
Introduction to the Maximum Solution Problem

Peter Jonsson1 and Gustav Nordh2

1 Department of Computer and Information Science, Linköpings Universitet
S-581 83 Linköping, Sweden

petej@ida.liu.se
2 Laboratoire d’Informatique, École Polytechnique

F-91128 Palaiseau, France
nordh@lix.polytechnique.fr

Abstract. This paper surveys complexity and approximability results
for the Maximum Solution (Max Sol) problem. Max Sol is an opti-
misation variant of the constraint satisfaction problem. Many important
and well-known combinatorial optimisation problems are instances of
Max Sol: for example, Max Sol restricted to the domain {0, 1} is ex-
actly the Max Ones problem (which, in turn, captures problems such
as Independent Set and 0/1 Integer Programming). By using this
relationship, many different problems in logic, graph theory, integer pro-
gramming, and algebra can be given a uniform treatment. This opens
up for new ways of analysing and solving combinatorial optimisation
problems.

1 Introduction

A large number of natural optimisation problems can be viewed as instances of
the Maximum Solution (Max Sol) problem. In this survey, we will describe
the problem and present complexity and approximability results. This section
provides the formal definition together with some background information. Some
additional material on approximability and universal algebra can be found in
Section 2. All results for Max Sol on Boolean domains are collected in Section 3.
In order to familiarise the reader with the basic tools, Section 3 also contains
a derivation of new, sharper inapproximability bounds for the Boolean Max
Sol problem. Sections 4–9 contain results for the Max Sol problem on non-
Boolean domains; the examples come from many different areas such as logic,
graph theory, and algebra. To make the survey more readable, we devote the
first of these sections to two general tractability results. The Max Sol problem
is compared to other optimisation formalisms in Section 10, and some open
questions are posed in Section 11.

1.1 Background and basic assumptions

We introduce Max Sol by first considering the well-known Max Ones prob-
lem [35]: an instance of Max Ones consists of constraints applied to a number

of Boolean variables, and the goal is to find an assignment that satisfies all con-
straints while maximising the number of variables set to 1. The only difference
between Max Ones and Max Sol is that we do not require the domain of the
variables to be Boolean—the domain of the variables in Max Sol are allowed to
be any subset of the natural numbers, and the objective is to find an assignment
that satisfy all the constraints and that maximise the sum of the variables. We
parameterise the problem according to the set of allowed constraint types, i.e.
for any set Γ of relations, Max Sol(Γ) denotes the set of problems where the
constraint types are restricted to Γ . The main goal of this survey is to present
complexity and approximability results for Max Sol(Γ) under different choices
of Γ .

Let us now take a look at the maximisation problem Integer Program-
ming:

Instance: m × n matrix A of rationals, m-vector b of rationals, and n-vector c
of rationals.

Solution: An n-vector x of integers such that Ax ≥ b and x ≥ 0;

Measure: cT x.

Obviously, one can view the integer programming problem as a Max Sol(Γ)
problem for a certain constraint language Γ over the integers. However, we will
restrict ourselves to a certain subclass of Max Sol problems in this survey;
in fact, this class do not contain Integer Programming. The restrictions
we encompass are two finiteness conditions: we only consider finite domains
and finite constraint languages. This enables us to use algebraic techniques for
studying Max Sol.

The finiteness conditions do not prevent us from capturing interesting prob-
lems, though. It is easy to see that Max Sol over the domain {0, 1} captures, for
instance, Max Independent Set (problem GT23 in [2]), and certain variants
of Max 0/1 Programming (problem MP2 in [2]). There are also many inter-
esting non-Boolean Max Sol problems: examples include problems in integer
programming [25], multiple-valued logic [33], and equation solving over Abelian
groups [36].

Only considering finite constraint languages may seem quite restrictive but,
in many cases, it is not. Consider for instance integer programming over the
bounded domain {0, . . . , d − 1}, i.e., the size of the domain is bounded by a
constant but the length of the inequalities are not. Each row in the constraint
matrix can be viewed as an inequality

a1x1 + a2x2 + . . . + akxk ≥ b.

Obviously, such an inequality is equivalent to the following three inequalities

a1x1 + a2x2 + . . . + a⌊k/2⌋x⌊k/2⌋ − z ≥ 0
−a1x1 − a2x2 − . . . − a⌊k/2⌋x⌊k/2⌋ + z ≥ 0

z + a⌊k/2⌋+1 + . . . + akxk ≥ b

where z denotes a fresh variable that is given the weight 0 in the objective
function. By repeating this process, one ends up with a set of inequalities where
each inequality contains at most three variables, and the optimal solution to
this instance have the same measure as the original instance. There are at most
2d + 2d2

+ 2d3

different relations (and thus inequalities) of length ≤ 3 on a
d element domain. Since the size of the domain is constant, we have reduced
the problem to one with a finite constraint language. Finally, this reduction is
polynomial-time: each inequality of length k in the original instance give rise to
at most 3⌈log2

k⌉ = O(k2) inequalities and at most O(k2) new variables.
The restriction to finite domains appears to be more problematic since it

provably excludes certain prominent problems (such as unbounded Integer
Programming). There has been some efforts lately in order to make the al-
gebraic framework applicable to infinite-domain problems [4]. To the best of
our knowledge, such extended methods have not been applied to the Max Sol
problem.

1.2 Formal definition

Let us now formally define Max Sol: let D ⊂ N (the domain) be a finite set.
The set of all n-tuples of elements from D is denoted by Dn. Any subset of
Dn is called an n-ary relation on D. The set of all finitary relations over D
is denoted by RD. A constraint language over a finite set, D, is a finite set
Γ ⊆ RD. Constraint languages are the way in which we specify restrictions on
our problems. The constraint satisfaction problem over the constraint language
Γ , denoted Csp(Γ), is defined to be the decision problem with instance (V,D,C),
where

– V is a set of variables,
– D is a fixed finite set of values (sometimes called a domain), and
– C is a set of constraints {C1, . . . , Cq}, in which each constraint Ci is a pair

(si, Ri) where si is a list of variables of length mi, called the constraint
scope, and Ri is an mi-ary relation over the set D, belonging to Γ , called
the constraint relation.

The question is whether there exists a solution to (V,D,C) or not, that is, a
function from V to D such that, for each constraint in C, the image of the
constraint scope is a member of the constraint relation. To exemplify this def-
inition, let NAE be the following ternary relation on {0, 1}: NAE = {0, 1}3 \
{(0, 0, 0), (1, 1, 1)}. It is easy to see that the well-known NP-complete problem
Not-All-Equal 3-Sat can be expressed as Csp({NAE}).

The optimisation problem that we are going to study, Weighted Maximum
Solution(Γ) (which we abbreviate Max Sol(Γ)) is defined as follows:

Instance: Tuple (V,D,C,w), where D is a fixed finite subset of N, (V,D,C) is
a Csp(Γ) instance, and w : V → N is a weight function.

Solution: An assignment f : V → D to the variables such that all constraints
are satisfied.

Measure:
∑

v∈V

w(v) · f(v)

Note that in the definition of the Max Sol(Γ)) problem, the domain D is part of
the input even though it is implicitly defined by the constraint language Γ . From
a complexity point of view, this does not matter since the domain is defined to
be a fixed finite set and the size of the domain is constant.

We illustrate this definition with a simple example:

Example 1. Consider the domain D = {0, 1} and the binary relation R =
{(0, 0), (1, 0), (0, 1)}. Then, Max Sol({R}) is exactly the weighted Max In-
dependent Set problem.

Several related problems can be defined along the same lines, e.g. Min Sol
where the objective is to minimise

∑

v∈V w(v) · f(v) and Max AW Sol where
we allow the weight function w to be a function from V to the integers Z. The
Boolean variants of these problems have been studied earlier [30, 35]. Note that
for Boolean constraint languages Γ , the Max Sol(Γ) problem is usually denoted
Max Ones(Γ).

There are several aspects of the definition of Max Sol that can be discussed.
Below, we consider two points that have been questioned and/or criticised in the
past.

I. Choice of measure function. Note that our choice of measure function in
the definition of Max Sol(Γ) is just one of several reasonable choices. Another
reasonable alternative, used in [36], would be to let the domain D be any finite
set and introduce an additional function g : D → N mapping elements from the
domain to natural numbers. The measure could then be defined as

∑

v∈V w(v) ·
g(f(v)). This would result in a parameterised problem Max Sol(Γ, g) where
the goal is to classify the complexity of Max Sol(Γ, g) for all combinations of
constraint languages Γ and functions g. Note that our definition of Max Sol(Γ)
is equivalent to the definition of Max Sol(Γ, g) if in addition g is required to be
injective. Our main motivation for the choice of measure function is to stay close
to integer programming and Max Ones. However, we will use the alternative
definition when studying equations over Abelian groups in Section 7.

