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Abstract

This chapter surveys results on the computational complexity of
temporal constraint reasoning. The focus is on the satisfiability prob-
lem, but also the problem of entailed relations is treated. More pre-
cisely, results for formalisms based upon relating time points and/or
intervals with qualitative and/or metric constraints are reviewed. The
main purpose of the chapter is to distinguish between tractable and
NP-complete cases.
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1 Introduction

The purpose of this chapter is to survey results on the computational com-
plexity of temporal constraint reasoning. To keep the presentation reasonably
short, we make a few assumptions:

1. We assume that time is linear, dense and unbounded. This implies
that, for instance, we do not consider branching, discrete or finite time
structures.

2. We focus on the satisfiability problem, that is, the problem of deciding
whether a set of temporal formulae has a model or not. However, we
also treat the problem of entailed relations, in the context of Allen’s
algebra.

3. Initially, we follow standard mathematical praxis and allow temporal
variables to be unrelated, i.e., we allow problems where variables may
not be explicitly tied by any constraint. In the final section, we study
some cases where this assumption is dropped.

Our main purpose is to distinguish between problems that are solvable in
polynomial time and problems that are not1. As a consequence, we will
not necessarily present the most efficient algorithms for the problems under
consideration. We will instead emphasize simplicity and generality, which
means that we will use standard mathematical tools whenever possible.

This chapter begins, in Section 2, with an in-depth treatment of disjunc-
tive linear relations (DLR), here serving two purposes:

1. DLRs will be used as a unifying formalism for temporal constraint
reasoning, since it subsumes most approaches that have been proposed
in the literature.

2. DLRs will be used extensively for dealing with metric time.

We continue in Section 3 by introducing Allen’s interval algebra, and pre-
senting all tractable subclasses of that algebra. We also provide some results
on the complexity of computing entailed relations.

1Assuming P 6= NP , of course.
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Section 4 is concerned with point-interval relations, in which time points
are related to intervals. A complete enumeration of all maximal tractable
subclasses are given, together with algorithms for solving the corresponding
problems.

In Section 5, the problem of handling metric time is studied. Extensions
to Horn DLRs are considered, as well as methods based on arc and path
consistency.

Finally, Section 6 contains some “non-standard” techniques in temporal
constraint reasoning. We consider, for instance, temporal reasoning involving
durations, and the implications of not allowing unrelated variables.

2 Disjunctive Linear Relations

2.1 Definitions

Definition 2.1 Let X = {x1, . . . , xn} be a set of real-valued variables, and
α, β linear polynomials (polynomials of degree one) over X, with rational
coefficients. A linear relation over X is a mathematical expression of the
form αRβ, where R ∈ {<,≤, =, 6=,≥, >}.

A disjunctive linear relation (DLR) over X is a disjunction of a nonempty
finite set of linear relations. A DLR is said to be Horn if at most one of its
disjuncts is not of the form α 6= β.

The problem of satisfiability for finite sets D of DLRs is denoted DLRsat(D),
which is checking whether there exists an assignment M of variables in X

to real numbers, such that all DLRs in D are satisfied in M . Such an M is
said to be a model of D. The satisfiability problem for finite sets H of Horn
DLRs is denoted hornDLRsat(H). 2

Example 2.2

x + 2y ≤ 3z + 42.3

is a linear relation,

(x + 2y ≤ 3z + 42.3) ∨ (x >
3

12
)

is a disjunctive linear relation, and

(x + 2y ≤ 3z + 42.3) ∨ (x 6=
3

12
)
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is a Horn disjunctive linear relation. 2

In principle, the framework of DLRs makes it unnecessary to distinguish
between qualitative and metric information. Nevertheless, when it comes to
identifying tractable subclasses, the distinction is still convenient.

2.2 Algorithms and Complexity

In this section, we present the two main results for computing with DLRs.
We also provide a polynomial-time algorithm for checking the satisfiability
of Horn DLRs.

Proposition 2.3 The problem DLRsat is NP-complete.
Proof: The satisfiability problem for propositional logic, which is known to
be NP-complete, can easily be coded as DLRs. For the details, see Jonsson
and Bäckström [1998]. 2

Proposition 2.4 hornDLRsat is solvable in polynomial time.
Proof: See Jonsson and Bäckström [1998] or Koubarakis [1996]. 2

We will present a polynomial-time algorithm for hornDLRsat in Algo-
rithm 2.10. In order to understand it, some auxiliary concepts are needed.

Definition 2.5 A linear relation αRβ is said to be convex if R is not the
relation 6=.

Let γ be a DLR. We let C(γ) denote the DLR where all nonconvex rela-
tions in γ have been removed, and NC(γ) the DLR where all convex relations
in γ have been removed.

We say that γ is convex if NC(γ) = ∅, and that γ is disequational if
C(γ) = ∅. If γ is convex or disequational we say that γ is homogeneous, and
otherwise it is said to be heterogeneous. We extend these definitions to sets
of relations in the obvious way; for example, if Γ is a set of DLRs and all
γ ∈ Γ are Horn, then Γ is Horn. 2

The algorithm for deciding satisfiability of Horn DLRs is based on linear
programming techniques, so we begin by providing the basic facts for that.
The linear programming problem is defined as follows.

5



Definition 2.6 Let A be an arbitrary m×n matrix of rational numbers and
let x = (x1, . . . , xn) be an n-vector of variables over the real numbers. Then
an instance of the linear programming (LP) problem is defined by {min cTx

subject to Ax ≤ b}, where b is an m-vector of rational numbers, and c an
n-vector of rational numbers. The computational problem is as follows:

1. Find an assignment to the variables x1, . . . , xn such that the condition
Ax ≤ b holds, and cTx is minimial subject to these conditions, or

2. Report that there is no such assignment, or

3. Report that there is no lower bound for cTx under the conditions.

2

Analogously, we can define an LP problem where the objective is to maximize
cTx under the condition Ax ≤ b. We have the following theorem.

