable and the result follows by noting th&t = n - | D). O

Supermodular maximisation over Boolean max- and min-dasmstraints has been
considered in other contexts, cf. [18].
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C.2 Proofof Theorem 14

In this section we begin by provingPX-hardness results for all clausal languages
containing a clause with at lea&tpositive or2 negative literals. Finally, we note that
the remaining clausal languages are tractable by the #igoin the preceding section.

Lemma 24. If (—c1,...,—cp,+d1, ..., +dy) € Landp > 2, thenMAX AW SoL(I;)
is APX-hard.

Proof. If ¢ = 0, then the result immediately follows from Lemma 12 so we assu
thatg > 1. Letc = ¢1, d = max(ca, ..., cx) ande = min(ds, ..., d,). By applying
Lemma 5, we see that it is sufficient to prove the result forcttrestraint languagé =
{(=¢,—d, +e)}. If ¢ # d, then MAX SOL(I_.,_q)) is APX-complete by Lemma 15
and if ¢ = d, then MAX SoL(I'_. _q4))-3 is APX-complete by Lemma 16. Hence,
we give anL-reduction from either MX SOL(I(_. _q)) Or MAX SOL(I(_. _a))-3
depending or andd.

If ¢ # d, thenletl = (V, D, C,w) be an arbitrary instance of Mk SoL(I'_., _a))
and, otherwise, lef = (V, D, C,w) be an arbitrary instance of Mk SOL(I_. _4))-
3. We assume without loss of generality thatx) = 1 for all z € V. Assume that
V = {x1,...,2,}. We compute an instancB(I) = (V',D,C’,w") of MAX AW
SoL(Iy) as follows:

—letY = {y1,...,yc|} be aset of fresh variables and et = V U Y,

—let ¢' = {(Rel((—c¢,—d,+e)), (zi,z;,yx)) | for eacher, € C wherec, =
(Rel((—c¢, =d)), (i, 2;))}; and

— letw'(x) = —2max D if x € Y andw(z) = 1 otherwise.

We first note thabpT(F'(I)) > oPT(I) since any solutios to I can be extended
to a solutions’ to F/(I) (of the same measure) by assigningo all they variables.
FurthermoreppPT(F(I)) < oPT([) since there is an optimal solutiehto F'(I) such
thats’(y) = 0 for all y € Y, and hence this solution restricted to thevariables
is a solution forl. This follows from the following observation: If is an optimal
solution for F(I) ands(y) > 0 (y € Y), then construct a new solution as follows:
Let (Rel((—c¢, —d, +e)), (zi, z;,y)) be the unique constraint whegeappears. Now,
construct a modified solutiosf such thats’(z) = s(z) if z € V' — {z;,z;,y} and
s'(z;) = §'(z;) = s'(y) = 0 otherwise. It is easy to see thitis still a feasible
solution, and, furthermore, that

m(F(I),s") =m(F(I),s) — s(x;) — s(z;) + 2max D - s(y) >
>m(F(I),s) —2max D+ 2max D - s(y) =
=m(F(I),s)+2maxD - (s(y) — 1) > m(F(),s)

HenceoPT(F(I)) = opT(I) andg = 1 is a valid parameter in the-reduction.

Now, given an arbitrary solutiosf to F(I), letG(I, s") be the solution td where
G(1,s")(z;) = 0if z; occurs in a constrair®; andy; > 0, andG(I, s")(x;) = s'(x;)
otherwise. By the same argument as above it is easy to vhsty t

oPT(I) —m(I,G(I,s")) < oPT(F(I)) — m(F(I),s).

Hence;y = 1 is a valid parameter in the-reduction. a

F(
£(
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Lemma25. If P = (+b1,...,+b,) € L andq > 2, thenMAXx AW SoL(I7}) is
APX-hard.

Proof. By Lemma 5, we may without loss of generality assume that 2 and P =
(+b, +c). Now, letD = {0,1,...,d}, b = by, R = Rel((+b,+c)), andR = Rel(
(—(d—b), —(d—c))). We give aL-reduction from Max SoL(R) to MAX AW SoL(I7,)
with parameterg = 1 and~y = 1.

If b # ¢, then Max SoL(R) is APX-complete by Lemma 15 and #f = ¢, then

MAX SoL(R)-3 is APX-complete by Lemma 16. Hence, we prcdBX-hardness by

an L-reduction from either Mx SoL(R) or MAx SoL(R)-3 depending otb andc.
Given an instancé = (V, D, C,w) of MAX SOL(R) (or MAX SoL(R)-3) where
all variables have weight, let F'(I) be the instance of kx AW SoL(I;) where all
occurrences oR are replaced by? and all variables are given weightl. Given a
solutions to F(I), let G(I, s) be the solution td' defined as followsG(I, s)(x) =

d — s(z) for all variablesz. Consider an arbitrary constrai@it in the instance’(I):
C; =:($1 >bVay > C)