II. Weighted vs. unweighted problems. We remark that we do not deal
explicitly with the unweighted version of the problem (in the unweighted version,
all variables have weight 1). The correspondence, in terms of approximability,
between the weighted and unweighted versions of the problem has already been
discussed in depth [13, 35]. In summary, Khanna et al. [35] prove that if Max
Sol(Γ) is in poly-APX, then hardness results (for the weighted version) implies
the corresponding hardness results for the unweighted version. The basic idea of
the proof is to simulate weights by replication of variables.

Moreover, since all tractability results for Max Sol(Γ) (that we are aware
of) hold for the weighted version of the problem, it should be clear that the
classifications we report here also hold for the unweighted version of the Max

Sol(Γ) problem. But, in general, it is still open whether tractability for the un-
weighted version implies tractability of the weighted version of the Max Sol(Γ)
problem. The correspondence between unweighted and weighted problems does
not hold if negative weights are allowed [30].

1.3 Methods

The complexity and approximability of Max Ones(Γ) are completely known for
all choices of Γ [35]. For any Boolean constraint language Γ , Max Ones(Γ) is
either in PO or is APX-complete or poly-APX-complete or finding a solution
of non-zero value is NP-hard or finding any solution is NP-hard. The exact bor-
derlines between the different cases are given in [35]. For larger domains, it seems
significantly harder to obtain an exact characterisation of approximability than
in the Boolean case. Such a characterisation would, for instance, show whether
the dichotomy conjecture for constraint satisfaction problems is true or not –
a famous open question which is believed to be difficult [16]. Hence, it seems
reasonable to study restricted (but as general as possible) families of constraint
languages where the complexity and approximability can be determined. In do-
ing so, the algebraic approach appears to be indispensable. When the algebraic
approach is applicable to a certain problem, there is an equivalence relation on
the constraint languages such that two constraint languages which are equivalent
under this relation have the same complexity. More specifically, two constraint
languages are in the same equivalence class if they generate the same relational
clone. The relational clone generated by Γ , captures the expressive power of Γ
and is denoted by 〈Γ 〉. Hence, instead of studying every possible finite set of
relations it is enough to study the relational clones.

The algebraic approach is known to be applicable to Max Sol. In fact, it is
known that constraint languages Γ1 and Γ2 such that 〈Γ1〉 = 〈Γ2〉, then Max
Sol(Γ1) S-reduces to Max Sol(Γ2), and vice-versa. An S-reduction is a certain
strong approximation-preserving reduction: if 〈Γ1〉 = 〈Γ2〉, then Γ1 and Γ2 are
very similar with respect to approximability. For instance, if Max Sol(Γ1) is
NP-hard to approximate within some constant c, then Max Sol(Γ2) is NP-
hard to approximate within c, too. We note that the clone-theoretic approach
was not used in the original classification of Max Ones.

2 Preliminaries

The purpose of this section is to provide a brief overview of approximability
and the algebraic approach. We refer the reader to [2] for a deeper treatment of
approximability and to [7, 41] for a deeper treatment of the algebraic approach.

2.1 Approximability, reductions, and completeness

A combinatorial optimisation problem is defined over a set of instances (admis-
sible input data); each instance I has a finite set sol(I) of feasible solutions

associated with it. Given an instance I and a feasible solution s of I, m(I, s)
denotes the positive integer measure of s. The objective is, given an instance I,
to find a feasible solution of optimum value with respect to the measure m. The
optimal value is the largest one for maximisation problems and the smallest one
for minimisation problems. A combinatorial optimisation problem is said to be
an NPO problem if its instances and solutions can be recognised in polynomial
time, the solutions are polynomially bounded in the input size, and the objective
function can be computed in polynomial time (see, e.g., [2]).

We say that a solution s ∈ sol(I) to an instance I of an NPO problem Π is
r-approximate if it is satisfying

max

{

m(I, s)

opt(I)
,
opt(I)

m(I, s)

}

≤ r,

where opt(I) is the optimal value for a solution to I. An approximation algo-
rithm for an NPO problem Π has performance ratio R(n) if, given any instance
I of Π with |I| = n, it outputs an R(n)-approximate solution.

We define PO to be the class of NPO problems that can be solved (to
optimality) in polynomial time. An NPO problem Π is in the class APX if
there is a polynomial-time approximation algorithm for Π whose performance
ratio is bounded by a constant. Similarly, Π is in the class poly-APX if there
is a polynomial-time approximation algorithm for Π whose performance ratio is
bounded by a polynomial in the size of the input. Completeness in APX and
poly-APX is defined using appropriate reductions, called AP -reductions and
A-reductions, respectively [12, 35]. AP -reductions are more sensitive than A-
reductions and every AP -reduction is also an A-reduction [35]. In this paper we
will not need the added flexibility of A-reductions for proving our poly-APX-
completeness results. Hence, we only need the definition of AP -reductions.

Definition 2. An NPO problem Π1 is said to be AP -reducible to an NPO
problem Π2 if two polynomial-time computable functions F and G and a constant
α exist such that

(a) for any instance I of Π1, F (I) is an instance of Π2;
(b) for any instance I of Π1, and any feasible solution s′ of F (I), G(I, s′) is a

feasible solution of I;
(c) for any instance I of Π1, and any r ≥ 1, if s′ is an r-approximate solution

of F (I) then G(I, s′) is an (1 + (r − 1)α + o(1))-approximate solution of I
where the o-notation is with respect to |I|.

In some cases we will use another kind of reduction, S-reductions. They are
defined as follows:

Definition 3. An NPO problem Π1 is said to be S-reducible to an NPO prob-
lem Π2 if two polynomial-time computable functions F and G exist such that

(a) given any instance I of Π1, algorithm F produces an instance I ′ = F (I) of
Π2, such that the measure of an optimal solution for I ′, opt(I ′), is exactly
opt(I).

(b) given I ′ = F (I), and any solution s′ to I ′, algorithm G produces a solution
s to I such that m1(I,G(s′)) = m2(I

′, s′), where m1 is the measure for Π1

and m2 is the measure for Π2.

Obviously, the existence of an S-reduction from Π1 to Π2 implies the existence
of an AP -reduction from Π1 to Π2. The reason why we need S-reductions is
that AP -reductions do not (generally) preserve membership in PO [35]. We also
note that S-reduction preserve approximation thresholds exactly for problems in
APX: let Π1,Π2 be problems in APX, assume that it is NP-hard to approx-
imate Π1 within c, and that there exists an S-reduction from Π1 to Π2. Then,
it is NP-hard to approximate Π2 within c, too.

2.2 Algebraic approach

We begin by giving a number of basic definitions. An operation on a finite set
D (the domain) is an arbitrary function f : Dk → D. Any operation on D can
be extended in a standard way to an operation on tuples over D, as follows: let
f be a k-ary operation on D and let R be an n-ary relation over D. For any
collection of k tuples, t1, t2, . . . , tk ∈ R, the n-tuple f(t1, t2, . . . , tk) is defined as
follows: f(t1, t2, . . . , tk) = (f(t1[1], t2[1], . . . , tk[1]), f(t1[2], t2[2], . . . , tk[2]), . . . ,
f(t1[n], t2[n], . . . , tk[n])), where tj [i] is the i-th component in tuple tj . A tech-
nique that has been shown to be useful in determining the computational com-
plexity of Csp(Γ) is that of investigating whether the constraint language Γ is
invariant under certain families of operations [28].

Now, let Ri ∈ Γ . If f is an operation such that for all t1, t2, . . . , tk ∈ Ri

f(t1, t2, . . . , tk) ∈ Ri, then Ri is invariant (or, in other words, closed) under f .
If all constraint relations in Γ are invariant under f then Γ is invariant under f .
An operation f such that Γ is invariant under f is called a polymorphism of Γ .
The set of all polymorphisms of Γ is denoted Pol(Γ). Given a set of operations
F , the set of all relations that are invariant under all the operations in F is
denoted Inv(F). Whenever there is only one operation under consideration, we
write Inv(f) instead of Inv({f}).

We will need a number of operations in the sequel: an operation f over D is
said to be

– a constant operation if f is unary and f(a) = c for all a ∈ D and some
c ∈ D;

– a majority operation if f is ternary and f(a, a, b) = f(a, b, a) = f(b, a, a) = a
for all a, b ∈ D;

– a binary commutative idempotent operation if f is binary, f(a, a) = a for all
a ∈ D, and f(a, b) = f(b, a) for all a, b ∈ D;

– an affine operation if f is ternary and f(a, b, c) = a− b + c for all a, b, c ∈ D
where + and − are the binary operations of an Abelian group (D,+,−).

Example 4. Let D = {0, 1, 2} and let f be the majority operation on D where
f(a, b, c) = a if a, b and c are all distinct. Furthermore, let

R = {(0, 0, 1), (1, 0, 0), (2, 1, 1), (2, 0, 1), (1, 0, 1)}.

It is easy to verify that for every triple of tuples, x,y,z ∈ R, we have f(x,y,z) ∈
R. For example, if x = (0, 0, 1),y = (2, 1, 1), and z = (1, 0, 1), then

f(x,y,z) =

(

f(x[1],y[1],z[1]), f(x[2],y[2],z[2]), f(x[3],y[3],z[3])

)

=

(

f(0, 2, 1), f(0, 1, 0), f(1, 1, 1)
)

= (0, 0, 1) ∈ R.

