
The OpenModelica Modeling, Simulation,
and Development Environment

Peter Fritzson, Peter Aronsson, Håkan Lundvall, Kaj Nyström, Adrian Pop,
Levon Saldamli, David Broman

PELAB – Programming Environment Lab, Dept. Computer Science
Linköping University, S-581 83 Linköping, Sweden

{petfr, petar, haklu, kajny, adrpo, levsa, davbr}@ida.liu.se

Abstract
Modelica is a modern, strongly typed, declarative, and
object-oriented language for modeling and simulation
of complex systems. This paper gives a quick overview
of some aspects of the OpenModelica environment – an
open-source environment for modeling, simulation, and
development of Modelica applications. An introduction
of the objectives of the environment is given, an over-
view of the architecture is outlined and a number of
examples are illustrated.

1 Introduction
The OpenModelica environment described in this paper
has several goals, including, but not limited to the fol-
lowing:

• Providing an efficient interactive computational en-
vironment for the Modelica language.

• Development of a complete reference implementa-
tion of Modelica in a (currently) extended version of
Modelica itself.

• Providing an environment for teaching modeling
and simulation. It turns out that with support of ap-
propriate tools and libraries, Modelica is very well
suited as a computational language for development
and execution of both low level and high level nu-
merical algorithms, e.g. for control system design,
solving nonlinear equation systems, or to develop
optimization algorithms that are applied to complex
applications.

• Language design, e.g. to further extend the scope of
the language, e.g. for use in diagnosis, structural
analysis, system identification, etc., as well as mod-
eling problems that require extensions such as par-
tial differential equations, enlarged scope for dis-
crete modeling and simulation, etc.

• Language design to improve abstract properties
such as expressiveness, orthogonality, declarativity,
reuse, configurability, architectural properties, etc.

• Improved implementation techniques, e.g. to en-
hance the performance of compiled Modelica code
by generating code for parallel hardware.

• Improved debugging support for equation based lan-
guages such as Modelica, to make them even easier
to use.

• Easy-to-use specialized high-level (graphical) user
interfaces for certain application domains.

• Visualization and animation techniques for interpre-
tation and presentation of results.

• Application usage and model library development
by researchers in various application areas.

In this paper we briefly present a few of the subsys-
tems, as well as some architectural aspects of the envi-
ronment. Further, we will give examples of the usage
of the interactive session handler, the DrModelica note-
book, and the debugging support.

1.1 Environment Overview

The OpenModelica environment consists of several
interconnected subsystems, as depicted in Figure 1 be-
low.

Modelica
Compiler

Interactive
session handler

Execution

Graphical Model
Editor/Browser

Textual
Model Editor

Modelica
Debugger

Emacs
Editor/Browser

DrModelica
NoteBook

Model Editor

Eclipse Plugin
Editor/Browser

Figure 1. The architecture of the OpenModelica
environment.

Arrows denote data and control flow. Several subsys-
tems provide different forms of browsing and textual
editing of Modelica code. The debugger currently pro-
vides debugging of an extended algorithmic subset of

Modelica. The graphical model editor is not really part
of OpenModelica but integrated into the system and
available from MathCore [6] without cost for academic
usage. The following subsystems are currently inte-
grated in the OpenModelica environment:

• An interactive session handler, that parses and in-
terprets commands and Modelica expressions for
evaluation, simulation, plotting, etc. The session
handler also contains simple history facilities, and
completion of file names and certain identifiers in
commands.

• A Modelica compiler subsystem, translating Mode-
lica to C code, with a symbol table containing defi-
nitions of classes, functions, and variables. Such
definitions can be predefined, user-defined, or ob-
tained from libraries. The compiler also includes a
Modelica interpreter for interactive usage and con-
stant expression evaluation. The subsystem also in-
cludes facilities for building simulation executables
linked with selected numerical ODE or DAE
solvers.

• An execution and run-time module. This module
currently executes compiled binary code from trans-
lated expressions and functions, as well as simula-
tion code from equation based models, linked with
numerical solvers. Limited event handling facilities
are included for the discrete and hybrid parts of the
Modelica language.