Theorem 2.7 The linear programming problem is solvable in polynomial
time.
Proof: Several polynomial-time algorithms have been developed for solv-
ing LP. Well-known examples are the algorithms by Khachiyan [1979] and
Karmarkar [1984]. 2

Definition 2.8 Let A be a satisfiable set of DLRs and let γ be a DLR. We
say that γ blocks A if A ∪ {d} is unsatisfiable for any d ∈ NC(γ). 2

Lemma 2.9 Let A be an arbitrary m× n matrix of rational numbers, b an
m-vector of rational numbers and x = (x1, . . . , xn) an n-vector of variables
over the real numbers. Let α be a linear polynomial over x1, . . . , xn and c

a rational number. Deciding whether the system S = {Ax ≤ b, α 6= c} is
satisfiable or not is a polynomial-time problem.
Proof: Consider the following instances of LP:

LP1= {min α subject to Ax ≤ b}

LP2= {max α subject to Ax ≤ b}

6



Algorithm 2.10 (Alg-hornDLRsat(Γ))

input Set Γ of DLRs

1 A← {γ | γ ∈ Γ is convex}
2 if A is not satisfiable then
3 reject
4 if ∃β ∈ Γ that blocks A then
5 if β is disequational then
6 reject
7 else
8 Alg-hornDLRsat((Γ− {β}) ∪ C(β))
9 accept

2

If either LP1 or LP2 has no solutions, then S is not satisfiable. If both LP1
and LP2 yield the same optimal value c, then S is not satisfiable, since every
solution y to LP1 and LP2 satisfies α(y) = c. Otherwise S is obviously satisfi-
able. Since we can solve the LP problem in polynomial time by Theorem 2.7,
the result follows. 2

Theorem 2.11 Algorithm 2.10 correctly solves hornDLRsat in polyno-
mial time.
Proof: The test in line 2 can be performed in polynomial time using linear
programming, and the test in line 4 can be performed in polynomial time by
Lemma 2.9. Thus, the algorithm runs in polynomial time. The correctness
proof can be found in [Jonsson and Bäckström, 1998]. 2

2.3 Subsumed Formalisms

Several formalisms can easily be expressed as DLRs, but more importantly,
most proposed tractable temporal formalisms are subsumed by the Horn
DLR formalism.

For the following definitions, let x, y be real-valued variables, c, d rational
numbers, and A Allen’s algebra [Allen, 1983] (see Section 3 for its definition).
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It is trivial to see that the DLR language subsumes Allen’s algebra. Further-
more, it subsumes the universal temporal language by Kautz and Ladkin,
defined as follows.

Definition 2.12 (Universal temporal language) The universal tempo-
ral language [Kautz and Ladkin, 1991] consists of A, augmented with formu-
lae of the form −cr1(x− y)r2d, where r1, r2 ∈ {<,≤}, and x, y are endpoints
of intervals. 2

DLRs also subsume the qualitative algebra (QA) by Meiri [1996]. In QA, a
qualitative constraint between two objects Oi and Oj (each may be a point
or an interval), is a disjunction of the form

(Oir1Oj) ∨ . . . ∨ (OirkOj)

where each one of the r′is is a basic relation that may exist between two
objects. There are three types of basic relations.

1. Interval-interval relations that can hold between a pair of intervals.
These relations correspond to Allen’s algebra.

2. Point-point relations that can hold between a pair of points. These
relations correspond to the point algebra [Vilain, 1982].

3. Point-interval and interval-point relations that can hold between a
point and an interval and vice-versa. These relations were introduced
by Vilain [1982].

Obviously, DLRs subsume QA. Meiri also considers QA extended with met-
ric constraints of the following two forms, x1, . . . , xn being time points or
endpoints of intervals.

1. (c1 ≤ x1 ≤ d1) ∨ . . . ∨ (c1 ≤ xn ≤ d1);

2. (c1 ≤ xn − x1 ≤ d1) ∨ . . . ∨ (c1 ≤ xn − xn−1 ≤ d1).

Also this extension to QA can easily be expressed as DLRs. It has been
shown that the satisfiability problems for all of these formalisms are NP-
complete [Vilain et al., 1989; Kautz and Ladkin, 1991; Meiri, 1996]. In
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retrospect, the different restrictions imposed on these formalisms seem quite
artificial when compared to DLRs, especially since they do not reduce the
computational complexity of the problem.

Next, we review some of the formalisms that are subsumed by Horn DLRs.

Definition 2.13 (Point algebra formulae, pointisable algebra) A
point algebra formula [Vilain, 1982] is an expression xRy, where x and y are
variables, and R is one of the relations <, ≤, =, 6=, ≥ and >.

The pointisable algebra [van Beek and Cohen, 1990] is the set of relations
in A which can be expressed as point algebra formulae. 2

The satisfiability problem for point algebra formulae will be denoted PAsat(H),
for a set H of point algebra formulae.

Definition 2.14 (Continuous endpoint formula, continuous endpoint
algebra) A continuous endpoint formula [Vilain et al., 1989] is a point al-
gebra formula xRy where R is not the relation 6=.

The continuous endpoint algebra [Vilain et al., 1989] is the set of relations
in A which can be expressed as continuous endpoint formulae. 2

The following formalism subsumes those of the previous two definitions.

Definition 2.15 (ORD-Horn algebra) An ORD clause is a disjunction
of relations of the form xRy, where R ∈ {≤, =, 6=}. The ORD-Horn subclass
H [Nebel and Bürckert, 1995] is the set of relations in A that can be written
as ORD clauses containing only disjunctions, with at most one relation of
the form x = y or x ≤ y, and an arbitrary number of relations of the form
x 6= y. 2

Definition 2.16 (Koubarakis formula) Let R ∈ {≤,≥, 6=}. A Koubarakis
formula [Koubarakis, 1992] is a formula of one of the following forms:

1. (x− y)Rc

2. xRc

3. A disjunction of formulae of the form (x− y) 6= c or x 6= c.

2
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Definition 2.17 (Simple temporal constraint) A simple temporal con-
straint [Dechter et al., 1991] is a formula on the form c ≤ (x− y) ≤ d. 2