We can conclude that R is invariant under f or, equivalently, that f is a poly-
morphism of R.

We sometimes need to define relations in terms of other relations, using
certain logical formulas. In doing so, the algebraic approach provides a convenient
tool. A first-order formula φ over a constraint language Γ is said to be primitive
positive (or pp-formula for short) if it is of the form

∃x : (R1(x1) ∧ . . . ∧ Rk(xk))

where R1, . . . , Rk ∈ Γ and x1, . . . ,xk are vectors of variables such that the arity
of Ri equals the length of the vector xi for all i. Note that a pp-formula φ with m
free variables defines an m-ary relation R ⊆ Dm, denoted R ≡pp φ; the relation
R is the set of all m-tuples satisfying the formula φ.

We continue by defining a closure operation 〈·〉 on sets of relations: for any
set Γ ⊆ RD the set 〈Γ 〉 consists of all relations that can be expressed using
relations from Γ ∪ {=D} (=D is the equality relation on D), conjunction, and
existential quantification, i.e. 〈Γ 〉 is the set of all relations that can be expressed
via pp-formulas over Γ . The sets of relations of the form 〈Γ 〉 are referred to as
relational clones. There is a very strong connection between a relational clone
〈Γ 〉 and the operators that Γ is invariant under:

Theorem 5 ([37]). For every set Γ ⊆ RD, 〈Γ 〉 = Inv(Pol(Γ)).

The following result shows that the algebraic approach is applicable when
studying the approximability of Max Sol(Γ):

Theorem 6 ([33]). Let Γ be a constraint language and Γ ′ ⊆ 〈Γ 〉 finite. Then,
Max Sol(Γ ′) is S-reducible to Max Sol(Γ).

The concept of cores has been important when studying the complexity of
Csp; a constraint language is a core if every unary polymorphism is injective
(i.e. a permutation). We will use a related concept (that was introduced in [33])
when studying Max Sol.

Definition 7. A constraint language Γ is a max-core if and only if there is no
non-injective unary operation f in Pol(Γ) such that f(d) ≥ d for all d ∈ D. A
constraint language Γ ′ is a max-core of Γ if and only if Γ ′ is a max-core and
Γ ′ = f(Γ) for some unary operation f ∈ Pol(Γ) such that f(d) ≥ d for all
d ∈ D.

The constraint language {R} where R = {(0, 0), (1, 1), (2, 1), (1, 2)} is not a
max-core since it admits a unary polymorphism f : {0, 1, 2} → {0, 1, 2} defined
such that f(0) = 1, f(1) = 1, and f(2) = 2. It is easy to see that {R′} is a
max-core of {R} where R′ = {(1, 1), (2, 1), (1, 2)}.

Lemma 8 ([33]). If Γ ′ is a max-core of Γ , then Max Sol(Γ) and Max
Sol(Γ ′) are polynomial-time equivalent.

3 Boolean domain

The Max Sol(Γ) problem over Boolean constraint languages Γ goes under the
name Max Ones(Γ) and the approximability for every finite Boolean constraint
language has been classified by Khanna et al. in [35]. Before stating this result,
we recall the following standard restrictions on Boolean constraint languages
(see, e.g. [12]).

Definition 9.

– Γ is 0-valid if (0, 0, . . . , 0) ∈ R for every relation R in Γ ,
– Γ is 1-valid if (1, 1, . . . , 1) ∈ R for every relation R in Γ ,
– Γ is Horn if every relation R in Γ is the set of models of a CNF formula

having at most one unnegated variable in each clause,
– Γ is dual Horn if every relation R in Γ is the set of models of a CNF formula

having at most one negated variable in each clause,
– Γ is bijunctive if every relation R in Γ is the set of models of a CNF formula

having at most two literals in each clause,
– Γ is affine if every relation R in Γ is the set of models of a system of linear

equations over GF (2), the field with two elements,
– Γ is width-2 affine if every relation R in Γ is the set of models of a system of

linear equations over GF (2) in which each equation has at most 2 variables.

Theorem 10 ([35]). Given a constraint language Γ over the Boolean domain
{0, 1},

– if Γ is 1-valid or dual-Horn or width-2 affine, then Max Sol(Γ) is in PO;
– otherwise if Γ is affine, then Max Sol(Γ) is APX-complete;
– otherwise if Γ is Horn or bijunctive, then Max Sol(Γ) is poly-APX-

complete;
– otherwise if Γ is 0-valid, then finding a solution of positive measure is NP-

hard;
– otherwise finding a feasible solution to Max Sol(Γ) is NP-hard.

We remark that Khanna et al.’s proof of the preceding theorem does not make
use of the algebraic approach via relational clones. The bulk of their proof is
spent on showing numerous explicit implementations/reductions between differ-
ent constraint languages. The advantage of using the algebraic approach is that
there is no need to deal with these implementations/reductions explicitly.

In fact, it is quite easy to strengthen Khanna et al.’s result and give tight
approximability thresholds for Max Sol(Γ) over Boolean constraint languages.

Theorem 11. Given a constraint language Γ over {0, 1},

– if Γ is 1-valid or dual-Horn or width-2 affine, then Max Sol(Γ) is in PO;
– otherwise if Γ is affine, then Max Sol(Γ) is 2-approximable but not ap-

proximable to within 2 − ε for any ε > 0 unless P=NP;
– otherwise if Γ is Horn or bijunctive, then Max Sol(Γ) is approximable to

within O(|V |) but not to within O(|V |1−ε) for any ε > 0 unless P = NP;
– otherwise if Γ is 0-valid, then finding a solution of positive measure is NP-

hard;
– otherwise finding a feasible solution to Max Sol(Γ) is NP-hard.

All the bounds except the 2 − ε hardness for affine constraint languages (that
are not 1-valid) and the O(|V |1−ε)-hardness for Horn and bijunctive constraint
languages are proved in (or easily follows from) [35]. The 2−ε hardness for affine
constraint languages consisting of relations expressed by equations on the form

{x1 + · · · + xk = c (mod 2) | k even, c ∈ {0, 1}}

follows from a more general result due to Kuivinen [36]. The proof in [36] consists
of a gap preserving reduction from the problem Max-E3-Lin-2. Max-E3-Lin-2
is the following problem: given a set of equations over Z2 with exactly three
variables per equation, satisfy as many equations as possible. It is proved in [26]
that it is NP-hard to approximate Max-E3-Lin-2 within 2 − ε for any ε > 0.

The remaining affine constraint languages that need to be classified consist
of relations expressed by equations on the form

{x1 + · · · + xk = 0 (mod 2) | k ∈ N}.

The 2 − ε hardness for these constraint languages can be proved by modifying
the corresponding reduction in [36]. For more details, please consult [32].

The O(|V |1−ε)-hardness for Horn and bijunctive constraint languages (that
are neither 1-valid, nor dual-Horn, nor affine) may seem trivial at first sight since
Theorem 6 together with the inclusion structure among Boolean relational clones
tells us that there is an S-reduction from Max Independent Set to Max Sol
over any such constraint language. But please keep in mind that S-reductions
do not (in general) preserve instance size. For example, if Max Sol(Γ1) is
NP-hard to approximate within O(|V |) and there is an S-reduction from Max
Sol(Γ1) to Max Sol(Γ2) which blows up the instance size by a quadratic factor.
Then, this only implies that Max Sol(Γ2) is NP-hard to approximate within
O(|V |2). Hence, we cannot use the S-reduction implied by Theorem 6 directly
since it may increase instance sizes by a polynomial factor. Fortunately, it is
possible with some extra work to give an S-reduction from Max Independent
Set to Max Sol(Γ), which increase instance sizes by at most a factor 2, for
Horn and bijunctive constraint languages (that are neither 1-valid, nor dual-
Horn, nor affine). In fact, in the Horn case it is possible to give an S-reduction
which only introduces two extra variables. Hence, the O(|V |1−ε)-hardness result
follows from the corresponding hardness result for Max Independent Set [26,
44].

4 Tractability results

In this section, we present tractability results for two classes of constraint lan-
guages: injective constraint languages and generalised max-closed constraint lan-
guages. These two classes includes almost all of the known tractable classes of
constraint languages presented in the literature for this problem. In particular,
they can be seen as substantial and nontrivial generalisations of the tractable
classes known for the corresponding Max Ones problem over the Boolean do-
main. We have already (in Section 3) pointed out that there are only three
tractable classes of constraint languages over the Boolean domain: width-2 affine,
1-valid, and dual-Horn [35]. Width-2 affine constraint languages are examples of
injective constraint languages and the classes of 1-valid and dual-Horn constraint
languages are examples of generalised max-closed constraint languages. The
monotone constraints which are, for instance, studied by Hochbaum et al. [24,
25] (in relation with integer programming) and Woeginger [42] (in relation with
constraint satisfaction) are also related to generalised max-closed constraints.
Hochbaum & Naor [25] show that monotone constraints can be characterised as
those constraints that are simultaneously invariant under the max and min oper-
ators. Hence, monotone constraints are also generalised max-closed constraints
as long as the underlying domain is finite.

