Seamlessly Integrating Software & Hardware Modelling for
Large-Scale Systems

Toby Myers!

Peter Fritzson> R. Geoff Dromey!

1School of Information and Computing Technology, Griffith University, Australia,
toby.myers@student.griffith.edu.au, g.dromey@griffith.edu.au
2Department of Computer and Information Science, Linkoping University, Sweden, pet fr@ida.liu.se

Abstract

Large-scale systems increasingly consist of a mixture of
co-dependent software and hardware. The differing nature
of software and hardware means that they are often mod-
elled separately and with different approaches. This can
cause failures later in development during the integration
of software and hardware designs, due to incompatible
assumptions of software/hardware interactions. This pa-
per proposes a method of integrating the software engi-
neering approach, Behavior Engineering, with the math-
ematical modelling approach, Modelica, to address the
software/hardware integration problem. The environment
and hardware components are modelled in Modelica and
integrated with an executable software model designed
using Behavior Engineering. This allows the complete
system to be simulated and interactions between software
and hardware to be investigated early in development.

Keywords software-hardware codesign, large-scale sys-
tems, Behavior Engineering, Modelica.

1. Introduction

The increasingly co-dependent nature of software and
hardware in large-scale systems causes a software/hardware
integration problem. During the early stages of develop-
ment, the requirements used to develop a software specifi-
cation often lack the quantified or temporal information
that is necessary when focusing on software/hardware
integration. Also early on in development, the hardware
details must be specified, such as the requirements for the
sensors, actuators and architecture on which to deploy
the software. There is a risk of incompatibility if the
software and hardware specifications contain contradicting
assumptions about how integration will occur. Even if the
software and hardware specifications are compatible, it is
possible that a software/hardware combination with an

2nd International Workshop on Equation-Based Object-Oriented
Languages and Tools. July 8, 2008, Paphos, Cyprus.

Copyright is held by the author/owner(s). The proceedings are published by
Linkoping University Electronic Press. Proceedings available at:
http://www.ep.liu.se/ecp/029/

EOOLT 2008 website:

http://www.eocolt.org/2008/

alternative form of integration exists that would be more
advantageous.

One approach of evaluating software/hardware integra-
tion is to build prototypes of the software and hardware.
This approach allows software/hardware interactions to be
investigated, but also diverts attention away from the indi-
vidual modelling of the respective software and hardware
models. Investigating integration using software/hardware
prototypes also has the disadvantage of occurring later
in development, requiring decisions to have already been
made as to how integration will occur.

Addressing the issues involved with integrating software
and hardware models of systems earlier in development can
reduce the risk of incompatibilities between the software
and hardware specifications. Earlier investigation of soft-
ware/hardware interactions minimises changes that must be
made later in development when they are harder and more
expensive to fix. If the method of investigating integration
uses simulation of specifications, it allows many different
integration configurations to be evaluated to assist in find-
ing the best solution. The simulation of software/hardware
co-specifications uses abstract models of the software and
hardware to focus on timing of the interactions between
the hardware and software. Co-specification simulation is
used by many system design tools such as STATEMATE
and MATLAB [6].

The principle of separation of concerns advocates that
due to the differing nature of software and hardware,
different modelling techniques should be used. Software
modelling consists of capturing the required functionality,
and how the functionality can best be organised to facilitate
future reuse, extensibility, etc. Hardware modelling focuses
on interactions with the physical environment through sen-
sors and actuators which is best described mathematically.
Currently, UML is the dominant graphical modelling nota-
tion for software, whereas Modelica is the major equation-
based object-oriented (EOO) mathematical modelling lan-
guage for modelling complex physical systems.

Previous work in this area resulted in the ModelicaML
UML profile [15} [14] partly based on the SysML profile
[L3]. ModelicaML combined the major UML diagrams
with Modelica graphic connection diagrams. However,
there are problems with this approach. The imprecise


http://www.ep.liu.se/ecp/029/
http://www.eoolt.org/2008/

semantics and portability problems of UML create diffi-
culties for executable specifications. Moreover, there is no
well-defined process of precisely capturing and converting
informal software requirements into more formal represen-
tations that can be analysed and further transformed into
executable models.

Fortunately, the Behavior Engineering (BE) approach
(see Section [3) addresses several of these problems. BE is
a systems & software engineering approach of modelling
software-intensive systems that has precise requirements
capture. The behavioral view of BE has a formal se-
mantic described in process algebra. BE also supports
model-checking, simulation, and the code-generation of
executable models.

Thus, we propose an integrated approach, where BE is
used to model and capture requirements of the software
aspects of a product, whereas Modelica is used for high-
level modelling of the system’s environment and hard-
ware components. We consider the integration method
to be seamless, as the software and hardware models
are combined in an inconspicous way which allows both
formalisms to focus independently on their respective do-
mains. We also propose this method is suited to be applied
to large-scale systems, as both BE and Modelica have
been used independently to model large-scale systems
[L6} [7]. This distinguishes this approach from co-design
approaches such as COSMOS[9] and Polis[2]] which are
focused towards the more fine-grained software/hardware
interactions of embedded systems.