• Emacs textual model editor/browser. In principle
any text editor could be used. We have so far pri-
marily employed Gnu Emacs, which has the advan-
tage of being programmable for future extensions. A
Gnu Emacs mode for Modelica has previously been
developed. The Emacs mode hides Modelica
graphical annotations during editing, which other-
wise clutters the code and makes it hard to read. A
speedbar browser menu allows to browse a Mode-
lica file hierarchy, and among the class and type
definitions in those files.

• Eclipse plugin editor/browser/compilation manager.
The Eclipse plugin provides file and class hierarchy
browsing and text editing capabilities, rather analo-
gous to previously described Emacs editor/browser.
Some syntax highlighting facilities are also in-
cluded. The Eclipse framework has the advantage of
making it easier to add future extensions such as
refactoring and cross referencing support. A compi-
lation manager is also included.

• DrModelica notebook model editor. This subsystem
provides a lightweight notebook editor, compared to
the more advanced Mathematica notebooks avail-
able in MathModelica. This basic functionality still
allows essentially the whole DrModelica tutorial to

be handled. Hierarchical text documents with chap-
ters and sections can be represented and edited, in-
cluding basic formatting. Cells can contain ordinary
text or Modelica models and expressions, which can
be evaluated and simulated. However, no mathe-
matical typesetting or graphic plotting facilities are
yet available in the cells of this notebook editor.

• Graphical model editor/browser. This is a graphical
connection editor, for component based model de-
sign by connecting instances of Modelica classes,
and browsing Modelica model libraries for reading
and picking component models. The graphical
model editor is not really part of OpenModelica but
integrated into the system and provided by Math-
Core AB [6] without cost for academic usage. The
graphical model editor also includes a textual editor
for editing model class definitions, and a window
for interactive Modelica command evaluation.

• Modelica debugger. The current implementation of
the debugger [7] provides debugging for an ex-
tended algorithmic subset of Modelica, excluding
equation-based models and some other features, but
including some meta-programming and model
transformation extensions [8] to Modelica. This is
conventional full-feature debugger, using Emacs for
displaying the source code during stepping, setting
breakpoints, etc. Various back-trace and inspection
commands are available. The debugger also in-
cludes a data-view browser for browsing hierarchi-
cal data such as tree- or list structures in extended
Modelica.

1.2 Implementation Status

The current version of the OpenModelica environment
(Sept 2005) allows most of the expression, algorithm,
and function parts of Modelica to be executed interac-
tively, as well as equation models and Modelica func-
tions to be compiled into efficient C code. The gener-
ated C code is combined with a library of utility func-
tions, a run-time library, and a numerical DAE solver.
An external function library interfacing a LAPACK
subset and other basic algorithms is under develop-
ment.

Not all subsystems are yet integrated as well as is
indicated in Figure 1. Currently there are two versions
of the Modelica compiler, one which supports most of
standard Modelica including simulation, and is con-
nected to the interactive session handler, the notebook
editor, and the graphic model editor, and another meta-
programming Modelica compiler version which is inte-
grated with the debugger and Emacs, supports meta-
programming Modelica extensions [8], but does not
allow equation-based modeling and simulation. Those

two versions are currently being merged into a single
Modelica compiler version.

2 The OpenModelica Client-Server
Architecture

The OpenModelica client-server architecture is sche-
matically depicted in Figure 2, showing two typical
clients: a graphic model editor and an interactive ses-
sion handler for command interpretation.

Parse

Client: Eclipse
Plugin

Corba

Client:
Interactive

Session Handler

Server: Main Program
Including Compiler,

Interpreter, etc.

Interactive

SCode

Inst

Ceval
plot

system

etc.

Untyped API

Typed Checked Command API

Client: Graphic
Model Editor

Figure 2. Client-Server interconnection structure of the
compiler/interpreter main program and interactive tool
interfaces.