Definition 2.18 (Simple metric constraint) A simple metric constraint
[Kautz and Ladkin, 1991] is a formula on the form −cR1(x − y)R2d where
R1, R2 ∈ {<,≤}. 2

Definition 2.19 (PA/single-interval formula) A PA/single-interval
formula [Meiri, 1996] is a formula on one of the following forms:

1. cR1(x− y)R2 d, where R1, R2 ∈ {<,≤}

2. xRy where R ∈ {<,≤, =, 6=,≥, >}

2

Definition 2.20 (TG-II formula) A TG-II formula [Gerevini et al., 1993]

is a formula on one of the following forms:

1. c ≤ x ≤ d,

2. c ≤ x− y ≤ d

3. xRy where R ∈ {<,≤, =, 6=,≥, >}

2

Besides these classes, other temporal classes that can be expressed as Horn
DLRs have been identified by different authors. Examples include the ap-
proach by Barber [1993], the subclass V23 for relating points and intervals
[Jonsson et al., 1999] (see Section 4), and the temporal part of TMM by Dean
and Boddy [1988].

Not all known tractable classes can be modeled as Horn DLRs (in any
obvious way2), however. Examples of this are Golumbic and Shamir [1993]

and Drakengren and Jonsson [1997a, 1997b].

2Linear programming is a P-complete problem, so in principle, all polynomial-time
computable problems can be transformed into Horn DLRs.
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Basic relation Example Endpoints

x before y ≺ xxx x+ < y−

y after x ≻ yyy

x meets y m xxxx x+ = y−

y met-by x m
−1 yyyy

x overlaps y o xxxx x− < y− < x+,
y overl.-by x o

−1 yyyy x+ < y+

x during y d xxx x− > y−,
y includes x d

−1 yyyyyyy x+ < y+

x starts y s xxx x− = y−,
y started by x s

−1 yyyyyyy x+ < y+

x finishes y f xxx x+ = y+,
y finished by x f

−1 yyyyyyy x− > y−

x equals y ≡ xxxx x− = y−,
yyyy x+ = y+

Table 1: The thirteen basic relations. The endpoint relations x− < x+ and
y− < y+ that are valid for all relations have been omitted.

3 Interval-Interval Relations: Allen’s Alge-

bra

3.1 Definitions

Allen’s interval algebra [Allen, 1983] is based on the notion of relations be-
tween pairs of intervals. An interval x is represented as a tuple 〈x−, x+〉 of
real numbers with x− < x+, denoting the left and right endpoints of the
interval, respectively, and relations between intervals are composed as dis-
junctions of basic interval relations, which are those in Table 1. Denote the
set of basic interval relations B. Such disjunctions are represented as sets of
basic relations, but using a notation such that, for example, the disjunction
of the basic intervals ≺, m and f

−1 is written (≺ m f
−1). Thus, we have that

(≺ f
−1) ⊆ (≺ m f

−1). The disjunction of all basic relations is written ⊤,
and the empty relation is written ⊥ (this is also used for relations between
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interval endpoints, denoting “always satisfiable” and “unsatisfiable”, respec-
tively). The algebra is provided with the operations of converse, intersection
and composition on intervals, but we shall need only the converse operation
explicitly. The converse operation3 takes an interval relation i to its converse
i−1, obtained by inverting each basic relation in i, i.e., exchanging x and y

in the endpoint relations shown in Table 1.
By the fact that there are thirteen basic relations, we get 213 = 8192

possible relations between intervals in the full algebra. We denote the set
of all interval relations by A. Subclasses of the full algebra are obtained by
considering subsets of A. There are 28192 ≈ 102466 such subclasses. Classes
that are closed under the operations of intersection, converse and composition
are said to be algebras.

The problem of satisfiability (Isat) of a set of interval variables with
relations between them is that of deciding whether there exists an assignment
of intervals on the real line for the interval variables, such that all of the
relations between the intervals are satisfied. This is defined as follows.

Definition 3.1 (Isat(I)) Let I ⊆ A be a set of interval relations. An
instance of Isat(I) is a labelled directed graph G = 〈V, E〉, where the nodes
in V are interval variables and E is a subset of V × I × V . A labelled edge
〈u, r, v〉 ∈ E means that u and v are related by r.

A function M taking an interval variable v to its interval representation
M(v) = 〈x−, x+〉 with x−, x+ ∈ R and x− < x+, is said to be an interpreta-
tion of G.

An instance G = 〈V, E〉 is said to be satisfiable if there exists an in-
terpretation M such that for each 〈u, r, v〉 ∈ E, M(u)rM(v) holds, i.e., the
endpoint relations required by r (see Table 1) are satisfied by the assignments
of u and v. Then M is said to be a model of G.

We refer to the size of an instance G as |V |+ |E|. 2

3.2 Complexity Results

A complete classification of the computational complexity of Isat(X) has
been presented by Krokhin et al. [2001b]. The classification provides no new
tractable subclasses; interestingly, it turns out that all existing tractable

3The notation varies for this operation. However, we believe that the standard notation
for inverse relations is the best and simplest choice.
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subclasses of Allen’s algebra had been published in earlier papers [Nebel and
Bürckert, 1995; Drakengren and Jonsson, 1997b; Drakengren and Jonsson,
1997a]. For the complete classification, the lengthy proof uses results from a
number of earlier publications, cf. [Krokhin et al., 2001a; Drakengren and
Jonsson, 1998; Nebel and Bürckert, 1995].

Next, we present the main result and the tractable subclasses; after that
we present the polynomial-time algorithms for the tractable subclasses.

Theorem 3.2 Let X be a subset of A. Then Isat(X) is tractable iff X

is a subset of the ORD-Horn algebra (Definition 2.15), or of one of the 17
subalgebras defined below. Otherwise, Isat(X) is NP-complete.
Proof: See Krokhin et al. [2001b]. 2

Definition 3.3 (Subclasses A(r, b) [Drakengren and Jonsson, 1997b])
Let b ∈ {s, s−1, f, f−1}, and r one of the relations

(≺ d
−1

o m s f
−1)

(≺ d
−1

o m s
−1

f
−1)

(≺ d o m s f)
(≺ d o m s f

−1).

containing b. First define the subclasses A1(b), A2(r, b) and A3(r, b) by

A1(b) = {r′ ∪ (b b−1)|r′ ∈ A},

A2(r, b) = {r′ ∪ (b)|r′ ⊆ r}

and

A3(r, b) = {r′ ∪ (≡)|r′ ∈ A2(r, b)} ∪ {(≡)}.