4.1 Injective relations

We begin by formally defining injective relations.

Definition 12. A binary relation, R ∈ RD, is called injective if there exists a
subset D′ ⊆ D and an injective function π : D′ → D such that

R = {(x, π(x)) | x ∈ D′}.

It is important to note that the function π is not assumed to be total on D. Let
ID denote the set of all injective relations on the domain D and let ΓD

I = 〈ID〉.
We say that a constraint language Γ is injective if Γ ⊆ ΓD

I .

Example 13. Let D = {0, 1} and let R = {(x, y) | x, y ∈ D, x + y ≡ 1 (mod 2)}.
R is injective because the function f : D → D defined as f(0) = 1 and f(1) = 0
is injective. More generally, let G = (D′,+,−) be an arbitrary Abelian group
and let c ∈ D′ be an arbitrary group element. It is easy to see that the relation
{(x, y) | x, y ∈ D′, x + y = c} is injective.

R is an example of a relation which is invariant under an affine operation.
Such relations have previously been studied in relation with the Max Ones
problem in [36]. We will give some additional results for such constraints in
Section 7. With the terminology used in [36], R is said to be width-2 affine. The
relations which can be expressed as the set of solutions to an equation with two
variables over an Abelian group are exactly the width-2 affine relations in [36], so
the injective relations are a superset of the width-2 affine relations. The following
result is a direct consequence of [10, Sec. 4.4].

Theorem 14. If Γ is injective, then Max Sol(Γ) is in PO.

An alternative way of proving Theorem 14 goes like this: Max Sol(ΓD
I) is

in PO if and only if Max Sol(ID) is in PO (by Theorem 6) so we can concen-
trate on ID. Given an instance of Max Sol(ID), consider the graph having the
variables as vertices and edges between the vertices/variables occurring together
in the same constraint. Each connected component of this graph represents an
independent subproblem that can be solved in separately. If a value is assigned
to a variable/vertex, all variables/vertices in the same component will be forced
to take a value by propagating this assignment. Hence, each connected compo-
nent have at most |D| different solutions (that can be easily enumerated) and
an optimal one can be found in polynomial time.

Injective relations can also be defined via a polymorphism: define the dis-
criminator t : D3 → D such that

t(a, b, c) =

{

c if a = b,
a otherwise.

It is known that ΓD
I = Inv(t) [41, Theorem 4.2].

4.2 Generalised max-closed relations

We begin by giving the basic definition.

Definition 15. A constraint language Γ over a domain D ⊂ N is generalised
max-closed if and only if there exists a binary operation f ∈ Pol(Γ) such that f
satisfies the following two conditions:

1. for all a, b ∈ D such that a 6= b it holds that if f(a, b) ≤ min(a, b), then
f(b, a) > max(a, b); and

2. for all a ∈ D it holds that f(a, a) ≥ a.

The following two examples will clarify the definition above.

Example 16. Assume that the domain D is {0, 1, 2, 3}. As an example of a gener-
alised max-closed relation consider R = {(0, 0), (1, 0), (0, 2), (1, 2)}. R is invariant
under max and is therefore generalised max-closed as max satisfies the properties
of Definition 15. Now, consider the relation Q defined as

Q = {(0, 1), (1, 0), (2, 1), (2, 2), (2, 3)}.

Q is not invariant under max because

max((0, 1), (1, 0)) = (max(0, 1),max(1, 0)) = (1, 1) /∈ Q.

Let the operation ◦ : D2 → D be defined by the following Cayley table (note
that we write x ◦ y instead of ◦(x, y)):

◦ 0 1 2 3
0 0 2 2 3
1 2 1 2 2
2 2 2 2 3
3 3 2 3 3

Now, it is easy to verify that Inv(◦) is a set of generalised max-closed relations
and that Q ∈ Inv(◦).

Example 17. Consider the relations R1 and R2 defined as,

R1 = {(1, 1, 1), (1, 0, 0), (0, 0, 1), (1, 0, 1)}

and R2 = R1 \ {(1, 1, 1)}. The relation R1 is 1-valid because the tuple consisting
only of ones is in R1, i.e., (1, 1, 1) ∈ R1. The relation R2, on the other hand,
is not 1-valid but is dual-Horn positive because it is invariant under max. Note
that both R1 and R2 are generalised max-closed since R1 is invariant under
f(x, y) = 1 and R2 is invariant under f(x, y) = max(x, y). It is in fact the
case that every dual-Horn relation is invariant under max so the 1-valid and
dual-Horn relations are subsets of the generalised max-closed relations.

We are now ready to explain the tractability of generalised max-closed con-
straint languages.

Theorem 18 ([32]). If Γ is generalised max-closed, then Max Sol(Γ) is in
PO.

The tractability of generalised max-closed constraint languages crucially depends
on the following property. If Γ is generalised max-closed, then all relations

R = {(d11, d12, . . . , d1m), . . . , (dt1, dt2, . . . , dtm)}

in Γ have the property that the tuple

tmax = (max{d11, . . . , dt1}, . . . ,max{d1m, . . . , dtm})

is in R, too.
This property is the basis for the simple consistency based algorithm for Csps

over max-closed constraint languages, from [29]. We use the same algorithms to
solve Max Sol(Γ) when Γ is generalised max-closed. The algorithm for Csps
over max-closed constraint languages from [29], gives us a solution (if one exists)
which has the property that the value assigned to each variable is the maximum
value this variable is allowed to take in any solution. Hence, this solution is also
the optimum solution to the corresponding Max Sol problem. Since the only
property of max-closed constraint languages that is exploited by this algorithm is
that the tuple tmax is in every relation, it follows that the same algorithm solves
(to optimum) Max Sol(Γ) for generalised max-closed constraint languages.

5 Clausal constraints

We will now introduce our first example of a non-Boolean Max Sol problem.
We consider a framework for expressing constraint languages based on regular
signed logic [23] over totally-ordered sets. This approach was introduced by
Creignou et al. [11]. The set of relations that we consider is based on regular

signed logic [23], where the underlying domain is a (possibly infinite) totally-
ordered set of integers {0, 1, . . .}. This logic provides us with convenient concepts
for defining a class of relations with strong modelling capabilities. Jeavons and
Cooper [29] have proved that any constraint can be expressed as the conjunction
of expressions over this class of relations. A disadvantage with their approach is
that the resulting set of constraints may by exponentially large (in the number
of tuples in the constraint to be expressed). An improved algorithm solving the
same problem has been suggested by Gil et al. [17]. It takes a constraint/relation
represented by the set of all assignments/tuples that satisfies it and outputs in
polynomial time (in the number of tuples) an expression that is equivalent to
the original constraint.

Let V be a set of variables. For x ∈ V and a ∈ D, the inequalities x ≥
a and x ≤ a are called positive and negative literals, respectively. A clause
is a disjunction of literals. A clausal pattern is a multiset of the form P =
(+a1, . . . ,+ap,−b1, . . . ,−bq) where p, q ∈ N and ai, bi ∈ D for all i. The pattern
P is said to be negative if p = 0 and positive if q = 0. The sum p+q, also denoted
|P |, is the length of the pattern.

A clausal language L is a set of clausal patterns. Given a clausal language
L, an L-clause is a pair (P,x), where P ∈ L is a pattern and x is a vector of
not necessarily distinct variables from V such that |P | = |x|. A pair (P,x) with
a pattern P = (+a1, . . . ,+ap,−b1, . . . ,−bq) and variables x = (x1, . . . , xp+q)
represents the clause

(x1 ≥ a1 ∨ . . . ∨ xp ≥ ap ∨ xp+1 ≤ b1 ∨ . . . ∨ xp+q ≤ bq),

where ∨ is the disjunction operator. An L-formula φ is a conjunction of a finite
number of L-clauses. An assignment is a mapping I : V → D assigning a domain
element I(x) to each variable x ∈ V . An assignment I satisfies an L-formula φ
if and only if

(I(x1) ≥ a1 ∨ . . . ∨ I(xp) ≥ ap ∨ I(xp+1) ≤ b1 ∨ . . . ∨ I(xp+q) ≤ bq)

holds for every clause in φ. It can be easily seen that the literals +0 and −d are
superfluous since the inequalities x ≥ 0 and x ≤ d vacuously hold. Without loss
of generality, it is sufficient to only consider patterns and clausal languages with-
out such literals. We see that clausal patterns are nothing more than a convenient
way of specifying certain relations — consequently, we can use them for defining
constraint languages. Thus, we make the following definitions: given a clausal lan-
guage L and a clausal pattern P = (+a1, . . . ,+ap,−b1, . . . ,−bq), we let Rel(P)
denote the corresponding relation, i.e. Rel(P) = {x ∈ Dp+q | (P,x) hold} and
ΓL = {Rel(P) | P ∈ L}.

It is easy to see that several well-studied optimisation problems are captured
by this framework.