Commands or Modelica expressions are sent as text
from the clients via the CORBA interface, parsed, and
divided into two groups by the main program:

• All kinds of declarations of classes, types, functions,
constants, etc., as well as equations and assignment
statements. Moreover, function calls to the untyped
API also belong to this group – a function name is
checked if it belongs to the API names. The Interac-
tive module handles this group of declarations and
untyped API commands.

• Expressions and type checked API commands,
which are handled by the Ceval module.

The reason the untyped API calls are not passed via
SCode (a module generating an intermediate form of
the abstract syntax tree) and Inst (which performs sym-
bolic instantiation of components) to Ceval is that
Ceval can only handle typed calls – the type is always
computed and checked, whereas the untyped API pri-
oritizes performance and typing flexibility. The Main
module checks the name of a called function name to
determine if it belongs to the untyped API, and should
be routed to Interactive.

Moreover, the Interactive module maintains an en-
vironment of all interactively given declarations and
assignments at the top-level, which is the reason such
items need to be handled by the Interactive module.

3 Simplified Overall Structure of the
Compiler

The OpenModelica compiler is separated into a number
of modules, to separate different stages of the transla-
tion, and to make it more manageable. The top level
function is called main, and appears as follows in sim-
plified form that emits flat Modelica (leaving out the
code generation and symbolic equation manipulation):
function main
 input String f "file name";
protected
 Absyn ast;
 SCode scode1;
 SCode scode2;
algorithm
 ast := Parser.parse(f);
 scode1 := SCode.elaborate(ast);
 scode2 := Inst.elaborate(scode1);
 DAE.dump(scode2);
end main;

The simplified overall structure of the OpenModelica
compiler is depicted in Figure 3, showing the most im-
portant modules, some of which can be recognized
from the above main function. The total system con-
tains approximately 40 modules.

SCode
/explode

Lookup

Parse DAELowInst

Ceval

Static

Absyn SCode DAE

(Env, name) SCode.Class

Exp.Exp

Values.Value

SCode.Exp
(Exp.Exp,

 Types.Type)

(Env, name)

Main

CodeGen SimCodeGen

C code

DumpDAE
Flat Modelica

Figure 3. The Modelica compiler decomposed into modules
and data flow connections.

The parser generates abstract syntax (Absyn) which is
converted to the simplified (SCode) intermediate form.
The code instantiation module (Inst) calls Lookup to
find a name in an environment. It also generates the
DAE equation representation which is simplified by
DAELow. The Ceval module performs compile-time or
interactive expression evaluation and returns values.
The Static module performs static semantics and type
checking. The DAELow module performs BLT sorting
and index reduction (see Chapter 18 in [2]). The DAE
module internally uses Exp.Exp, Types.Type and Algo-
rithm.Algorithm; the SCode module internally uses
Absyn.

4 Interactive Session with Examples
The following is an interactive session using the inter-
active session handler in the OpenModelica environ-
ment. (Also called WinMosh.exe (under Windows) or
mosh (under Linux) – the Modelica Shell).

The Windows version which at installation is made
available in the start menu as OpenModelica-

>OpenModelica Shell responds with an interaction
window shown in Figure 4.

Figure 4. Initial screen of the interactive session handler.

We enter an assignment of a vector expression, created
by the range construction expression 1:12, to be stored
in the variable x. The value of the expression is re-
turned.
>> x := 1:12
 {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}

Look at the type of x:
>> typeOf(x)
"Integer[]"

The function bubblesort is called to sort this vector
in descending order. The sorted result is returned to-
gether with its type. Note that the result vector is of
type Real[:], instantiated as Real[12], since this is
the declared type of the function result. The input In-
teger vector was automatically converted to a Real
vector according to the Modelica type coercion rules.
The function is automatically compiled when called if
this has not been done before.
>> bubblesort(x)
{12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1}

It is also possible to give operating system commands
via the system utility function. A command is pro-
vided as a string argument. The example below shows
the system utility applied to the UNIX command cat,
which here outputs the contents of the file bubble-
sort.mo to the output stream. However, the cat com-
mand does not boldface Modelica keywords – this im-
provement has been done by hand for readability.