Adoption of an integrated approach to product/system
design should allow for a much more effective product
development process since a system can be analysed and
tested in all stages of development. The integration of BE
and Modelica models supports this through allowing dif-
ferent hardware/software configurations to be investigated,
such as:

e The periodic/aperiodic sampling of sensors and the
action of actuators on the physical environment can be
simulated to determine the effect on the software of the
system. This may also involve simulating the failure of
a sensor/actuator or errors in communication.

e The capabilities of the various combinations of hard-
ware and software platforms on which the software
could be deployed can be simulated by choosing pe-
riodic/aperiodic frequencies at which to allow interac-
tions between the Modelica and BE models.

e The hardware and software can be tested in different
simulated environments and scenarios.

In this paper we combine these two formalisms for the
first time, in a study of the integrated software/hardware
modelling of an Automated Train Protection (ATP) system.
BE is used to model the control software of the ATP
system, and Modelica is used to model physical compo-
nents like the train, the driver, actuators, sensors, etc. The
modelled ATP system is used to illustrate the benefits of
investigating the integration of software/hardware specifi-
cations early in development.

In Section [2] & [3] we first give some background on
Modelica and BE, before presenting the details of our
integration method in Section ] The integration method
is then applied to a case study of the system modelling and
simulation of an ATP system in Section 3]

2. Modelica Background

Modelica [12, 17, [8] is an open standard for system
architecture and mathematical modelling. It is envisioned
as the major next generation language for modelling and
simulation of applications composed of complex physical
systems.

The equation-based, object-oriented, and component-
based properties allow easy reuse and configuration of
model components, without manual reprogramming in
contrast to today’s widespread technology, which is mostly
block/flow-oriented modelling or hand-programming.

The language allows defining models in a declarative
manner, modularly and hierarchically and combining of
various formalisms expressible in the more general Mod-
elica formalism.

A component may internally consist of other connected
components, i.e., as in Figure | showing hierarchical mod-
elling.

The multidomain capability of Modelica allows com-
bining of systems containing mechanical, electrical, elec-
tronic, hydraulic, thermal, control, electric power or
process-oriented components within the same application
model. In brief, Modelica has improvements in several
important areas:

® Object-oriented mathematical modelling. This tech-
nique makes it possible to create model components,
which are employed to support hierarchical structuring,
reuse, and evolution of large and complex models
covering multiple technology domains.

® Physical modelling of multiple application domains.
Model components can correspond to physical objects
in the real world, in contrast to established techniques
that require conversion to “signal” blocks with fixed
input/output causality. That is, as opposed to block-
oriented modelling, the structure of a Modelica model
naturally corresponds to the structure of the physical
system.

Figure 1. Hierarchical Modelica model of an industrial
robot



® Acausal modelling. Modelling is based on equations
instead of assignment statements as in traditional in-
put/output block abstractions. Direct use of equations
significantly increases re-usability of model compo-
nents, since components adapt to the data flow context
for which they are used.

Several tools support the Modelica specification, rang-
ing from open-source products such as OpenModelica [12]],
to commercial products like Dymola [5] and MathModel-
ica [[11]].

3. Behavior Engineering Background

BE [3] is an integrated approach that supports the engineer-
ing of large-scale dependable software intensive systems
at both the systems engineering and software engineering
level. BE has been proven as a useful technique in require-
ments analysis of large-scale industry projects, detecting
defects at a rate approximately two to three times higher
than conventional techniques [16]. The BE approach uses
the Behavior Modelling Language (BML) and the Behavior
Modelling Process (BMP) to transform a system described
in natural language requirements to a design composed of
a set of integrated components.

3.1 The Behavior Modelling Language

The BML is a graphical, formal language consisting of
three tree-based views: Behavior Trees, Composition Trees
and Structure Trees]

A Behavior Tree (BT) is a “formal, tree-like graphical
form that represents behavior of individual or networks
of entities which realize or change states, make decisions,
respond-to/cause events, and interact by exchanging infor-
mation and/or passing control.” [4]. The formal semantics
of BTs are described in the Behavior Tree Process Algebra
(BTPA) language [1]]. BTPA supports simulation, formal
verification by model-checking and is a foundation for BT
execution. BTs can describe multiple threads of behavior.
Coordination is achieved using either message-passing
(events), shared variable blocking or synchronisation. A
summary of the BT notation is shown in Figure[2]

Composition Trees (CTs) contain the complete system
vocabulary, which is consistent with the vocabulary used in
BTs as they both originate from the same natural language
requirements. CTs are a tree of components arranged into
a compositional hierarchy using structural and functional
aggregation or specialisation relations. Each component in
the BT contains the complete set of states, attributes, events
and relations in which the component is responsible for.
CTs are an important tool in resolving defects not visible
in individual Requirement Behavior Trees, such as aliases.