Then set

B = A1(b) ∪ A2(r, b) ∪A3(r, b)

and finally define the subclass A(r, b) by

A(r, b) = B ∪ {x−1|x ∈ B} ∪ {( )}.

2
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For an explicit enumeration of the sets A(r, b), see Drakengren and Jons-
son [1997b].

Definition 3.4 (Subclass A≡
[Drakengren and Jonsson, 1997b]) Define

the subclass A≡ to contain every relation that contains ≡, and the empty
relation ( ). 2

Definition 3.5 (Subclasses S(b) and E(b) [Drakengren and Jonsson, 1997a])
Set rs = (≻ d o

−1
m

−1
f), and re = (≺ d o m s). Note that rs contains all

basic relations b such that whenever IbJ for interval variables I, J , I− > J−

has to hold in any model, and symmetrically, re is equivalent to I+ < J+

holding in any model.
First, for b ∈ {≻, d, o−1}, define S(b) to be the set of relations r, such

that either of the following holds:

(b b−1) ⊆ r

(b) ⊆ r ⊆ rs ∪ (≡ s s
−1)

(b−1) ⊆ r ⊆ rs
−1 ∪ (≡ s s

−1)
r ⊆ (≡ s s

−1).

Then, by switching the starting and ending points of intervals, E(b) is defined,
for b ∈ {≺, d, o}, to be the set of relations r, such that either of the following
holds:

(b b−1) ⊆ r

(b) ⊆ r ⊆ re ∪ (≡ f f
−1)

(b−1) ⊆ r ⊆ re
−1 ∪ (≡ f f

−1)
r ⊆ (≡ f f

−1).

2

Definition 3.6 (Subclasses S∗ and E∗ [Drakengren and Jonsson, 1997a])
Let rs and re be as in Definition 3.5, and define S∗ to be the set of relations
r, such that either of the following holds:
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(≡ f f
−1) ⊆ r

(f f
−1) ⊆ r ⊆ rs ∪ rs

−1

(≡ f) ⊆ r ⊆ rs ∪ (≡ s s
−1)

(≡ f
−1) ⊆ r ⊆ rs

−1 ∪ (≡ s s
−1)

(f) ⊆ r ⊆ rs

(f−1) ⊆ r ⊆ rs
−1

(≡) ⊆ r ⊆ (≡ s s
−1)

r = ⊥

Symmetrically, replacing f by s (and their inverses), (≡ s s
−1) by (≡ f f

−1),
and rs by re, we get the subclass E∗. 2

3.3 Algorithms

We will now present the tractable algorithms for the subclasses of Allen’s
algebra presented in the previous section. The proofs of the following claims
can be found in [Drakengren and Jonsson, 1997a; Drakengren and Jonsson,
1997b].

• Algorithm 3.8 correctly solves Isat(A(r, b)) in polynomial time.

• Algorithm 3.9 correctly solves Isat(A≡) in polynomial time.

• Algorithm 3.12 correctly solves Isat(S(b)) and Isat(S∗) in polynomial
time, and exchanging starting and ending points in the algorithm, also
Isat(E(b)) and Isat(E∗) can be solved in polynomial time.

A definition is needed to understand Algorithm 3.8.

Definition 3.7 (Strong component) A subgraph C of a graph G is said
to be a strong component of G if it is maximal such that for any nodes a, b

in C, there is always a path in G from a to b. 2

A few definitions are needed for Algorithm 3.12. The observant reader might
notice that some of the definitions differ slightly from the original ones [Drak-
engren and Jonsson, 1997a]. However, the changes were only done in order
to improve the presentation; it is easy to see that they are equivalent (and
cleaner).
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Algorithm 3.8 (Alg-Isat(A(r, b)))

input Instance G = 〈V, E〉 of Isat(A)

1 Redirect the arcs of G so that all relations
are in A1(b) ∪A2(r, b) ∪ A3(r, b)

2 Let G′ be the graph obtained from G by removing arcs which are not
labelled by some relation in A2(r, b) ∪A3(r, b)

3 Find all strong components C in G′

4 for every arc e in G whose relation
does not contain ≡

5 if e connects two nodes in some C then
6 reject
7 accept

2

Definition 3.10 (sprel(r), eprel(r), sprel+(r), eprel−(r)) Take the rela-
tion r ∈ A, let u and v be interval variables, and consider the instance S of
Isat({r}) which relates u and v with the relation r only. Define the rela-
tion sprel(r) on real numbers to be the implied relation between the starting
points of u and v. That is, for basic relations, we define (the quotation marks
are only to avoid notational confusion; the actual relations are intended)

sprel(≡) = “=”
sprel(≺) = “<”
sprel(d) = “>”
sprel(o) = “<”
sprel(m) = “<”
sprel(s) = “=”
sprel(f) = “>”

sprel(r−1) = (sprel(r))−1,

and for disjunctions, sprel(r) is the relation corresponding to
∨

b∈r sprel(b).
For example, sprel((≺ ≻)) = “ 6=”. Symmetrically, we define eprel(r) to be
the implied relation between ending points given r. Note that sprel(r) and
eprel(r) have to be either of <, ≤, =, ≥, >, 6=, ⊤ or ⊥.

16



Algorithm 3.9 (Alg-Isat(A≡))

input Instance G = 〈V, E〉 of Isat(A)

1 if some arc in G is labelled by ( ) then
2 reject
3 else
4 accept

2

Further, we define specialisations of these, by sprel+(r) = sprel(r ∩ (≡ f f
−1))

and eprel−(r) = eprel(r ∩ (≡ s s
−1)), i.e., the implied relations on starting

(ending) points by r, given that the ending (starting) points are known to
be equal. 2

Definition 3.11 (Explicit starting (ending) point relations) Let I ⊆
A, and define the function expl− on instances G = 〈V, E〉 of Isat(I) by
setting

expl−(G) = {u−sprel(r)v− | 〈u, r, v〉 ∈ E}.

expl−(G) is said to be obtained from G by making starting point relations
explicit.