>> system("cat bubblesort.mo")

function bubblesort
 input Real[:] x;
 output Real[size(x,1)] y;
protected
 Real t;
algorithm
 y := x;
 for i in 1:size(x,1) loop
 for j in 1:size(x,1) loop
 if y[i] > y[j] then
 t := y[i];
 y[i] := y[j];
 y[j] := t;
 end if;
 end for;
 end for;
end bubblesort;

It is also possible to enter a function directly into the
session handler.
>> function MySqr input Real x; output Real
y; algorithm y:=x*x; end MySqr;
Ok

And then call the function:
>> b:=MySqr(2)
4.0

Another built-in command is cd, the change current
directory command. The resulting current directory is
returned as a string.
>> cd("..")
"/home/petfr/modelica"

We load a model, here the whole Modelica standard
library:
>> loadModel(Modelica)
true

We also load a file containing the dcmotor model:
>> loadFile("M:/modeq/VC7/Setup/testmodels
/dcmotor.mo")
true

It is simulated:
>> simulate(dcmotor,startTime=0.0,
stopTime=10.0)

record
 resultFile = "dcmotor_res.plt"
end record

We list the source code of the model:
>> list(dcmotor)
"model dcmotor
Modelica.Electrical.Analog.Basic.Resistor
r1(R=10);
Modelica.Electrical.Analog.Basic.Inductor i1;
Modelica.Electrical.Analog.Basic.EMF emf1;
Modelica.Mechanics.Rotational.Inertia load;
Modelica.Electrical.Analog.Basic.Ground g;
Modelica.Electrical.Analog.Sources.ConstantVo
ltage v;

equation
 connect(v.p,r1.p);
 connect(v.n,g.p);
 connect(r1.n,i1.p);
 connect(i1.n,emf1.p);
 connect(emf1.n,g.p);
 connect(emf1.flange_b,load.flange_a);
end dcmotor;

We plot part of the simulated result:
>> plot({load.w,load.phi})
true

The output is shown in Figure 5.

Figure 5. Plot of the simulated DCmotor model.

Clear all loaded libraries and models:
>> clear()
true

List the loaded models – but nothing left:
>> list()
""

We load another model, the Influenza model:
>> loadFile("M:/modeq/VC7/Setup/testmodels/
Influenza.mo")
true

It is simulated:
>> simulate(Influenza,startTime=0.0,
stopTime=3.0)
record
 resultFile = "Influenza_res.plt"
end record

The simulated population is plotted, which is shown in
Figure 6.
>> plot({Infected_Popul.p})
true

Figure 6. Plot of the Influenza model.

4.1 Commands for the Interactive Session Han-
dler

The following is the complete list of commands cur-
rently available in the interactive session handler.

• instantiateModel(modelname)
Perform code instantiation of a model/class and re-
turn a string containing the flat class definition.

• simulate(modelname)
Translate a model named modelname and simulate
it.

• simulate(modelname[,startTime=<Real>]
[,stopTime=<Real>][,numberOfIntervals
=<Integer>])
Translate and simulate a model, with optional start
time, stop time, and optional number of simulation
intervals or steps for which the simulation results
will be computed. Many steps will give higher time
resolution, but occupy more space and take longer
to compute. The default number of intervals is 500.

• plot(vars)
Plot the variables given as a vector, e.g.
plot({x1,x2}).

• list()
Return a string containing all loaded class defini-
tions.

• list(modelname)
Return a string containing the class definition of the
named class.

• listVariables()
Return a vector of the names of the currently de-
fined variables.

• typeOf(variable)
Return the type of the variable as a string.

• clear()
Clear all loaded definitions.

• clearVariables()
Clear all defined variables.

• timing(expr)
Evaluate expression expr and return the number of
seconds (elapsed time) the evaluation took.

• cd()
Return the current directory.

• cd(dir)
Change directory to the directory given as string.

• system(str)
Execute str as a system(shell) command in the oper-
ating system; return integer success value. Output
into stdout from a shell command is put into the
console window.