3.2 The Behavior Modelling Process

The BMP is closely tied with the BML. The BMP consists
of a number of distinct stages: Translation, Integration, Re-
finement and Design. Each of these stages utilises the BML
to address the problems of scale, complexity and imperfect

! Due to space restrictions Structure Trees will not be discussed

knowledge that arise when dealing with systems described
by a large number of natural language requirements.

Translation proceeds one requirement at a time, re-
sulting in a Requirement Behavior Tree (RBT) that is
created from the original natural language description. As
each RBT is translated, the Requirement Composition Tree
(RCT) should be updated to include any new information
such as additional components, states, etc. Also, in order to
ensure the translation process is as rigorous as possible, it is
important not to add or remove information but to capture
the intention that is expressed in the natural language
description.

Being able to deal with one requirement at a time,
localises the information that the modeller must absorb and
helps to control the complexity of modelling the system.
It also makes it possible for a team of translators to work
on modelling the system in parallel, using the RCT to
coordinate their work.

Two example RBTs are shown in Figure |4 Discussion
of the translation of an example RBT from the original
requirements is discussed in section [5.1]

Once all the requirements have been translated they are
integrated to form an Integrated Behavior Tree (IBT) which
can then be used to gain a holistic understanding of the
problem space. The process of integration itself also helps
to discover imprecise, conflicting and missing requirements
in the description of the system. This is because forming
the IBT is a fitness test for the requirements, if require-
ments cannot integrate it indicates there are problems with
the description of the system.

When the IBT has been completed, the integrated view
of the system’s behavior helps to detect further defects in
the original natural language requirements. Resolution of
these defects produces a specification of the system, known
as a Model Behavior Tree (MBT).

As the specification is still in the problem space, design
decisions must be made to move to the solution space.
The result is a Design Behavior Tree (DBT). Important
design decisions include determining the boundaries be-
tween the system and the environment and the system
and the components. The system-environment boundary
determines how the system described by the DBT interacts
with the environment, essentially determining the interface
of the system. The system-component boundary involves a
tradeoff between shifting complexity to either the DBT or
to the components.

An example DBT is shown in Figure 5] The design
decisions used to make this DBT are described in Section

51

3.3 Executing a BE Model

BTs contain a description of the functionality of the system
which makes them the primary interest when discussing
executable models.

One approach to execute a BE model is to consider a
BT as a set of interconnected interleaved state machines.
Each component can be implemented by decomposing its
individual state machine and implementing it. The BT is



Basic Nodes Branching
Component . .
tag Behavior] (a) State Realisation
Component :
tag ?ConF()jition? (b) Se|eCtI0n | | ae] L | | e
Component (k) Parallel Branching
tag 7 et 7 (c) Event
Component L[ ]
9 | 722 Condition 277 (d) Guard R
Component * | | e ? | | | o7 |
tag > Message < (E) InpUt
c . (I) Alternate Branching
omponent
tag < Message > (f) OUtPUt
Composition
Nodes with Thread Control
.
=>
tag (g) Reference
L[ e |
tag (h) Branch-Kill (m) Sequential Composition
A . . C
tag (i) Reversion e
>
o
t = . . . . .
* (j) synchronisation (n) Atomic Composition

(a) State Realisation: Component realises the described behavior; (b) Selection: Allow thread to continue if
condition is true; (¢) Event: Wait until event is received; (d) Guard: Wait until condition is true; (e) Input
Event: Receive message™® (f) Output Event: Generate message” (g) Reference: Behave as the destination tree;
(h) Branch-Kill: Terminate all behavior associated with the destination tree; (i) Reversion: Behave as the
destination tree. All sibling behavior is terminated; (j) Synchronisation: Wait for other participating nodes; (k)
Parallel Branching: Pass control to both child nodes; (/) Alternate Branching: Pass control to only one of the
child nodes. If multiple choices are possible make a non-deterministic choice; (m) Sequential Composition:
The behavior of concurrent nodes may be interleaved between these two nodes; (n) Atomic Composition: No

interleaving can occur between these two nodes.

* Note: single characters (> <) / (< >) mean receive/send message internally from/to the system, double characters
(>> <<) / (<< >>) mean receive/send message from/to the environment.

Figure 2. Summary of the Core Elements of the Behavior Tree Notation

also implemented as a state machine which coordinates the
component state machines.

Another approach to execute a BE model is to con-
sider BTs as a model to describe multiple-threaded behav-
ior, making each BT node a process. This allows tradi-
tional process control schedulers consisting of New, Ready,
Blocked, Running, and Exit states to be applied to BTs.