Example 19. Let the domain D be {0, 1}. The problem Independent Set
(where the objective is to find an independent set of maximum weight in an
undirected graph) can be viewed as the Max Sol(Γ(−0,−0)) problem. Similarly,

Max Sol(Γ(−0,...,−0)) (with k literals) is the Max k-Hypergraph Stable Set
problem.

We can now present sufficient conditions for when Max Sol over clausal
languages is tractable and prove that it is APX-hard otherwise. To do so, we
use a family of operations maxu : D2 → D, u ∈ D, defined such that

maxu(a, b) =

{

u if max(a, b) ≤ u
max(a, b) otherwise

Theorem 20 ([33]). Max Sol(ΓL) is tractable if ΓL is invariant under maxu

for some u ∈ D. Otherwise, Max Sol(ΓL) is APX-hard.

Note that Inv(maxu) is generalised max-closed so the tractability part of
Theorem 20 follows immediately from Theorem 18. The APX-hardness is proved
by reductions from Max Independent Set and Max-E3SAT.

The Min Sol and Max AW Sol problems for clausal constraints have also
been studied: define a new family of operations minu : D2 → D, u ∈ D, such
that

minu(a, b) =

{

u if min(a, b) ≥ u
min(a, b) otherwise

Theorem 21 ([33]). Min Sol(ΓL) is tractable if ΓL is invariant under minu

for some u ∈ D. Otherwise, Min Sol(ΓL) is APX-hard. Max AW Sol(ΓL) is
tractable if ΓL is simultaneously invariant under max and min. Otherwise, Max
AW Sol(ΓL) does not admit polynomial-time approximation schemes.

The tractability proof for Min Sol is analogous to the proof of Theorem 18
while the tractability proof for Max AW Sol is based on supermodular max-
imisation [27, 39]. Note that we do not prove APX-hardness for Max AW Sol;
the reason is that we are now forced to handle instances with negative optimal
measure and APX-hardness and AP -reductions are only defined for problems
with positive measure. However, it is still possible to rule out the existence of
polynomial-time approximation schemes. For ordinary approximation problems,
we say that a solution s is r-approximate if

opt(I)

r
≤ m(I, s) ≤ opt(I) · r.

This does not work for problems with negative optima since in this case opt(I)
r ≥

opt(I) · r. With this in mind, we say that Π admits a Ptas if there exists an
algorithm A satisfying the following property: for any instance I of Π and any
rational value r > 1, A(I, r) returns a solution s (in time polynomial in |I|) such
that m(I, s) ∈ [opt(I)/r, r · opt(I)].

6 Binary symmetric relations

The complexity of Csp(R) is known for every binary and symmetric relation R
due to Hell and Nešetřil’s celebrated result: Csp(R) is NP-complete unless R
is bipartite or contains a loop (and the problem is easily solvable in polynomial
time). Such a dichotomy is not known for the Max Sol problem but there are
some preliminary results by Jonsson et al. [34]. These results are presented next.

From now on, we view binary symmetric relations as undirected graphs in
the obvious way where vertices denote domain elements and an edge (a, b) is
present if and only if the tuples (a, b), (b, a) are members of the relation. We do
not restrict ourselves to reflexive or irreflexive graphs, i.e. each vertex may or
may not have a loop. We begin by showing that we can concentrate on connected
graphs.

Let H = {H1, . . . ,Hn} be a set of connected graphs and let H be the disjoint
union of these graphs. We are interested in the complexity of Max Sol(H),
given the complexities of the individual problems. Let Hi = H \ {Hi}. We say
that Hi extends the set Hi if there exists an instance I = (V,D,C,w) of Max
Sol(Hi) such that for all 1 ≤ j ≤ n, j 6= i it holds that opt(I) > opt(Ij) where
Ij = (V,Dj , {Hj(x, y) | Hi(x, y) ∈ C}, w). We call I a witness to the extension.

Assume that for some 1 ≤ i ≤ n, it holds that Hi does not extend Hi. It is
clear that for any connected instance I = (V,D,C,w) of Max Sol(H), we have
opt(I) = opt(Ij) for some j, where Ij = (V,Dj , {Hj(x, y) | H(x, y) ∈ C}, w).
Furthermore, since Hi does not extend Hi, we know that we can choose this j 6= i.
Let H ′ be the disjoint union of the graphs in Hi. Then, opt(I) = opt(I ′), where
I ′ = (V,D, {H ′(x, y) | H(x, y) ∈ C}, w) is an instance of Max Sol(H ′). For this
reason, we may assume that every Hi ∈ H extends every graph in Hi.

Lemma 22 ([34]). Let H1, . . . ,Hn be graphs and H their disjoint union. If
the problems Max Sol(Hi), 1 ≤ i ≤ n are all tractable, then Max Sol(H) is
tractable. If Max Sol(Hi) is NP-hard and Hi extends the set {H1, . . . ,Hi−1,
Hi+1, . . . ,Hn} for some i, then Max Sol(H) is NP-hard.

Next, we need a couple of algorithmic results. Let F = {I1, . . . , Ik} be a
family of intervals on the real line. A graph G with V (G) = F and (Ii, Ij) ∈ E(G)
if and only if Ii ∩ Ij 6= ∅ is called an interval graph. If the intervals are chosen
to be inclusion-free, G is called a proper interval graph.

Let F1 = {I1, . . . , Ik} and F2 = {J1, . . . , Jl} be two families of intervals on
the real line. A graph G with V (G) = F1 ∪ F2 and (Ii, Jj) ∈ E(G) if and only if
Ii ∩Jj 6= ∅ is called an interval bigraph. If the intervals in each family are chosen
to be inclusion-free, G is called a proper interval bigraph.

Lemma 23 ([34]). If H is a connected graph which is a proper interval graph
or a proper interval bigraph, then Max Sol(H) is polynomial time solvable.

We will now present some complexity results for Max Sol(H). Let H be an
irreflexive graph such that deg(H) ≤ 2. It is easy to see that H is the disjoint
union of paths and cycles. By Lemma 22, we can without loss of generality

assume that H contains only one connected component. Every irreflexive path
is a proper interval bigraph so Lemma 23 immediately gives a tractability result.

Proposition 24 ([34]). If H is an irreflexive path, then Max Sol(H) is in
PO.

Assume now that H is a cycle. If H is an odd cycle, then Csp(H) and Max
Sol(H) are NP-complete by Hell and Nešetřil’s [22] result. If H is isomorphic
to C4, then H cannot be a max-core. One can see that the max-core of H is an
irreflexive path so Max Sol(H) is in PO by Proposition 24 and Lemma 8. More
generally, every irreflexive even cycle that is not a max-core has a max-core that
is an irreflexive path. Thus, we can additionally assume that H is a max-core.

Proposition 25 ([34]). Let H be a max-core which is isomorphic to an even
cycle, i.e., C2k. Assume a bipartition V (H) = {d1, . . . , dk} ∪ {d′1, . . . , d

′
k} of H

with d1 < d2 < · · · < dk and d′1 < d′2 < · · · < d′k and, without loss of generality,
assume that dk > d′k. We denote by Pol1(H) the set of unary polymorphisms of
H. Let F = {π ∈ Pol1(H) | ∃j 6= k : π(dj) 6= dj ∨π(d′j) 6= d′j}. If there exist non-
negative constants a1, . . . , ak−1, a

′
1, . . . , a

′
k−1 such that for each π ∈ Pol1(H)\F ,

it is true that

k−1
∑

i=1

(

ai · di + a′
i · d

′
i

)

>

k−1
∑

i=1

(

ai · π(di) + a′
i · π(d′i)

)

.

Then, Max Sol(H) is NP-hard and, otherwise, Max Sol(H) is in PO.

The proof of Proposition 25 largely builds on constructing unary relations via
pp-formulas and exploiting complexity results for the retraction problem [15].

We now turn our attention to graphs H such that |V (H)| ≤ 4. For |V (H)| = 2
there are only two (types) of max-cores, H1 and H2 in Figure 1. Max Sol(H1) is

d1

d2

d1

d2

H1 H2

Fig. 1. Max-cores H1 and H2 for V (H) = {d1, d2} where d1 < d2.

essentially the problem of finding the largest (heaviest) bipartition in a bipartite
graph, which is in PO. Max Sol(H2) is closely related to the Max Indepen-
dent Set problem (in fact, it is exactly Max Independent Set for d1 = 0
and d2 = 1) and it is NP-hard (actually, poly-APX-complete when d1 = 0,
and APX-complete otherwise).

The complexity for 3-element graphs is completely determined in the next
theorem. The main difficulty in proving the theorem is the tractability part

where the Critical Independent Set problem [1, 43] plays an important role.
The hardness results can be obtained quite comfortably by reductions from the
retraction problem and the Max Independent Set problem.

Theorem 26 ([34]). There are six (types of) max-cores over {d1, d2, d3} where
d1 < d2 < d3, denoted H1, . . . ,H6 and shown in Figure 2. Max Sol(H) is NP-
hard for all of these except for H5. Max Sol(H5) is in PO if d3 + d1 ≤ 2d2

and NP-hard otherwise.

d1

d2

d3

H1

d3 d2d1

H3

d2 d1d3

H2

H4

d3 d1 d2

H6H5

d3 d1 d2

d1

d2

d3

Fig. 2. Max-cores Hi for |V (H)| = 3.