Symmetrically, using eprel and ending points instead of sprel and starting
points, expl+(G) is said to be obtained from G by making ending points
explicit. 2

3.4 Computing Entailed Relations

Given an instance Θ of Isat(I) and two distinguished nodes X and Y , we
define an instance of the entailed relation problem (Ient) to be the triple
〈Θ, X, Y 〉, and the computational task as follows: find the smallest set R

of basic relations such that Θ ∪ X(B − R)Y is not satisfiable4. Ient is

4An equivalent definition of the computational task is the following: find the largest
set R of basic relations such that XRY holds in all models of Θ. This is the standard
notion of entailment.
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Algorithm 3.12 (Alg-Isat(S(b)), Alg-Isat(S∗))

input Instance G = 〈V, E〉 of Isat(A)

1 H ← expl−(G)
2 if not PAsat(H) then
3 reject
4 K ← ∅
5 for each 〈u, r, v〉 ∈ E

6 if not PAsat(H ∪ {u− 6= v−}) then
7 K ← K ∪ {u− = v−}
8 else
9 K ← K ∪ {u− 6= v−}

10 P ← {u+eprel−(r)v+ | 〈u, r, v〉 ∈ E ∧ u− = v− ∈ H ∪K}
11 if not PAsat(P ) then
12 reject
13 accept

2

polynomially equivalent to a number of other computational problems such
as the minimum labelling problem5 (MLP) where one computes the entailed
relation between all pairs of variables.

For the ORD-Horn algebra, it turns out that computing entailed relations
is a polynomial-time problem, as proved by Nebel and Bürckert [1995]. We
state the simple proof here.

Theorem 3.13 Ient(H) is solvable in polynomial time.
Proof: Let 〈Θ, X, Y 〉 be an instance of Ient(H). Using a polynomial-time
algorithm for Isat(H), one can check whether Θ ∪ (X(Bi)Y ) is satisfiable
for each Bi ∈ B. The set of basic relations for which the test succeeds is the
relation between X and Y which is entailed by Θ. 2

It is easy to see that if Ient(I) can be solved in polynomial time, then
Isat(I) is a polynomial-time problem. Next, we show that the converse

5This problem is denoted ISI in [Nebel and Bürckert, 1995].
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does not hold in general. Let r1 = (m m
−1

s s
−1

f f
−1) and r2 = B − {≡}.

Lemma 3.14 Let A, B, X be intervals such that

1. A(≺)B;

2. Xr1A; and

3. Xr2B.

Then, in any model I,

[I(X−), I(X+)] ∈
{

[I(A−), I(B−)], [I(A−), I(B+)],

[I(A+), I(B−)], [I(A+), I(B+)]
}

.

Proof: Easy exercise. 2

Theorem 3.15 If S is a subclass containing r1 and r2, then Ient(S) is
NP-complete.
Proof: Polynomial-time reduction from the NP-complete problem 4-Colourability.
Let G = 〈V, E〉 be an arbitrary graph, and construct a set of interval formulae
as follows:

1. Introduce two auxiliary interval variables A and B;

2. For each w ∈ V , introduce an interval variable W and the relations
Wr1A, Wr2B;

3. For each (w1, w2) ∈ E, add the relation W1r2W2.

Let r be the entailed relation between A and B in Θ. We claim that ≺∈ r

iff G is 4-colourable.
if: Let f : V → {1, 2, 3, 4} be a legal colouring of the vertices in G. We

incrementally construct a model I of Θ such that A(≺)B. First, arbitrarily
choose I such that I(A)(≺)I(B). For each w ∈ V , let

1. I(W ) = [I(A−), I(B−)] iff f(w) = 1;

2. I(W ) = [I(A−), I(B+)] iff f(w) = 2;
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3. I(W ) = [I(A+), I(B−)] iff f(w) = 3;

4. I(W ) = [I(A+), I(B+)] iff f(w) = 4.

It is easy to see that I is a model of Θ.
only-if: Let I be a model of Θ such that I(A)(≺)I(B). By Lemma 3.14

and the construction of Θ, we know that for each w ∈ V ,

I(W ) ∈ {[I(A−), I(B−), [I(A−), I(B+)], [I(A+), I(B−)], [I(A+), I(B+)]}.

Furthermore, if (w1, w2) ∈ E, then I(W1) 6= I(W2), and thus G is 4-
colourable. 2

Corollary 3.16 Define A(r, b) as in Definition 3.3. Then Ient(A(r, b)) is
NP-complete.
Proof: r1, r2 ∈ A(r, b) for all possible choices of r and b. 2

4 Point-Interval Relations: Vilain’s Point-Interval

Algebra

The point-interval algebra [Vilain, 1982] is based on the notions of points,
intervals and binary relations on these. Where Allen’s algebra is used for
expressing relations between intervals, and the point algebra is used for ex-
pressing relations between points, the point-interval algebra allows points to
be related to intervals. Thus, the relations in this algebra relate objects of
different types, making it useful for combining the world of points with the
world of intervals. That is exactly how it is used in Meiri’s [1996] qualitative
algebra.

4.1 Definitions

A point p is a variable interpreted over the set of real numbers R. An interval
I is represented by a pair 〈I−, I+〉 satisfying I− < I+, where I− and I+ are
interpreted over R. We assume that we have a fixed universe of variable
names for points and intervals. Then, a V-interpretation is a function M that
maps point variables toR and interval variables toR×R, and which satisfies
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the previously stated restrictions. We extend the notation by denoting the
first component of M(I) by M(I−) and the second by M(I+).