For example, a state realisation node would take the
following path through the scheduler: New, Ready, Run-
ning, Exit. Moving from the Ready to Running State is
determined by a scheduling algorithm, ranging from simple
examples such as First In, First Out (FIFO) to more com-
plex priority-based schedulers. When a state realisation
node is in the running state any encapsulated computation
associated with the component’s state is executed. Upon

reaching Exit its child nodes are added to the scheduler in
the New state to continue execution.

Alternatively, a guard node would take the following
path through the scheduler: New, Blocked, Ready, Run-
ning, Exit. The guard node stays in the Blocked state
until a change in another thread of behavior causes its
condition to become true, upon which it changes to the
Ready state and progresses similarly to the state realisation
node. The scheduler also consists of more complex rules
for BT execution such as alternative branching and atomic
composition.

The benefit of the process control approach is that code
generation from a BT is easily automatable. All that is
required in addition to the automatable code generation is
a version of the scheduler for the platform on which the
executable BE model is deployed.



( Modelica )

Modelica

("Modelica Model (C++)\

when initial() then

(" Behavior Engineering )

-
BE
Model

Y

(" BE Model (C++) )
4 N

startBT();
end when;

(" External Functions

when condition1 then 4
cycleBT();
end when;

when condition2 then
updateSensor(value)
end when;

when condition3 then
state = pollActutator();

end when;

- -,

k\ J /) -

startBT
cycleBT
updateSensor

pollActuator L\ /)

A
A
Y

update

Y
G
query

Scheduler

) L\ )

Figure 3. Interactions between Modelica and BE Models

4. Integrating Modelica & BE Models

Integration of Modelica and BE models occurs after the
models are compiled/code generated into C++ source files.
Integration between the Modelica model and BE model is
performed using Modelica external functions mapped to C
source code. The ‘C’ external functions are then linked to
the ‘C++’ implementation of the BE model. This method
of integration makes the Modelica model responsible for
managing all interactions with the BE model.

Figure [3|shows the integration of a Modelica model and
a BE model. There are three possible types of interaction:
starting/cycling the BT scheduler; adding an event to the
scheduler containing sensor information; or, polling the
scheduler for an actuator command. The initial() function
is used to start the execution of the BT. Boolean conditions
are then used to determine when to cycle the BT scheduler,
pass on sensor information or receive actuator commands.

If interactions are periodic, a boolean clock setup with
a sample function can be used to set the frequency with
which the interaction will occur. If the interaction should
occur based upon a physical event simulated in Modelica,
the event can change the boolean condition which will
initiate the interaction with the BE model. More complex
aperiodic, randomised, or interactions with losses in com-
munication or failures of components can also be simulated
using Modelica constructs. Failures of sensors, actuators
or the communication between them and the software can
be simulated by mearly not performing the interaction that
would normally occur.

This method of interaction ensures that the details of the
interactions that are simulated are documented as part of
Modelica model. It also allows many possible designs to be
simulated by considering how they will effect the timing of
the interactions between the physical and software systems.
For example, if the software is to be run on a multi-

threaded operating system, the boolean condition could
consist of a timing profile which emulates at what times
the BT scheduler will be executed. This timing profile
could be randomised to determine how the system operates
under different loads, or may just address one specific or
worst-case scenario. If more than one operating system
is being considered, a timing profile could be setup for
each operating system and multiple simulations peformed
to determine the differences, if any, on the system as a
whole.

5. Case Study: An Automated Train
Protection System

Most rail systems have some form of train protection
system that use track-side signals to indicate potentially
dangerous situations to the driver. The simplest train pro-
tection systems consist of signals with two states: green
to continue along the track and red to apply the brake to
stop the train. More sophisticated systems include detailed
information such as speed profiles for each section of the
track.

Accidents still occur using a train protection system
when a driver fails to notice or respond correctly to a signal.
To reduce the risk of these accidents, Automated Train
Protection (ATP) systems are used that automate the train’s
response to the track-side signals by sensing each signal
and monitoring the driver’s reaction. If the driver fails to
act appropriately, the ATP system takes control of the train
and responds as required.

The ATP system used for this paper has three track-side
signals: proceed, caution and danger. When the ATP system
receives a caution signal, it monitors the driver’s behavior
to ensure the train’s speed is being reduced. If the driver
fails to decrease the train’s speed after a caution signal or
the ATP system receives a danger signal then the train’s



ATP_Controller
> Value <

l

R6 ATP_Controller
+ |?Value =1:: CAUTION ?

l

ALARM
[ Enabled ]

R6

R6

where

(withiny Driver's_Cab

]

ATP_CONTROLLER
+ ? NOT(Observed) ?