We consider the graph H5 closer since it highlights one of the difficulties with
obtaining complexity classifications for Max Sol(Γ). Consider the graph H =
{(2, 0), (0, 2), (0, 0), (0, 1), (1, 0), (1, 1)} in Figure 3 and note that it is isomorphic
to H5 by setting d1 = 0, d2 = 1, and d3 = 2. One consequence of Theorem 26 is

102

Fig. 3. A graph H for which Max Sol is in PO.

that Max Sol(H) is in PO. However, it is easy to see that H is a max-core but
not an injective relation nor a relation that is invariant under a generalised max
operation. The relation H is thus an example of a relation whose tractability
cannot be explained in terms of the general results in Section 4. In fact, Max

Sol(H) is essentially the Critical Independent Set problem, which was
shown to be in PO in [1, 43] by a rather clever algorithm.

If we instead consider the graph H ′ = {(3, 0), (0, 3), (0, 0), (0, 1), (1, 0), (1, 1)}
in Figure 4 (which is also isomorphic to H5), then Theorem 26 tells us that Max
Sol(H ′) is NP-hard. Hence, despite the striking similarity of the graphs H and
H ′, they have different complexity with respect to the Max Sol problem. More-
over, it follows from Theorem 6 that the difference in complexity between Max
Sol(H) and Max Sol(H ′) can be explained by analysing the set of polymor-
phisms of H and H ′, i.e., Pol(H) and Pol(H ′). In our opinion, this example, and

103

Fig. 4. A graph H ′ for which Max Sol is NP-hard.

in particular the fact that we have not (yet) been able to explain the tractability
of Max Sol(H) in terms of properties of Pol(H) indicate that it might be quite
challenging to classify the complexity of Max Sol(Γ) over finite domains.

After this short digression we move on to the |V | = 4 case. The complexity
of the |V | = 4 case is not completely known, but if we restrict ourselves to the
vertex set {0, 1, 2, 3}, then we have the following result:

Theorem 27 ([34]). Let H be a max-core on D = {0, 1, 2, 3}. Then, Max
Sol(H) is in PO if H is an irreflexive path, and otherwise, Max Sol(H) is
NP-hard.

The proof of Theorem 27 builds on the same ideas as the proof of Theorem 26.

7 Equations over groups

The complexity of solving equations over different algebraic structures is a very
well-studied topic; we refrain from giving a long list of examples but simply
remind the reader that solving linear equations is an instance of this problem.
If we assign natural numbers to the elements of the structure, then it is obvious
that we can also view such a problem as an instance of the Max Sol problem.
In this section, we consider the Max Sol problem over group equations and this
motivates the next definition.

Definition 28. Let G = (G; +,−, 0G) be a group (we use + for the binary group
operation, − for inversion and 0G for the identity element) and g : G → N a
function. The Max Sol problem over group equations is denoted by Max Sol
Eqn(G, g). An instance of Max Sol Eqn(G, g) is defined to be a triple (V,E,w)
where,

– V is a set of variables,
– E is a set of equations of the form w1 + . . . + wk = 0G, where each wi is

either a variable, an inverted variable or a group constant, and
– w is a weight function w : V → N.

The objective is to find an assignment f : V → G to the variables such that
all equations are satisfied and the sum

∑

v∈V

w(v) · g(f(v))

is maximised.

Note that the function g and the group G are not parts of the input so Max
Sol Eqn(G, g) is parameterised by G and g.

Goldmann and Russell [18] have shown that solving systems of equations over
non-Abelian groups is NP-hard. Thus, it is NP-hard to find feasible solutions
to Max Sol Eqn(H, g) if H is non-Abelian, too. It is therefore sufficient to
study Max Sol Eqn(H, g) where H is Abelian.

The main result is for groups of the form Zp where p is prime. For a function
g : Zp → N we define the following two quantities,

gmax = max
x∈Zp

g(x) and gsum =
∑

x∈Zp

g(x).

We are now ready to state the result.

Theorem 29 ([36]). For every prime p and every function g : Zp → N, Max
Sol Eqn(Zp, g) is approximable within α where

α =
p · gmax

gsum
.

Furthermore, for every prime p and every non-constant function g : Zp → N
Max Sol Eqn(Zp, g) is not approximable within α − ǫ for any ǫ > 0, unless
P = NP.

Note that if g is a constant function then every solution has the same measure.
Obviously, an optimal can be found in polynomial time in this case. The in-
approximability proof builds on the inapproximability of Max-Ek-Lin-G [26]
combined with a series of reductions. The approximability result is obtained by
an application of random sampling. This gives a randomised algorithm, which
in expectation produces solutions of the required quality. A straightforward de-
randomisation of this algorithm is possible.

8 Maximal constraint languages

A maximal constraint language Γ is a constraint language such that 〈Γ 〉 ⊂ RD,
and if R /∈ 〈Γ 〉, then 〈Γ ∪{R}〉 = RD. That is, the maximal constraint languages

are the largest constraint languages that are not able to express all finitary
relations over D. This implies, among other things, that there exists an operation
f such that 〈Γ 〉 = Inv(f) whenever Γ is a maximal constraint language [38].
The complexity of the Csp(Γ) problem for all maximal constraint languages
on domains |D| ≤ 3 was determined in [8]. Moreover, it was shown in [8] that
the only case that remained to be classified in order to extend the classification
to all maximal constraint languages over a finite domain was the case where
〈Γ 〉 = Inv(f) for binary commutative idempotent operations f . These constraint
languages were finally classified by Bulatov in [5].

Theorem 30 ([5, 8]). Let Γ be a maximal constraint language on an arbitrary
finite domain D. Then, Csp(Γ) is in P if 〈Γ 〉 = Inv(f) where f is a constant
operation, a majority operation, a binary commutative idempotent operation, or
an affine operation. Otherwise, Csp(Γ) is NP-complete.

We now present an approximability classification, from [32], of Max Sol(Γ)
for all maximal constraint languages Γ over |D| ≤ 4. Moreover, it is proved in [32]
that the only cases that remain to be classified, in order to extend the classi-
fication to all maximal constraint languages over finite domains, are constraint
languages Γ such that 〈Γ 〉 = Inv(f) for a binary commutative idempotent op-
eration f . It is also proved in [32] that if a certain conjecture regarding minimal
clones generated by binary operations, due to Szczepara [40], holds, then the
classification can be extended to capture also these last cases.

Theorem 31. Let Γ be maximal constraint language on a finite domain D, with
|D| ≤ 4, and 〈Γ 〉 = Inv(f).

1. If Γ is generalised max-closed or an injective constraint language, then Max
Sol(Γ) is in PO;

2. else if f is an affine operation, a constant operation different from the con-
stant 0 operation, or a binary commutative idempotent operation satisfying
f(0, b) > 0 for all b ∈ D \ {0} (assuming 0 ∈ D); or if 0 /∈ D and f is
a binary commutative idempotent operation or a majority operation, then
Max Sol(Γ) is APX-complete;

3. else if f is a binary commutative idempotent operation or a majority opera-
tion, then Max Sol(Γ) is poly-APX-complete;

4. else if f is the constant 0 operation, then finding a solution with non-zero
measure is NP-hard;

5. otherwise, finding a feasible solution is NP-hard.

Moreover, if Conjecture 131 from [40] holds, then the results above hold for
arbitrary finite domains D.

The proof of the preceding theorem consists of a careful analysis of the ap-
proximability of Max Sol(Γ) for all maximal constraint languages Γ such that
〈Γ 〉 = Inv(f), where f is one of the types of operations in Theorem 30.

9 Homogeneous constraint languages

In this section, we describe a classification result from [32] on the complexity of
Max Sol when the constraint language is homogeneous. A constraint language
is called homogeneous if every permutation relation is contained in the language.

Definition 32. A binary relation R is a permutation relation if there is a per-
mutation π : D → D such that

R = {(x, π(x)) | x ∈ D}.

Let Q denote the set of all permutation relations on D. The complexity classi-
fication of Max Sol(Γ) when Q ⊆ Γ from [32] provide the exact borderlines
between tractability, APX-completeness, poly-APX-completeness, and NP-
hardness of finding a feasible solution. Due to space constraints we only describe
the borderline between tractability (i.e., membership in PO) and NP-hardness.
This classification is described in Theorem 33.

Dalmau completely classified the complexity of Csp(Γ) when Γ is a homo-
geneous constraint language [14], and this classification relies heavily on the
structure of homogeneous algebras. An algebra is called homogeneous if and
only if every permutation on its universe is an automorphism of the algebra. For
a formal definition and further information on the properties of homogeneous
algebras we refer the reader to [41].

The approximability classification of Max Sol(Γ) when Γ is a homogeneous
constraint language uses the same approach as in [14], namely, the inclusion
structure of homogeneous algebras is exploited. The (only) tractable class of
Max Sol(Γ), over homogenous constraint languages, can be characterised by
the presence in Pol(Γ) of a discriminator operation t (as defined in Section 4.1).