By Lemma 17 the assignmentatisfiesC; if and only if the assignmert = G(1, s),

satisfiesC; = (r; < d — bV x5 < d — c). Moreover, given any solutionto F'(I), we
havem(F(I),s) = m(I,G(1,s)) — |V|d sooPT(F(I)) = opPT(I) — |V|d and thus
B = 1is a valid parameter in the-reduction. By these identities we have:

oPT(l) — m(I,G(I,s)) = oPT(I) — |V|d — (m(I,G(I,s)) — |VI|d)
= OPT(F(I)) — m(F(I),s),

and|oPT(I) — m(I,G(I,s))| < |oPT(F(I)) — m(F(I),s)|. Thus,y = 1is a valid

parameter in thé.-reduction. a
Lemma 26. If (—aq, ..., —ap, +b1,...,+by) € Landg > 2, thenMAX AW SoL(Iy)
is APX-hard.

Proof. If p = 0, then the result follows from Lemma 25 andpif> 2, then the result
follows from Lemma 24 so we can assume that 1. By Lemma 5, it is sufficient to
consider the constraint languagie= {(—a, +b, +¢)}.

To prove that M\x AW SoL(I;,) is APX-hard, we will give aL-reduction from
APX-complete problem M SOL (I +4¢))-11. Given an instancé = (V, D, C,w)
of MIN SOL(I{45,+c))-11 (where all variables have weightand D = {0, ..., d}), let
F(I) = (V',C",D,w') be the instance of MX AW SOL(I{_q4,15,+c)) WhereV’ =
VUY andY = {y; | C; € C}, and all constraint&, = (Rel((+b, +c)), (zi,x;))
have been replaced yRel((—a, +b, +c¢)), (y&, zi, ;). Moreover, letw'(z) = —1
forallz € V andw'(y) = 2d forally € Y. We see that

m(F(I),s) =2d- Y s(y)— Y s(x).

yey zeV

It is easy to verify thabPT(F(I)) = 2d?|Y| — oPT(I). To see this, assume thais
an optimal solution td*'(I) wheres(y) < d for avariabley € Y. Let(y < a V z; >
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bvz; > c) be the unique constraint wheyeppears. Now construct a modified solution
s’ such thats’(z) = s(z) if z € V' \ {y,zi,x;}, s(z;) = s(z;) = d, ands(y) = d.
Obviouslys’ is a solution taF'(I) and

m(F(I),s") = m(F(I), s) + 2d(d — 5(y)) — (2d — s(2;) — s(x;)) = m(F(I),s)

so there is an optimal solution #6(7) such that is assigned to alt” variables. Thus,
any optimal solutiors to I yields an optimal solutior’ to F'(I) by lettings’(y) = d
forally € Y ands’(x) = s(z) for all variables inV. We note thabpT(F (1)) =
2d2|Y| — oPT(I).

Since no variable if occurs more thaml times, we haveprT(I) > |V|/12 and
the number of constraints ihis at most"XlY! (i.e.,|v| < 1Y), SinceopT(F (1)) =
2d2|Y | — oPT(I), we haveorT(F(I)) < 24> - YY1 — op1(1), and using the fact that
oPT(I) > |V|/12 gives usoPT(F (1)) < 132d? - oPT(I). Thus,3 = 1324* is a valid
parameter in thé.-reduction.

Given a solutiors to F'(I), let G(I, s) be the solution td defined asG(I, s)(z) =
d if 2 occursin a constraint together withy &ariable such that(y) < d, andG(I, s)(z)
= s(x) otherwise. We prove that(I,G(I,s)) — oPT(I) < oPT(F(I)) — m(F(I), s)
and hencey = 1is a valid parameter in the-reduction. Let” = {y € Y | s(y) < d}
and note thatY”| < d|Y'| — >_, .y s(y). By the definition ofG/(Z, s), we know thatd
is assigned to all variablesthat occur in an equation together with a variajpligom
Y’. Denote the set of all such variables Ky. By the definition ofG(1, s) and the fact
that|X'| < 2|Y’|, we have,

m(I,G(I,s)) =d[X'|+ Y s@)<2dy|+ Y s@).

zeV\X' zeV\X'

It follows that
m(I,G(I,s)) —oPT(I) <
2d|Y'|+ Y s(x)—opT(I) <

zeV\X'
2d|Y'| + Z —oPT(I) <
zeV
2|V —2d Y s(y)+ > s(x) — oPT(I
yey zeV
OPT(F(I)) —m(F(I), )
andy = 1 is a valid parameter in the-reduction. O

We are left with the case when every patté¥in L contains at most one positive and
at most one negative literal. By Jeavons and Cooper [8, Eme&r2], if P is a pattern
that contains at most one positive literal, theel (P) is invariant undemax. Similarly,
Rel(P) is invariant undemin if P contains at most one negative literal. Thusai
AW SoL(I7},) is polynomial-time solvable by Lemma 23. We also note thaegia
clausal languagé, it is obvious how to check (in polynomial time) whethemb AW
SoL (1) is polynomial-time solvable or not.
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