P
o

TRAIN
[ Speed[Decreasing ]]

l

ATP_CONTROLLER
[ Activates ]

what

R

o

what| BRAKING_SYSTEM

\what

(o) TRAIN

[

BRAKING_SYSTEM
+ [ Activated ]

(a) RBT for Requirement 6

P
o

BRAKING_SYSTEM
[ Activated ]

|

R

©

RS ATP_CONTROLLER R8 RESET_MECHANISM
> Value < ?? Resets ??
""':at ATP_CONTROLLER
R8 |ATP_CONTROLLER R8 |ATP_CONTROLLER R8 ATP—C%NTFiOLLER
+ ? Reset ? + ? NOT (Reset ) ? [RE=3]
R8 ATP—ﬁor':‘;Fe*S]LLER R8 | ATP_CONTROLLER
9 + [ Accepts ]
what INPUT what e
where 3
he
(from) ST“SOR (m)|  SENSOR®
R8 ATP_CONTROLLER "
+ > Value <

(b) RBT for Requirement 8

Figure 4. Example Requirement Behavior Trees of the
ATP System

brakes are applied. The complete requirements of the ATP
system can be found in Table [I| The requirements of the
ATP system have been used previously in related work to
demonstrate composition of components using exogenous
connnectors [10]].

Section 5.1l discusses the construction of the BE model
of the ATP system from the requirements and Section
discusses the Modelica model of the ATP systems physical
components and environment.

5.1 ATP - Behavior Engineering Model

Figure [ shows two example RBTs of the ATP system.
Consider the RBT of requirement 6 (RBT6) with reference
to the system requirements. The first two nodes show
the ATP controller receiving a value and a condition to
determine if the value is a caution signal. The second
node has a ‘+’ in the tag to indicate this behavior is

10

implied from the requirements as they do not explicitly
state it is necessary to check the signal is a caution signal.
The next node shows that the Alarm is enabled, and
captures that there is a relation between the Alarm and the
Driver’s Cab. Relations should be read as questions that
can be asked of the primary behavior, which the associated
relational behavior answers. For example, “Where is the
Alarm enabled? Within the Driver’s Cab”. Capturing the
information about the Driver’s Cab ensures that the original
intent of the requirements is not removed. The next BT
node assumes that it is implied that the ATP Controller
observes whether the speed of the train is decreasing.
The final two BT nodes of RBT6 describe the relation
between the ATP Controller and the Braking System, and
the Braking System realising the activated state.

During integration of the RBTs of the ATP system the
following problems were found:

e Conflicting Behavior (R7-RS8). After the Braking Sys-
tem is activated, R7 states that a proceed signal disables
the Alarm whereas R8 states all sensor input is ignored
until the ATP Controller is reset.

e Conflicting Behavior (R7-R9). After the Braking Sys-
tem is activated, R7 states that a proceed signal disables
the alarm whereas RS states that the Reset Mechanism
deactivates the Train’s Brakes and disables the Alarm.

e Missing Behavior (R6). What should the ATP Controller
do if the Train’s speed is observed to be decreasing?

e Missing Behavior. What should the ATP Controller do
if an undefined signal is returned to the ATP Controller?

Each of these problems would need to be resolved with
the client to ensure that the system behaves as is desired.
However for the purposes of this case study the following
assumptions were made:

e R8 and R9 were given priority over R7. That is, a
proceed signal can only disable the Alarm after the
Alarm has been enabled but prior to the Brakes being
activated. After the Brakes have been activated all
sensor input is ignored until the ATP Controller is reset.
Also, resetting the ATP Controller after the Brakes
have been activated causes the Train’s Brakes to be
deactivated and disables the Alarm.

o If the ATP Controller observes the train’s speed to
be decreasing then: if a danger signal is received the
Brakes are immediately activated; or, if a proceed signal
is received the Alarm is disabled. However, if the
train’s speed increases before either of these signals are
received then the ATP Controller should activate the
Train’s Braking System.

Figure [5] shows the DBT of the ATP system resulting
from design decisions made to the MBT. A (M) in the tag
shows the nodes of the DBT where interaction occurs with
the Modelica model. The following design decisions were
made to the MBT:



[pareanov] -
_ sayelg 9y
<=
paads => paadsaaid /
ieéée -
J919Wopaads 94

>(aNeA)YOSNIS< | +
. dlv 84
>(aneA)4OSNIS< | - [parennoeaq] w)
div L4 sayelg 64
vl
9 poads => peadsnaid | 9
>(aneA)OSNIs< |+ [paiqesial . (22N R 222 - [pareanoy] - [pajqesial -~
div L9 wireyy __ I1o19wopaads Pas} .. Sopeig 28 wrepy
¢3AST3 ¢ + éT=9NeA¢ P (0=3neA¢ - >> 19Sal << o
div 24 div div 24 div
> (anfeA)4OSNIS < | + [pareanov] w)
dlv L4 soyelg 9
¢ paads < paadsaaid ¢ a ¢ paads => paadsnaid ¢ |+
J919WoOpaads 94 J919Wwopaads 9d
>> aneApaadsmau <<| -
Jajawopaads 94
- >(aneNMOSNIS< | - [paigeus] o
;, dLv sy wrepy
>> (paads)paadsiab << | - () \_, 9
J919Wwopaads 94
¢3S13 ¢ + ¢T=28NneA¢ +
[paads =: paadsnaaud] 5 dlv & div &
Ja18wopaads 9y
>> anfeApaadsmau << | - () >(aneA)4OSNIS< v
Jajawopaads 94 T dlv
[BuiresadQ] +
dlv cd