Given an interpreted point and an interpreted interval, their relative po-
sitions can be described by exactly one of five basic point-interval relations,
where each basic relation can be defined in terms of its endpoint relations
(see Table 2). A formula of the form pBI, where p is a point, I an in-
terval and B is a basic point-interval relation, is said to be satisfied by a
V-interpretation if the interpretation of the points and intervals satisfies the
endpoint relations specified in Table 2.

To express indefinite information, unions of the basic relations are used,
yielding 25 distinct binary point-interval relations. Naturally, a set of basic
relations is to be interpreted as a disjunction of its member relations. A
point-interval relation is written as a list of its members, e.g., (b d a). The
set of all point-interval relations is denoted by V. We denote the empty
relation ⊥ and the universal relation ⊤.

A formula of the form p(B1, . . . , Bn)I is said to be a point-interval formula.
Such a formula is said to be satisfied by a V-interpretation M if pBiI is
satisfied by M for some i, 1 ≤ i ≤ n. A set Θ of point-interval formulae
is said to be V-satisfiable if there exists an V-interpretation M that satisfies
every formula of Θ. Such a satisfying V-interpretation is called a V-model of
Θ. The reasoning problem we will study is the following:

Instance: A finite set Θ of point-interval formulae.
Question: Does there exist a V-model of Θ?

We denote this problem V-Sat. In the following, we often consider restricted
versions of V-Sat, where relations used in the formulae in Θ are taken only
from a subset S of V. In this case we say that Θ is a set of formulae over S,
and use a parameter in the problem description to denote the subclass under
consideration, e.g. V-Sat(S).

4.2 Complexity Results

The restriction of expressiveness only to allow relations between points and
intervals does not reduce computational complexity when compared to Allen’s
algebra.
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Basic relation Example Endpoints

p before I b p p < I−

III

p starts I s p p = I−

III

p during I d p I− < p < I+

III

p finishes I f p p = I+

III

p after I a p p > I+

III

Table 2: The five basic relations of the V-algebra. The endpoint relation
I− < I+ that is required for all relations has been omitted.

Theorem 4.1 Deciding satisfiability in the point-interval algebra is NP-
complete.
Proof: See Meiri [1996]. 2

However, the reduction of expressiveness makes it easier to completely classify
which subclasses are tractable and which are not: a complete classification of
tractability in the point-interval algebra was done by Jonsson et al. [1999]. It
turns out that there are only five maximal tractable subclasses, named V23,
V20
s

, V20
f

, V17
s

and V17
f

. See Table 3 for a presentation of these subclasses.

4.3 Algorithms

We will now present the tractable algorithms for the subclasses presented in
the previous section; the correctness proofs and complexity analyses can be
found in [Jonsson et al., 1999].

• Algorithm 4.2 correctly solves satisfiability for V23 in polynomial time6.

• Algorithm 4.3 correctly solves satisfiability for V20
s

in polynomial time.

• Algorithm 4.3, exchanging starting and ending points of intervals, cor-
rectly solves satisfiability for V20

f
in polynomial time.

6The set V23 is exactly the set of relations which can be expressed in the point-algebra,
so line 1 can be performed in linear time.
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V23 V20
s

V20
f

V17
s
V17
f

⊥ • • • • •

(b) • • •
(s) • • •
(b s) • • • •
(d) •
(b d) • •

(s d) • •
(b s d) • • •
(f) • • •
(b f) • •

(s f) • •
(b s f) • • •
(d f) • •
(b d f) • • •

(s d f) • • •
(b s d f) • • • •
(a) • • •
(b a) • •
(s a) • •

(b s a) • • •
(d a) • •
(b d a) • • •
(s d a) • • •

(b s d a) • • • •
(f a) • • • •
(b f a) • • •
(s f a) • • •

(b s f a) • • • •
(d f a) • • •
(b d f a) • • • •
(s d f a) • • • •
⊤ • • • • •

Table 3: The maximal subclasses of V which have a polynomial-time satisfi-
ability problem.
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• Algorithm 4.4 correctly solves satisfiability for V17
s

in polynomial time.

• Algorithm 4.4 correctly solves satisfiability for V17
f

in polynomial time.

Algorithm 4.2 (Alg-PIAsat(V23))

input Instance G = 〈V, E〉 of PIAsat(V23)

1 Transform G into an equivalent set P of point-algebra formulae
2 if PAsat(P ) then
3 accept
4 else
5 reject

2

Algorithm 4.3 (Alg-PIAsat(V20
s

))

input Instance G = 〈V, E〉 of PIAsat(V20
s

)

1 Define f : {b, s, d, f, a} → {<, =, >} such that f(b) = “ <′′,
f(s) = “ =′′ and f(d) = f(f) = f(a) = “ >′′.

2 Let P = {v(
⋃

r∈R f(r))w | (v, R, w) ∈ E}.
3 if PAsat(P ) then
4 accept
5 else
6 reject

2

5 Formalisms with Metric Time

We will now examine known tractable formalisms allowing for metric time,
and which are not subsumed by the Horn-DLR framework. By formalisms
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Algorithm 4.4 (Alg-PIAsat(V17
s

))

input Instance G = 〈V, E〉 of PIAsat(V17
s

)

1 if G contains ⊥ then
2 reject
3 else
4 accept

2

allowing metric time, we mean formalisms with the ability to express state-
ments such as “X happened at time point 100” or “X happened at least 50
time units before Y ”. Note that Allen’s algebra cannot express this, while
the Horn DLRs can.

The first example is an extension to the continuous endpoint formulae,
and the second is a method for expressing metric time in the subalgebras
S(·), E(·), S∗ and E∗.

5.1 Definitions

Definition 5.1 (Augmented (continuous) endpoint formula) An
augmented (continuous) endpoint formula [Meiri, 1996] is

1. a (continuous) point algebra formula; or

2. a formula of the type x ∈ {[d−

1 , d+
1 ], . . . , [d−

n , d+
n ]} where d−

1 , . . . , d−

n , d+
1 , d−

n ∈
Q and d−

i ≤ d+
i , 1 ≤ i ≤ n.