Theorem 33 ([32]). Let Γ be a homogeneous constraint language. If a discrim-
inator operation t is in Pol(Γ), then Max Sol(Γ) is in PO. Otherwise, Max
Sol(Γ) is NP-hard.

Since a constraint language Γ is injective if and only if Γ ⊆ Inv(t), the tractabil-
ity part of the theorem follows from Theorem 14. The hardness part of the
theorem is proved by reductions from variants of the Max Independent Set
problem and the Max Sol Eqn(G, g) problem, as defined in Section 7.

As a direct consequence of Theorem 33 we get that the class of injective
relations, as defined in Section 4.1, is a maximal tractable class for Max Sol(Γ).
That is, if we add a single relation which is not an injective relation to the class
of all injective relations, then the problem is no longer in PO (unless P = NP).

10 Outlook

In this section, we describe the relationship between the Max Sol problem and
some other frameworks for optimisation problems.

10.1 Relation to Valued CSPs

We begin by giving a simplified account of the VCSP (valued CSP) framework
studied in, e.g., [9, 10]. The VCSP framework involves two types of constraints:
crisp constraints (which must be satisfied) and soft constraints (which are satis-
fied by any assignment, but different assignments may generate different costs).
More formally, a soft constraint (or valued constraint) is a pair (σ, ϕ) where
σ = (x1, . . . , xk) is a k-tuple of variables (the constraint scope) and ϕ is a k-ary
cost function from D to Z. The cost of the assignment (a1, . . . , ak) is given by
ϕ(a1, . . . , ak). The objective is to find a solution (satisfying all crisp constraints)
that minimise (or maximise) the total cost of all soft constraints.

Just as for the ordinary Csp problem, much effort has been put into studying
the complexity of the VCSP problem for various constraint languages. The con-
straint language can be viewed as consisting of two parts: the crisp constraint
language Γ (a set of relations) and the valued constraint language ΓV (a set of
cost functions). The VCSP(Γ, ΓV) problem can now be defined as follows:

Definition 34. A VCSP(Γ, ΓV) instance is a tuple (V,C,CV ,D), where V is
a set of variables, C is a set of crisp constraints (whose constraint relations are
in Γ), CV is a set of valued constraints (whose cost functions are in ΓV), and
D is the domain. The objective is to find an assignment f : V → D such that
all constraints in C are satisfied and the sum

∑

(σ,ϕ)∈CV

ϕ(f(σ[1]), . . . , f(σ[i]))

is minimised.

We denote the corresponding problem where the objective is to find the solution
that maximises the sum above by Max-VCSP(Γ, ΓV). Note that the definitions
of VCSP problems in [9, 10] are much more sophisticated and elegant than our
simplified account above. We also remark that, in order to comply with the
existing literature on VCSP problems, we do not assume that the domain and
the constraint languages Γ and ΓV are finite.

It is easy to see that instances of Max Sol(Γ), Min Sol(Γ), and Max AW
Sol(Γ) problems can be seen as instances of VCSP problems.

Proposition 35.

– Instances of Max Sol(Γ) can be seen as instances of Max-VCSP(Γ, ΓV)
where ΓV consists of a single unary cost function ϕ, defined such that ϕ(d) =
d for all d ∈ D.

– Instances of Min Sol(Γ) can be seen as instances of VCSP(Γ, ΓV) where
ΓV consists of a single unary cost function ϕ, defined such that ϕ(d) = d for
all d ∈ D.

– Instances of Max AW Sol(Γ) can be seen as instances of Max-VCSP(Γ, ΓV)
where ΓV consists of two unary cost functions ϕ and ϕ, such that ϕ(d) = d
for all d ∈ D, and ϕ(d) = −d for all d ∈ D.

Variable weights can be handled in the VCSP setting by repeated applications of
the unary cost function ϕ (and ϕ in the case of negative weights).

10.2 Relation to Minimum Cost Homomorphism

The Minimum Cost Homomorphism problem (denoted Min Hom(H)) has
recently received a lot of attention [19–21]. The problem Min Hom(H) can be
defined as follows:

Definition 36. An instance of Min Hom(H) is a graph G together with a
weight function w(x, y) : V (G) × V (H) → N. The objective is to find a ho-
momorphism h : V (G) → V (H) such that the sum

∑

v∈V (G)

w(v, h(v))

is minimised.

An instance of the Min Hom(H) problem can also be seen as an instance of the
VCSP(Γ, ΓV) problem, where Γ consists of the single binary relation H and
ΓV is a set of unary cost functions, defined such that ϕv(d) = w(v, d) for all
v ∈ V (G) and d ∈ V (H). Note that ΓV , as defined here, is not finite. We note
in passing that an analogous result to Theorem 6 holds for Min Hom(H).

Proposition 37. Let H be a graph and Γ ′ ⊆ 〈H〉 finite. Then, Min Hom(Γ ′)
is S-reducible to Min Hom(H).

A dichotomy is known for the complexity of Min Hom(H) in the case when H
is an undirected graph.

Theorem 38 ([19]). If each component of H is a proper interval graph or a
proper interval bigraph, then the problem Min Hom(H) is in PO. In all other
cases, Min Hom(H) is NP-hard.

A list extension of the Max AW Sol(H) problem (denoted List Max AW
Sol(H)) is studied in [34]. The Max AW Sol(H) problem is extended by
introducing lists, {L(v) ⊆ V (H) | v ∈ V (G)}, and requiring that any solution
must assign to v one of the vertices in L(v). It is not hard to realise that the
List Max AW Sol(H) problem is a restriction of the Min Hom(H) problem.
One of the results of [34] is a complexity classification of List Max AW Sol(H)
for undirected graphs H.

Theorem 39 ([34]). Let H be an undirected graph with loops allowed. Then
List Max AW Sol(H) is solvable in polynomial time if all components of H
are proper interval graphs or proper interval bigraphs. Otherwise List Max AW
Sol(H) is NP-hard.

The preceding result, together with the complexity classification of Min Hom(H)
from [19], gives us the following corollary.

Corollary 40. Let H be an undirected graph with loops allowed. Then, List
Max AW Sol(H) is polynomial-time equivalent to Min Hom(H).

11 Open questions

The long-term goal for this line of research is, of course, to completely classify
the approximability of Max Sol for all finite constraint languages. However,
this is probably a hard problem since not even a complete classification for the
corresponding decision problem Csp is known. A more manageable task would
be to completely classify Max Sol for constraint languages over small domains
(say, of size 3 or 4). For size 3, this has already been accomplished for Csp [6]
and Max Csp [31]. Another obvious open problem is to classify the complexity
of Max Sol(Γ) for the remaining maximal constraint languages Γ described
in Section 8. The known results for the complexity of Max Sol suggest the
following conjecture:

Conjecture 41. For every finite constraint language Γ , one of the following holds:

1. Max Sol(Γ) is in PO;
2. Max Sol(Γ) is APX-complete;
3. Max Sol(Γ) poly-APX-complete;
4. it is NP-hard to find a non-zero solution to Max Sol(Γ); or
5. it is NP-hard to find any solution to Max Sol(Γ).

If this conjecture is true, then there does not exist any constraint language Γ
such that Max Sol(Γ) has a polynomial-time approximation scheme (Ptas) but
Max Sol(Γ) is not in PO. However, if one impose simultaneous restrictions on
the allowed constraint types and the way constraints are applied to variables
(instead of only restricting the allowed constraint types), then the situation
changes. Consider for example Max Independent Set (and, equivalently, Max
Ones({(0, 0), (1, 0), (0, 1)})): the unrestricted problem is poly-APX-complete
and not approximable within O(n1−ǫ), ǫ > 0 (unless P=NP) [44], but the
problem restricted to planar instances admits a Ptas [3]. One may ask several
questions in connection with this: For which constraint languages does Max Sol
admit a Ptas on planar instances? Or more generally: under what restrictions
on variable scopes does Max Sol(Γ) admit a Ptas?

The investigation of the complexity of Max Sol(Γ) when Γ is a graph [34]
indicates that giving a complete complexity classification of Max Sol(Γ) for
every fixed constraint language Γ is probably harder than first anticipated. In
particular, the tractable class for the Max Sol problem identified in [34] (and
described in Section 6) depends very subtly on the values of the domain elements
and no characterisation of this tractable class in terms of polymorphisms is
known. Hence, this tractable class seems to be of a different flavour compared
to the other tractable classes for the Max Sol problem [32, 33, 35]. On the
other hand, there is a complete classification for the complexity of the arbitrary
weighted list version of the problem, List Max AW Sol(Γ), in the important
case where Γ is an undirected graph.