[reubis 10812a]
J0Suas &
<(enenNYosSNIS > |
10SUBS
anjea /
>>())4OSN3S Josuss<<| +
10SUBS XS]
€anjeA ‘zanfen ‘Tanea|
[(NAwioley ayenofed] |+
Josuas I
[pareAnoy] + >> (£aN[eA)19318p << | + (W)
.. soprg as| 10SUBS €y
[paiqeus] e >> (zan[eA)osiap << | +(w)
wiely J0suas XS]
¢ 0=9nen¢ >> (Tan[eA)19918p << | + (W)
div o 10suas €y
[reubis 10818@]
Josuas &

Figure 5. Design Behavior Tree of ATP system

11



e Train, Signal, the individual Sensors, Driver’s Cab,
Reset Mechanism, and Noise components are outside
the boundaries of the DBT.

e A Speedometer component is required to receive the
train’s speed and store the previous speed value so that
changes in the speed of the train may be determined.

e Alternative branching and atomic composition was
added to ensure appropriate threaded behavior. Atomic
composition is required for when the speedometer
component’s speed value is updated. This is because
for a small period of time the current speed equals
the previous speed causing the prevSpeed<=speed
guard to evaluate to true, regardless of the new speed
value. Alternative branching ensures that once one of
the mutually exclusive branches has been taken (e.g.
value=0), none of the other branches can be executed
(e.g. value=1, ELSE).

5.2 ATP - Modelica Model

The Modelica model describes the physical components
that make up the environment in which the ATP system
will operate. It consists of components such as the Train,
the Driver, the Train Track, and the Sensors of the track-
side signals. Figure [6] shows the component diagram of
the Modelica model. The Driver component is responsible
for controlling the Train’s speed and resetting the ATP
system. The Train component simulates its velocity and
position on the Track based upon its mass, maximum
acceleration power and maximum brake force. The Train
Track provides the signal sensors with the signal value
at the signal position. The signal sensors then simulate
the presence of noise, occasionally misreading a signal
value. The sensor values, Train speed and driver reset are
all provided to the ATP controller which in turn provides
whether to apply the Train’s Brakes. A simplified version
of the Modelica textual model of the ATP environment is
shown in Figure

5.3 Integration of the Modelica and BE Models

Simulating the integrated Modelica/BE models provides
plots which graphically show the interactions between
software and hardware in reference to time. This allows

signalPosition,
signalValue

Train Tracks
signalPosition, signalValue

Signal Sensors <

sensor values

desired
speed

Driver
desiredSpeed, reset

Train
position, speed

apply brake

VAV
ATP System
(BE Model)

Figure 6. Component diagram of the Modelica ATP
Environment model

12

the investigation and documentation of scenarios in a clear
way. The types of scenarios that can be investigated are:

e The frequency of the execution of the BE model rela-
tive to the Modelica model simulates the performance
capabilities of the hardware platform on which the BE
model will be deployed.

e The sampling frequency/response time of sensors and
actuators can be simulated by the frequency of interac-
tion between the Modelica model and the BE model.

e The system can be tested with different Trains, Drivers,
Train Tracks, etc.

Figure [§] shows four example simulations of the inte-
grated model of the ATP System. All the simulations are
performed with a train model based on a British Rail Class
57 diesel locomotive, which has a mass of 120 tonnes, a
maximum speed of 120.7 km/h, a maximum brake force of
80 tonnes and a power at rail of 1860 kW with an assumed
80% efficiency due to losses in pressure and friction.

The train’s braking time of two seconds is due to its low
velocity (approximately 45km/h) and small weight due to
the absence of carriages. The same train operating at 100
km/h would take approximately eight seconds to brake,
and at 200 km/h would take 32 seconds. The addition of
carriages would further increase the time the train would
take to brake to a complete stop. These braking times
highlight the need to test software-hardware integration
under numerous circumstances.

The simulations performed on this case study show
the ATP system operating with the same configuration of
sensors, actuators and hardware platform. The change that
is tested is the driver’s response to the signals on the track,
the results of which now ensures that the ATP system
is functioning as specified by the requirements. Further
simulations could now be performed to investigate the
ATP system operating both in different scenarios and also
the suitability of different sensors, actuators and hardware
platforms.