2

If there is a need for unbounded intervals, Q can be replaced by Q ∪
{−∞, +∞} in the previous definition. Note that the definition allows for
discrete domains by setting the left and right endpoint of the intervals equal.
A set Γ of augmented endpoint formulae is satisfiable if there exists an as-
signment I to the variables that

1. satisfies (in the ordinary sense) the point algebra formulae; and
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2. if x ∈ {[d−

1 , d+
1 ], . . . , [d−

n , d+
n ]} ∈ Γ, then I(x) ∈

⋃

{[d−

1 , d+
1 ], . . . , [d−

n , d+
n ]}.

We will now turn back to the interval satisfiability problem (Definition 3.1),
and extend it to allow for metric information on starting points of intervals.

Definition 5.2 (M-Isat(I)) Let 〈V, E〉 be an instance of Isat(I) and H

a finite set of DLRs over the set {v+, v− | v ∈ V } of variables, v− representing
starting points and v+ ending points of intervals v.

An instance of the problem of interval satisfiability with metric infor-
mation for a set I of interval relations, denoted M-Isat(I), is a tuple
Q = 〈V, E, H〉.

An interpretation M for Q is an interpretation for 〈V, E〉. Since we now
need to refer to starting and ending points of intervals, we extend the notation
such that M(v−) obtains the starting point of the interval M(v), and similarly
for M(v+).

An instance Q is said to be satisfiable if there exists a model M of 〈V, E〉
such that the DLRs in H are satisfied, with values for all v− and v+ by
M(v−) and M(v+), respectively. 2

In order to obtain tractability, the following restrictions are imposed (the
definitions differ slightly from the original ones).

Definition 5.3 (Ms-Isat(I), Me-Isat(I)) Let 〈V, E, H〉 be an instance
of M-Isat(I) where the DLRs of H are restricted in two ways: first, H may
only contain Horn DLRs and second, H may not contain any variables v+,
where v ∈ V , i.e., it may only relate starting points of intervals. The set
of such instances is denoted Ms-Isat(I), and is said to be the problem of
interval satisfiability with metric information on starting points.

Symmetrically, by exchanging starting and ending points, we get the
problem of interval satisfiability with metric information on ending points,
denoted Me-Isat(I). 2

5.2 Complexity Results

Theorem 5.4 Deciding the satisfiability of augmented endpoint formulae is
NP-complete, while deciding satisfiability of augmented continuous endpoint
formulae is a polynomial-time task.
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Proof: See Meiri [1996]. A set of augmented continuous endpoint formulae
is satisfiable iff it is arc and path consistent; explicit algorithms can be found
in Meiri’s paper. 2

Theorem 5.5 Ms-Isat(S(b)), Me-Isat(E(b)), Ms-Isat(S∗) and Me-Isat(E∗)
are polynomial-time problems, for b ∈ {≻, d, o−1}.
Proof: See Drakengren and Jonsson [1997a]. A polynomial-time algorithm
is presented in Algorithm 5.7 for the case of Ms-Isat; an algorithm for the
case of Me-Isat is easily obtained by exchanging starting and ending points
of intervals. 2

The restriction that we cannot express starting and ending point information
at the same time is essential for obtaining tractability, once we want to go
outside the ORD-Horn algebra.

Proposition 5.6 Let S ⊆ A such that S is not a subset of the ORD-Horn
algebra, and let SE be the set of instances Q = 〈V, E, H〉 of M-Isat(S),
where H may contain only DLRs u+ = v− for some u, v ∈ V . Then the
satisfiability problem for SE is NP-complete.
Proof: See Drakengren and Jonsson [1997a]. 2

6 Other Approaches to Temporal Constraint

Reasoning

6.1 Unit Intervals and Omitting ⊤

Most results on Allen’s algebra that we have presented so far rely on two
underlying assumptions:

1. The top relation is always included in any subalgebra7; and

2. Any interval model is regarded as a valid model of a set of Allen rela-
tions.

7In other words, we allow variables that are not explicitly constrained by any relation.
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Algorithm 5.7 (Alg-Ms-Isat(I))

input Instance Q = 〈V, E, H〉 of Ms-Isat(A)

1 H ′ ← H ∪ expl−(〈V, E〉)
2 if not hornDLRsat(H ′) then
3 reject
4 K ← ∅
5 for each 〈u, r, v〉 ∈ E

6 if not hornDLRsat(H ′ ∪ {u− 6= v−}) then
7 K ← K ∪ {u− = v−}
8 else
9 K ← K ∪ {u− 6= v−}

10 P ← {u+eprel−(r)v+ | 〈u, r, v〉 ∈ E ∧ u− = v− ∈ H ′ ∪K}
11 if not PAsat(P ) then
12 reject
13 accept

2

These assumptions are not always appropriate. For instance, there are ex-
amples of graph-theoretic applications where there is no need to use the top
relations, e.g., interval graph recognition [Golumbic and Shamir, 1993]. Sim-
ilarly, there are scheduling and physical mapping applications where it is
required that the intervals must be of length 1 [Pe’er and Shamir, 1997].

The implications of such “non-standard” assumptions have not been stud-
ied in any greater detail in the literature. However, for a subclass known as
A3 (defined by Golumbic and Shamir [1993]), the picture is very clear, as we
will see.

Let ∩ denote the Allen relation (≡ d d
−1

o o
−1

m m
−1

s s
−1

f f
−1), that

is, the relation stating that two intervals have at least one point in common
(they have a nonempty intersection). Let A3 denote the following set of Allen
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∆1 ∆2 ∆3

⊥ • • •
(≺) • • •
(≻) • • •
(≺≻) • •
(∩) • •
(≺ ∩) •
(≻ ∩) •
⊤ • •

Table 4: Maximal tractable subclasses of A3.

relations8:

{⊥, (≺), (≻), (≺ ≻), (∩), (≺ ∩), (≻ ∩),⊤}.

The maximal tractable subclasses of A3 have been identified by Golumbic
and Shamir [1993] and Webber [1995], and they are presented in Table 4.
Note that ⊤ is not a member of ∆2. The maximal tractable subclasses of
A3 under the additional assumption that all intervals are of unit length have
been identified by Pe’er and Shamir [1997]. These subclasses can be found
in Table 59.