• readFile(str)
Load file given as string str and return a string con-
taining the file content.

• runScript(str)
Execute script file with file name given as string ar-
gument str.

• loadModel(classname)
Load model or package of name classname from
MODELICAPATH.

• loadFile(str)
Load Modelica file (.mo) with a name given as
string argument str.

• saveModel(str,modelname)
Save the model/class with name modelname in the
file given by the string argument str.

• help()
Print this helptext (returned as a string).

• quit()
Leave and quit the OpenModelica environment

5 DrModelica Notebook and Textual
Model Editor

The OpenModelica electronic notebook and model edi-
tor subsystem can be used as a textual modeling inter-
face for Modelica, or as a Modelica tutoring system,
i.e., a simplified version of the DrModelica tutoring
system for teaching Modelica.

However, the OpenModelica notebook facility is
work in progress, which currently is only partially
completed. The simplified OpenModelica electronic
notebooks are however still able to handle the full
DrModelica tutorial material. It is advanced enough to
represent hierarchical documents, simple type setting,
text editing, etc.

Figure 7. The start page (main page) of DrModelica in the
OpenModelica notebook system.

This is exemplified by Figure 7, showing the DrMode-
lica main page (start page) in the teaching material.

5.1 OpenModelica Notebook Commands

The current prototype of OpenModelica notebooks
support the following operations:

• Opening and closing groups of cells by double
clicking the hierarchical tree view (to the right).

• Evaluation of Modelica code, commands, and ex-
pressions in input cells by typing SHIFT+RETURN.
The evaluation results are shown in a created output
cell.

• Opening and loading notebook files stored in XML-
format Command: CTRL+O).

• Opening and loading notebook files stored in Full-
Form Mathematica notebook format.

• Saving notebook files in XML format.
• Terminating the notebook subsystem (ALT+Q or
ALT+F4).

• Select a cell, by a single click on the cell in the tree
view to the right.

• Possibility to edit the style template to change the
appearance of different cell types.

• Move cursor, by CTRL + UP ARROW or CTRL + DOWN
ARROW.

• Close current document (CTRL+W).
• Select and copy text inside a cell.

6 Modelica Algorithmic Subset De-
bugger

This section presents a comprehensive Modelica de-
bugger [7] for an extended algorithmic subset of the
Modelica language. This replaces debugging of algo-
rithmic code using primitive means such as print state-
ments or asserts which is complex, time-consuming and
error- prone.

The debugger is portable since it is based on trans-
parent source code instrumentation techniques that are
independent of the implementation platform.

The usual debugging functionality found in debug-
gers for procedural or traditional object-oriented lan-
guages is supported, such as setting and removing
breakpoints, single-stepping, inspecting variables,
back-trace of stack contents, tracing, etc.

In this section we present parts of the debugger
functionality by showing a debugging session on a
short Modelica example. The functionality of the de-
bugger is shown using pictures from the Emacs debug-
ging mode for Modelica (modelicadebug-mode).

6.1 The Debugger Commands

The Emacs Modelica debug mode is implemented as a
specialization of the Grand Unified Debugger (GUD)
interface (gud-mode) from Emacs. Because the Mode-
lica debug mode is based on the GUD interface, some
of the commands have the same familiar key bindings.

The actual commands sent to the debugger are also
presented together with GUD commands preceded by
the Modelica debugger prompt: mdb@>.

If the debugger commands have several alternatives
these are presented using the notation:

alternative1|alternative2|....

The optional command components are presented using
notation: [optional].

In the Emacs interface: M-x stands for holding
down the Meta key (mapped to Alt in general) and
pressing the key after the dash, here x, C-x stands for
holding down the Control (Ctrl) key and pressing
x, <RET> is equivalent to pressing the Enter key, and
<SPC> to pressing the Space key.

6.2 Starting the Modelica Debugging Subprocess

The command for starting the Modelica debugger under
Emacs is the following:

M-x modelicadebug <RET> executable <RET>

6.3 Setting/Deleting Breakpoints

A part of a session using this type of commands is
shown in Figure 8 below. The presentation of the com-
mands follows.