6. Conclusion

This paper investigates the software/hardware integration
problem caused by the increasing codependancy of soft-
ware and hardware in large-scale systems. An integrated
approach is described, which integrates separate software
and hardware models to aid the investigation of soft-
ware/hardware interaction through simulation. An ATP
system is used as a case study to describe both separate
software/hardware modelling with BE and Modelica and
software/hardware integration and investigation. This inte-
grated approach allows various software/hardware interac-
tions to be investigated such as software execution speed,
sensor sampling frequencies, and actuator response times.
It also provides a graphical and documentable output of the
investigation the behavior of the software and hardware in
different scenarios.



Acknowledgments

This work was produced with the assistance of funding
from the Australian Research Council (ARC) under the
ARC Centres of Excellence program within the ARC
Centre of Complex Systems (ACCS), the Swedish Vinnova
under the Safe and Secure Modeling and Simulation project
and the Swedish Research Council (VR).

References

[1] Robert Colvin and 1. J. Hayes. A Semantics for Behavior
Trees. ACCS Technical Report ACCS-TR-07-01, ARC
Centre for Complex Systems, April 2007.

[2] Tullio Cuatto, Claudio Passeronge, Luciano Lavagno,
Attila Jurecska, Antonino Damiano, Claudio Sansoe,
A. Sangiovanni-Vincentelli, and Alberto Sangiovanni-
Vincentelli. A case study in embedded system design:
an engine control unit. In Proceedings of the 35th annual
conference on Design automation (DAC "98), pages 804—
807, New York, NY, USA, 1998. ACM.

[3] R. G. Dromey. Formalizing the Transition from
Requirements to Design. In Jifeng He and Zhiming Liu,
editors, Mathematical Frameworks for Component Software
- Models for Analysis and Synthesis, pages 156—187. World
Scientific Series on Component-Based Development, 2006.
Invited Chapter.

[4] R.G. Dromey. From Requirements to Design: Formalizing
the Key Steps. In IEEE International Conference on
Software Engineering and Formal Methods, pages 2—
11, Brisbane, Sept 2003. SEFM-2003. Invited Keynote
Address.

[5] Dynasim. Dymola. http://dynasim.com.

[6] Rolf Ernst. Codesign of embedded systems: Status and
trends. IEEE Design and Test, 15(2):45-54, 1998.

[7] Peter Fritzon, Vadim Engelson, Andreas Idebrant, Peter
Aronsson, Hakan Lundvall, Peter Bunus, and Kaj Nystrom.
Modelica 4AS A Strongly Typed System Specification
Language for Safe Engineering Practices. In Proceedings of
the SimSAFE Conference, Kralskoga, Sweden, June 2004.

[8] Peter Fritzson. Principles of Object-Oriented Modeling and
Simulation with Modelica 2.1. Wiley-1EEE Press, 2004.

[9] Tarek Ben Ismail, Mohamed Abid, and Ahmed Jerraya.
Cosmos: a codesign approach for communicating systems.
In Proceedings of the 3rd international workshop on
Hardware/software co-design (CODES ’94), pages 17—
24, Los Alamitos, CA, USA, 1994. IEEE Computer Society
Press.

[10] Kung-Kiu Lau, Ling Ling, and Zheng Wang. Composing
Components in Design Phase using Exogenous Connectors.
In Proceedings of the 32nd EUROMICRO Conference
on Software Engineering and Advanced Applications
(EUROMICRO ’06), pages 12—-19, 2006.

[11] MathCore. Mathmodelica. http://www.mathcore.com,

[12] Modelica Association. Modelica: A Unified Object-
Oriented Language for Physical Systems Modeling:
Language Specification Version 3.0, Sept 2007.
http://www.modelica.org.

[13] OMG. System Modeling Language (SysML).
http://www.omgsysml.orgl

13

[14] Adrian Pop, David Akhvlediani, and Peter Fritzon.
Integrated UML and Modelica System Modeling with
ModelicaML in Eclipse. In Proceedings of the 11th IASTED
International Conference on Software Engineering and
Applications (SEA’07), 2007.

[15] Adrian Pop, David Akhvlediani, and Peter Fritzon. Towards
Unified System Modeling with the ModelicaML UML
Profile. In Proceedings of the Ist International Workshop
on Equation-Based Object-Oriented Languages and Tools
(EOOLT’07), pages 13-24, 2007.

[16] Danny Powell. Requirements evaluation using behavior
trees - findings from industry. In Australian Software
Engineering Conference (ASWEC’07), April 2007.