Some of the maximal tractable subclasses ofA3 are related to the tractable
subclasses presented in Sections 2 and 3. For instance, ∆′

1 ⊂ ∆1 ⊂ H and
∆3 ⊂ S(≻). It should be noted that satisfiability in the ORD-Horn-algebra
can be decided in polynomial time even under the unit interval assumption.
Given a set of ORD-Horn relations, convert them to Horn DLRs and add
constraints of the type x+ − x− = 1 for each interval I = [x−, x+]. The re-
sulting set of formulae is also a set of Horn DLRs, and thus the satisfiability
can be decided in polynomial time.

8Here, the relations are to be viewed as “macro relations”, so that (≺ ∩) denotes the
Allen relation (≺ ≡ d d

−1
o o

−1
m m

−1
s s

−1
f f

−1).
9Golumbic and Shamir [1993] and Pe’er and Shamir [1997] agree on the definition of

∆2 and ∆3 but they define ∆1 differently. By ∆1, we mean ∆1 in the sense of Golumbic
and Shamir [1993] and by ∆′

1, we mean ∆1 in the sense of Pe’er and Shamir [1997].
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∆′

1 ∆2 ∆3

⊥ • • •
(≺) • •
(≻) • •
(≺≻) • •
(∩) • •
(≺ ∩) •
(≻ ∩) •
⊤ • •

Table 5: Maximal tractable subclasses of A3 under the unit interval assump-
tion.

6.2 Point-Duration Relations

Reasoning about durations has recently obtained a certain amount of interest,
cf. [Condotta, 2000; Pujari and Sattar, 1999; Wetprasit and Sattar, 1998;
Navarrete and Marin, 1997].

We will present the framework by Navarrete and Marin [1997] due to its
appealing simplicity, and since many of the other methods build on it. Navar-
rete and Marin have proposed a formalism for reasoning about durations in
the point algebra, and they have provided certain tractability results. Below,
we present their approach and slightly generalize their tractability result.

Definition 6.1 A point-duration network (PDN) is a tuple Σ = 〈NP , ND〉
where

1. NP is a set of PA formulae over a set P = {x1, . . . , xn} of point variables;

2. ND is a set of PA formulae over a set D = {dij | 1 ≤ i < j ≤ n} of
duration variables;

2

A PDN Σ = 〈NP , ND〉 is satisfiable if there exists a assignment I to the
variables in NP such that

1. I(xi)rI(xj) whenever xirxj ∈ NP ; and
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2. |I(xi)− I(xj)|r|I(xk)− I(xm)| whenever dijrdkm ∈ ND.

Theorem 6.2 Deciding whether a PDN is satisfiable or not is NP-complete.

Proof: See Navarrete and Marin [1997]. 2

In order to obtain tractability, Navarrete and Marin [1997] define a restriction
of a PDN.

Definition 6.3 (Simple PDN [Navarrete and Marin, 1997]) A PDN is
said to be simple if the following holds:

• Only the relations <, > or = are allowed in NP and ND;

• For each xi, xj ∈ P , xirxj ∈ NP for some r; and

• For each di, dj ∈ D, dirdj ∈ ND for some r.

2

It is important to note that this defintion does not allow two variables to be
unrelated. Furthermore, they show that deciding the satisfiability of simple
PDNs is a polynomial-time problem. We now intend to weaken their restric-
tion in two steps, still obtaining tractability. The tool for this will be the
Horn DLRs.

Definition 6.4 (Point-simple PDN) A PDN is said to be point-simple
if the following holds:

• Only the relations <, > or = are allowed in NP ; and

• For each xi, xj ∈ P , xirxj ∈ NP for some r.

2

Note that there are no requirements on the formulae in ND; thus durations
may be related with arbitrary PA relations, including the ⊤ relation.

We now show how the satisfiability problem for point-simple PDNs can
be solved in polynomial time, by a straightforward reduction to Horn DLRs.

31



Let Σ = 〈NP , ND〉 be a point-simple PDN. Construct a set Θ of Horn
DLR formulae incrementally as follows: Check whether NP is satisfiable or
not. If it is not satisfiable, report that Σ is not satisfiable. Otherwise, let Θ
initially equal NP .

For each formula dijrdkm ∈ ND, check whether xi < xj , xi > xj or xi = xj

is in NP . Since Σ is point-simple, at least one of these relations is in NP . By
observing that NP is satisfiable, exactly one of the relations is in NP . Note
the following:

1. if xi < xj ∈ NP , then dij = |xi − xj | = xj − xi;

2. if xi > xj ∈ NP , then dij = |xi − xj | = xi − xj ;

3. if xi = xj ∈ NP , then dij = |xi − xj | = 0;

Continue by checking whether xk < xm, xk > xm or xk = xm, and decide the
value of dkm as above. Now, it is easy to convert the relation dijrdkm to a
Horn DLR.

As an example, assume that dij < dkm, xi > xj and xk < xm. The
corresponding Horn DLR then will be xi−xj < xm−xk. Add the Horn DLR
to Θ and note that Σ is satisfiable iff Θ is satisfiable. The transformation
from point-simple PDNs to Horn DLRs can easily be performed in polynomial
time, and thus we have shown that deciding satisfiability of point-simple
PDNs is a polynomial-time solvable problem.

We are in the position to make one more generalization, still retaining
tractability.

Definition 6.5 (Horn-simple PDN) We say that Σ = 〈NP , ND〉 Horn-
simple if Σ satisfies all the requirements for being point-simple, except that
ND is allowed to contain arbitrary Horn DLRs over D, instead of requiring
PA formulae. 2

Theorem 6.6 Deciding whether a Horn-simple PDN is satisfiable or not is
a polynomial-time problem.
Proof: The above transformation from ND relations to Horn DLR point
relations simply replaces duration variables dij by either xi − xj , xj − xi or
0. If a Horn DLR φ is in ND, then the transformed formula will obviously
be a Horn DLR too, but now over the point variables. 2
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[Jonsson and Bäckström, 1998] Peter Jonsson and Christer Bäckström. A
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