Interestingly, for undirected graphs H the borderline between tractability
and NP-hardness for List Max AW Sol(H) coincide exactly with Gutin et
al.’s [19] recent complexity classification of Min Hom(H). This is surprising,

since the Min Hom(H) problem is much more expressive than the List Max
AW Sol(H) problem, and we were expecting graphs H such that Min Hom(H)
were NP-hard and List Max AW Sol(H) were in PO. Moreover, it is not hard
to prove that Min Hom(Γ) over Boolean constraint languages Γ is in PO if Γ
is width-2 affine, or if Γ is Horn and dual-Horn; and that Min Hom(Γ) is NP-
hard for all other Boolean constraint languages Γ . This borderline between PO
and NP-hardness coincides with the borderline between PO and NP-hardness
for Max AW Sol(Γ) over Boolean constraint languages Γ proved in [30]. The
obvious question raised by these results is how far can we extend the correspon-
dence in complexity between List Max AW Sol(Γ) and Min Hom(Γ)? More
specifically, is it the case that List Max AW Sol(Γ) is in PO (NP-hard) if
and only if Min Hom(Γ) is in PO (NP-hard) for arbitrary finite constraint
languages Γ?

Acknowledgments

The authors thank Fredrik Kuivinen and Johan Thapper for making important
contributions to this survey. We also thank the anonymous referee for providing
some very useful comments. Peter Jonsson is partially supported by the Cen-
ter for Industrial Information Technology (CENIIT) under grant 04.01, and by
the Swedish Research Council (VR) under grant 621-2003-3421. Gustav Nordh
is partially supported by the Swedish-French Foundation, and by the National
Graduate School in Computer Science (CUGS), Sweden.

References

1. A. Ageev. On finding critical independent and vertex sets. SIAM J. Discrete
Math., 7(2):293–295, 1994.

2. G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti Spaccamela, and
M. Protasi. Complexity and approximation: Combinatorial optimization problems
and their approximability properties. Springer, 1999.

3. B. Baker. Approximation algorithms for NP-complete problems on planar graphs.
Journal of the ACM, 41:153–180, 1994.

4. M. Bodirsky and J. Nešetřil. Constraint satisfaction with countable homogeneous
templates. Journal of Logic and Computation, 16(3):359–373, 2006.

5. A. Bulatov. A graph of a relational structure and constraint satisfaction problems.
In Proceedings of the 19th IEEE Symposium on Logic in Computer Science (LICS
2004), pages 448–457, 2004.

6. A. Bulatov. A dichotomy theorem for constraint satisfaction problems on a 3-
element set. Journal of the ACM, 53(1):66–120, 2006.

7. A. Bulatov, P. Jeavons, and A. Krokhin. Classifying the complexity of constraints
using finite algebras. SIAM J. Comput., 34(3):720–742, 2005.

8. A. Bulatov, A. Krokhin, and P. Jeavons. The complexity of maximal constraint
languages. In Proceedings of the 33rd ACM Symposium on Theory of Computing
(STOC 2001), pages 667–674, 2001.

9. D. Cohen, M. Cooper, and P. Jeavons. An algebraic characterisation of complex-
ity for valued constraint. In Proceedings of the 12th International Conference on
Principles and Practice of Constraint Programming (CP 2006), pages 107–121,
2006.

10. D. Cohen, M. Cooper, P. Jeavons, and A. Krokhin. The complexity of soft con-
straint satisfaction. Artificial Intelligence, 170(11):983–1016, 2006.

11. N. Creignou, M. Hermann, A. Krokhin, and G. Salzer. Complexity of clausal
constraints over chains. Theory Comput. Syst., 42(2):239–255, 2008.

12. N. Creignou, S. Khanna, and M. Sudan. Complexity classifications of Boolean
constraint satisfaction problems. SIAM, Philadelphia, 2001.

13. P. Crescenzi, R. Silvestri, and L. Trevisan. On weighted vs unweighted versions of
combinatorial optimization problems. Inf. Comput., 167(1):10–26, 2001.

14. V. Dalmau. A new tractable class of constraint satisfaction problems. Annals of
Mathematics and Artificial Intelligence, 44(1–2):61–85, 2005.

15. T. Feder, P. Hell, and J. Huang. List homomorphisms and circular arc graphs.
Combinatorica, 19:487–505, 1999.

16. T. Feder and M.Y. Vardi. The computational structure of monotone monadic SNP
and constraint satisfaction: A study through datalog and group theory. SIAM J.
Comput., 28(1):57–104, 1999.

17. À. Gil, M. Hermann, G. Salzer, and B. Zanuttini. Efficient algorithms for con-
straint description problems over finite totally ordered domains. In Proceedings of
Automated Reasoning, Second International Joint Conference (IJCAR 04), pages
244–258, 2004.

18. M. Goldmann and A. Russell. The complexity of solving equations over finite
groups. In IEEE Conference on Computational Complexity, pages 80–86, 1999.

19. G. Gutin, P. Hell, A. Rafiey, and A. Yeo. A dichotomy for minimum cost graph
homomorphisms. European J. Combin., 29(4):900–911, 2008.

20. G. Gutin, A. Rafiey, and A. Yeo. Minimum cost and list homomorphisms to
semicomplete digraphs. Discrete Applied Mathematics, 154(6):890–897, 2006.

21. G. Gutin, A. Rafiey, A. Yeo, and M. Tso. Level of repair analysis and minimum
cost homomorphisms of graphs. Discrete Applied Mathematics, 154(6):881–889,
2006.

22. P. Hell and J. Nešetřil. On the complexity of H-colouring. Journal of Combinatorial
Theory B, 48:92–110, 1990.

23. R. Hähnle. Complexity of many-valued logics. In Proceedings of the 31st IEEE
International Symposium on Multiple-valued Logic (ISMVL 01), pages 137–148,
2001.

24. D. Hochbaum, N. Megiddo, J. Naor, and A. Tamir. Tight bounds and 2-
approximation algorithms for integer programs with two variables per inequality.
Mathematical Programming, 62:69–84, 1993.

25. D. Hochbaum and J. Naor. Simple and fast algorithms for linear and integer
programs with two variables per inequality. SIAM J. Comput., 23(6):1179–1192,
1994.

26. J. H̊astad. Some optimal inapproximability results. Journal of the ACM, 48(4):798–
859, 2001.

27. S. Iwata, L. Fleischer, and S. Fujishige. A combinatorial strongly polynomial
algorithm for minimizing submodular functions. Journal of the ACM, 48(4):761–
777, 2001.

28. P. Jeavons, D. Cohen, and M. Gyssens. Closure properties of constraints. Journal
of the ACM, 44:527–548, 1997.

29. P. Jeavons and M. Cooper. Tractable constraints on ordered domains. Artificial
Intelligence, 79:327–339, 1996.

30. P. Jonsson. Boolean constraint satisfaction: complexity results for optimization
problems with arbitrary weights. Theoretical Computer Science, 244(1-2):189–203,
2000.

31. P. Jonsson, M. Klasson, and A. Krokhin. The approximability of three-valued Max
CSP. SIAM J. Comput., 35(3):1329–1349, 2006.

32. P. Jonsson, F. Kuivinen, and G. Nordh. Max Ones generalised to larger domains.
SIAM J. Comput., 38(1):329–365, 2008.

33. P. Jonsson and G. Nordh. Generalised integer programming based on logically
defined relations. In Proceedings of the 31st International Symposium on Mathe-
matical Foundations of Computer Science (MFCS 2006), pages 549–560, 2006.

34. P. Jonsson, G. Nordh, and J. Thapper. The maximum solution problem on graphs.
In Proceedings of the 32nd International Symposium on Mathematical Foundations
of Computer Science (MFCS 2007), pages 228–239, 2007.

35. S. Khanna, M. Sudan, L. Trevisan, and D. Williamson. The approximability of
constraint satisfaction problems. SIAM J. Comput., 30(6):1863–1920, 2001.

36. F. Kuivinen. Tight approximability results for the maximum solution equation
problem over Zp. In Proceedings of the 30th International Symposium on Mathe-
matical Foundations of Computer Science (MFCS 2005), pages 628–639, 2005.

37. R. Pöschel and L. Kaluznin. Funktionen- und Relationenalgebren. DVW, Berlin,
1979.

38. I. Rosenberg. Minimal clones I: the five types. In L. Szabó and Á. Szendrei, editors,
Lectures in Universal Algebra. North-Holland, 1986.

39. A. Schrijver. A combinatorial algorithm for minimizing submodular functions in
polynomial time. Journal of Combinatorial Theory B, 80:346–355, 2000.

40. B. Szczepara. Minimal clones generated by groupoids. PhD thesis, Université de
Montréal, 1996.

41. Á. Szendrei. Clones in Universal Algebra, volume 99 of Séminaires de
Mathématiques Supérieures. University of Montreal, 1986.

42. G. Woeginger. An efficient algorithm for a class of constraint satisfaction problems.
Operations Research Letters, 30(1):9–16, 2002.

43. C. Zhang. Finding critical independent sets and critical vertex subsets are poly-
nomial problems. SIAM J. Discrete Math., 3(3):431–438, 1990.

44. D. Zuckerman. Linear degree extractors and the inapproximability of max clique
and chromatic number. In Proceedings of the 38th ACM Symposium on Theory of
Computing (STOC 2006), pages 681–690, 2006.