[17] Michael Tiller. Introduction to Physical Modeling with
Modelica. Kluwer Academic Publishers, 2001.


http://dynasim.com
http://www.mathcore.com
http://www.modelica.org
http://www.omgsysml.org

// External Functions included here

model Track
discrete Integer currentSignalValue "Value of Last Signal displayed to Driver/ATP System";

parameter Real[:] signalPosition "Positions of Signals on the Track";
parameter Integer[:] signalValue "Values of Signals on the Track";
equation

// Determine current signal value
end Track;

model Train
Real s, v, m, maxSpeed, maxBrakeForce, maxAccelerationPower, maxAccelerationForce;

parameter Real accPowerEff = 0.80 "Engine Efficiency in &";
equation
maxAccelerationPower/accPowerEff = maxAccelerationForcexv;

end Train;

record Driver
Real desiredAcceleration;
parameter Real[:] desiredSpeed;
parameter Real[:] position;

end Driver;

model Main
// Define track, train, driver parameters

parameter Real[l10] sensorl = {0,0,1,2,0,0,2,2,0,0} "Sensorl value at signalPosition";
Real sensorlReading "Current Sensorl reading”;
// Similar for Sensor 2 & 3

Real fa, fd, doBrake(start=0), minAccelerationForce, desiredAccelerationForce;
discrete Boolean clockl, clock2, ...;
// Define clock frequencies

equation
when initial() then startBT(0); end when;
when clockl then cycleBT (0); end when;
when clock2 then doBrake = if (trainl.v >= 0) then getBrake(0) else 0;
// if driver reset’s ATP send message
// if signal changes send new sensor values

fa = if doBrake>0 then 0

elseif // ensure not over maximum Acceleration force
else desiredAccelerationForce;

fd = if doBrake>0 then trainl.maxBrakeForce else 0;

a = (fa-fd)/trainl.m;

der (v) = a;

der (trackl.s) = trainl.v;

// if train passing signal then update sensors

// determine driver’s desired acceleration (a = (desiredSpeed - trainl.v)/ (2xdistance))

end Main;

Figure 7. Simplified Textual Modelica model of the ATP Environment

14



- 6\ (a) 15 6\ [=] Train Velocity
12.5 12.5] [--] signalValue
Velocity 10.0 Velocity 10.0 [~] ATP Reset
(m/s) 7.5] (m/s) 7.5 5
5.0 5.0
PROCEED PROCEED
RESET ATP lz\e /ARt RESET ATP \k ----------------
/ CAUTION / : : | : | — 3y /CAUTION / ; . | : | —_
DANGER 0 50 100 150 200 250 DANGER 0 50 100 150 200 250
Time (s) Time (s)
A A
15.0] (c) 15.0 (d)
12.5] 12.5]
Velocity ¢ o Velocity ¢ ol
(m/s) 75 (m/s) 75
5.0 5.0|
PROCEED PROCEED
RESET ATP \2\0 - RESET ATP\kO -
/ CAUTION / : ; : : | — 3 /CAUTION | : | . | LLEN
DANGER 0 50 100 150 200 250 DANGER 0 50 100 150 200 250

Time (s) Time (s)

@ Driver ignores caution signal and increases speed, brakes are activated
® Driver sees caution signal and reduces speed but then increases speed, brakes are activated

© Danger
@ Danger

signal, brakes are activated regardless of driver already decreasing speed
signal, brakes are activated, ATP is reset and brakes are deactivated

Figure 8. Simulation of the ATP System

Requirement

Description

R1

The ATP system is located on board the train. It involves a central controller and five boundary subsystems
that manage the sensors, speedometer, brakes, alarm and a reset mechanism.

R2

The sensors are attached to the side of the train and detect information on the approach to track-side
signals, i.e. they detect what the signal is displaying to the train driver.

R3

In order to reduce the effects of component failure three sensors are used. Each sensor generates a value in
the range O to 3, where 0, 1 and 2 denote the danger, caution, and proceed signals respectively. The fourth
sensor value, i.e. 3, is generated if an undefined signal is detected, e.g. may correspond to noise between
the signal and the sensor.

R4

The sensor value returned to the ATP controller is calculated as the majority of the three sensor readings.
If there does not exist a majority then an undefined value is returned to the ATP controller.

RS

If a proceed signal is returned to the ATP controller then no action is taken with respect to the train’s
brakes.

R6

If a caution signal is returned to the ATP controller then the alarm is enabled within the driver’s cab.
Furthermore, once the alarm has been enabled, if the speed of the train is not observed to be decreasing
then the ATP controller activates the train’s braking system.

R7

In the case of a danger signal being returned to the ATP controller, the braking system is immediately
activated and the alarm is enabled. Once enabled, the alarm is disabled if a proceed signal is subsequently
returned to the ATP controller.

R8

Note that if the braking system is activated then the ATP controller ignores all sensor input until the system
has been reset.

R9

If enabled, the reset mechanism deactivates the train’s brakes and disables the alarm.

Table 1. Requirements of the ATP system

15



	Introduction
	Modelica Background
	Behavior Engineering Background
	The Behavior Modelling Language
	The Behavior Modelling Process
	Executing a BE Model

	Integrating Modelica & BE Models
	Case Study: An Automated Train Protection System
	ATP - Behavior Engineering Model
	ATP - Modelica Model
	Integration of the Modelica and BE Models

	Conclusion