Figure 8. Using breakpoints.

To set a breakpoint on the line the cursor (point) is at:
C-x <SPC>
mdb@> break on file:lineno|string <RET>

To delete a breakpoint placed on the current source
code line (gud-remove):
C-c C-d
C-x C-a C-d
mdb@> break off file:lineno|string <RET>

Instead of writing break one can use alternatives
br|break|breakpoint.

Alternatively one can delete all breakpoints using:
mdb@> cl|clear <RET>

Showing all breakpoints:
mdb@> sh|show <RET>

6.4 Stepping and Running

To perform one step (gud-step) in the Modelica code:
C-c C-s
C-x C-a C-s
mdb@> st|step <RET>

To continue after a step or a breakpoint (gud-cont) in
the Modelica code:

C-c C-r
C-x C-a C-r
mdb@> ru|run <RET>

Examples of using these commands are presented in
Figure 9.

Figure 9. Using command run.

This is only a brief presentation of a subset of the de-
bugger functionality. See the OpenModelica Users
Guide for a more complete description.

7 Conclusion
We have presented some aspects of the OpenModelica
environment, including facilities for modeling, simula-
tion, and debugging Modelica code. A number of ob-
jectives of the OpenModelica environment were given
and some example illustrated. It has been shown that
the OpenModelica environment includes many valu-
able features for engineers and researchers, and it is the
only Modelica environment so far with good support
for debugging Modelica algorithmic code as well as
support for meta-programming integrated in the lan-
guage. We believe that this open source platform can
be part of forming the foundation of the next generation
of the Modelica language and environment develop-
ment efforts, both from a research perspective and a
system engineering usage point of view.

8 Acknowledgements
This work was supported by Vinnova in the GRID-
Modelica and SWEBProd projects, by SSF under the
VISIMOD and RISE project, by the CUGS graduate
school, and by MathCore Engineering AB.

References
[1] Peter Fritzson, et al. The Open Source Modelica

Project. In Proceedings of The 2nd International
Modelica Conference, 18-19 March, 2002. Mu-
nich, Germany See also: http://www.ida.liu.se/
projects/OpenModelica.

[2] Peter Fritzson. Principles of Object-Oriented
Modeling and Simulation with Modelica 2.1, 940
pp., ISBN 0-471-471631, Wiley-IEEE Press,
2004.

[3] The Modelica Association. The Modelica Lan-
guage Specification Version 2.2, March 2005.
http://www.modelica.org.

[4] The OpenModelica Users Guide, version 0.2,
April 2005. www.ida.liu.se/projects/OpenModelica

[5] The OpenModelica System Documentation, ver-
sion 0.2, April 2005.
www.ida.liu.se/projects/OpenModelica

[6] MathCore Engineering AB, www.mathcore.com.

[7] Adrian Pop and Peter Fritzson: A Portable De-
bugger for Algorithmic Modelica Code. In Pro-
ceedings of the 4th International Modelica Con-
ference, Hamburg, Germany, March 7-8, 2005.

[8] Peter Fritzson, Adrian Pop, and Peter Aronsson.
Towards Comprehensive Meta-Modeling and
Meta-Programming Capabilities in Modelica. In
Proceedings of the 4th International Modelica
Conference, Hamburg, Germany, March 7-8,
2005.

[9] Michael Tiller. Introduction to Physical Modeling
with Modelica. 366 pages. ISBN 0-7923-7367-7,
Kluwer Academic Publishers, 2001.

	Introduction
	Environment Overview
	Implementation Status

	The OpenModelica Client-Server Architecture
	Simplified Overall Structure of the Compiler
	Interactive Session with Examples
	Commands for the Interactive Session Handler

	DrModelica Notebook and Textual Model Editor
	OpenModelica Notebook Commands

	Modelica Algorithmic Subset Debugger
	The Debugger Commands
	Starting the Modelica Debugging Subprocess
	Setting/Deleting Breakpoints
	Stepping and Running

	Conclusion
	Acknowledgements

