
1

2nd OpenModelica Annual Workshop, Feb 8th, 2010, Linköping University

Using OpenModelica for the Translation
of Modelica Models to the Compositional
Interchange Format for Hybrid Systems

Martin Hüfner, Christian Sonntag, Adalat Jabrayilov
Process Dynamics and Operations Group (BCI-DYN)

Technische Universität Dortmund
Germany

2

Outline

• Motivation: The goal of the MULTIFORM project
• The Compositional Interchange Format for Hybrid

Systems (CIF)
• Translation of Modelica models to the CIF

– Preprocessing using OMC
– Variable sections
– Equation sections
– Algorithm sections

• Application examples
• Conclusions & Outlook

2

3

The Goal of the MULTIFORM Project

• Extend the model-based approach beyond the scope of classical
feedback controller design to cover the complete control hierarchy.

• The long-term goal: support a fully model-driven design process of a
controlled system over its full life cycle.

System

Module ...

Coordination Control

Advanced Control

Sequence Control

Regulatory Control

Low -level Safety -related Control

Module Module Module

advanced & recipe control,
alarm handling, visualization

logistics, scheduling,
coordination, quality control

System

Module ...

Coordination Control

Advanced Control

Sequence Control

Regulatory Control

Low -level Safety -related Control

Module Module Module

advanced & recipe control,
alarm handling, visualization

logistics, scheduling,
coordination, quality control

4

Trans-level Tool Support

• Offering tool support over the complete design-cycle
• Re-use and extension of models rather than creating new ones
• Offering the right tool for the current task

Shortening the design process while increasing the quality

• Model exchange via the Compositional Interchange Format

3

5

The Compositional Interchange Format*
• Compact and powerful interchange format for general hybrid systems
• Based on hybrid automata in parallel composition
• Main features

– Formal and compositional semantics allow property-preserving model
transformations

– Differential-algebraic equations (possibly discontinuous)
– Hierarchy and modularity

• Closed and open scopes
• Automata instantiation

– Support for different synchronization concepts
• Synchronization by means of actions and channels
• Shared variables

– Support for different urgency concepts
– Support for different representations

• XML exchange format
• Human-readable concrete format
• Abstract format

* Developed by the Systems Engineering
Group, TU Eindhoven

6

CIF Closed Scope

(<closed scope identifier> :)?
//variable, clock, action label (act), and channel (chan) declarations optional:
{extern|intern|input|output} var <identifier> : {disc|alg|cont} {real|int|bool|nat} (= <initial value>)?
{extern|intern} clock <clock identifier>
{extern|intern} act <act identifier>
{extern|intern} chan <chan identifier> {send|recv}? : {real|int|bool|nat}

//connection statements (optional)
connect(<identifier>, <instantiated aut name>.<identifier>)

//further inner closed scope, open scopes, or automata instantiations

{ {openScope}*

| { {closedScope}*

| <instantiated aut name> : <aut identifier>(<optional parameter identifiers>?)

}

}+

|[

::

]|

Variable declarations

Connect sets

Parallel open or
closed scopes

4

7

CIF Open Scope

//optional initial equations
(init (<equation>)+,)?

//modes

{mode <mode identifier> =

// equations within modes

({inv|tcp|flow} <equations>)*

// transitions

((when <expression>)? now? (act <transition label>)?
(do <variable identifier> (:)?= <expressions>)?
goto <mode identifier>)*

}+

:: <mode identifier> // starting mode

|(

)|

Optional variable initialization

Discrete modes / locations

Differential-algebraic equations

Discrete transitions

Initial discrete mode

8

CIF Example: A Tank Controller

model TankController() =
|[// variable declaration:

extern var V: cont real = 10 ;
Qi, Qo: alg real ;

n: disc nat = 0
::
|(// model invariants:
mode physics = inv dot V = Qi - Qo

& Qi = n * 5
& Qo = sqrt(V)

:: physics
)|

|| // parallel composition
|(// discrete controller switchings:
mode closed = when V <= 2 now do n := 1 goto opened

, opened = when V >= 10 now do n := 0 goto closed
:: closed
)|

]|

5

9

CIF Tool Connections*

* Courtesy of Bert van Beek, Systems Engineering Group, TU Eindhoven

10

1. Preprocessing using the OpenModelica Compiler (OMC)
– Removal of complex syntactical elements (e.g. instantiation etc.)
– Inclusion of referenced model libraries
– Assurance that the model is syntactically correct
– The translator is „robust“ to smaller syntactical changes in the languages

2. Parsing of preprocessed model using ANTLR
– Adapted grammar from Modelica 3.0 specifications
– Automatically generated lexer and parser
– Decoupling of parsing and translation

3. Translation
– Recursive top-down translation of a hierarchical model starting from

highest Modelica model
– Recursive translation of algorithmic model parts into CIF open scopes

Translation from Modelica to the CIF

6

11

Preprocessing using the OpenModelica Compiler

• OMC removes most of the advanced syntactical content of the
model:
– Classes, Predefined Types, and Declarations
– Scoping, Name Lookup, and Flattening
– Interface or Type Relationships
– Inheritance, Modification, and Redeclaration
– Connectors and Connections
– Arrays
– The Modelica Standard Library (i.e. resolving references)

• Returns a flattened representation of the original model
fclass IDENT
[element_list] // public elements

// (variables, parameters, constants, etc.)
[equation] // equation section
[initial equation] // section with initial equations
[algorithm] // algorithm section
[initial algorithm] // section with initial algorithms
end IDENT;

12

Translation of Modelica Variable Sections

• Replacement of dots “.” in non-top-level variables with “_DOT_”
• Real, Integer, and Boolean types are present in the CIF
• Enumerations have to be modeled using integer variables
• Discrete-time variables, constants and parameters are

translated to discrete CIF variables (keyword disc)

parameter Real Tanks.t_upper = 0.5;

Tanks_DOT_t_upper : disc real = 0.5

Modelica:

CIF:

7

13

Translation of Modelica Variable Sections

• Replacement of dots “.” in non-top-level variables with “_DOT_”
• Real, Integer, and Boolean types are present in the CIF
• Enumerations have to be modeled using integer variables
• Discrete-time variables, constants and parameters are

translated to discrete CIF variables (keyword disc)
• Continuous-time variables are translated to

– algebraic variables (keyword alg) if they do not occur differentiated
– continuous variables (keyword cont) if they occur differentiated.

parameter Real Tanks.t_upper = 0.5;
Real Tanks.Tank1.flowTop.h0;
Real Tanks.Tank1.h;

Tanks_DOT_t_upper : disc real = 0.5
; Tanks_DOT_Tank1_DOT_flowTop_DOT_h0 : alg real
; Tanks_DOT_Tank1_DOT_h : cont real

Modelica:

CIF:

14

Translation of Modelica Equation Sections (I)

• Expressions and operators can be translated by adapting them
to the CIF syntax

• A Modelica model is translated into a single CIF model that is
composed of open CIF scopes in parallel composition

model TwoTanks_DOT_TwoTanks () =
|[

//declarations
…
//inner open scopes in parallel

:: |(…
)|

||
|(…
)|

…
]|

fclass TwoTanks.TwoTanks
…

end TwoTanks.TwoTanks;

Modelica: CIF:

8

15

Translation of Modelica Equation Sections (I)

• Expressions and operators can be translated by adapting them
to the CIF syntax

• A Modelica model is translated into a single CIF model that is
composed of open CIF scopes in parallel composition

• Continuous (i.e. unconditional) equations are directly translated
into an open CIF scope, which contains a single mode

der(Tanks.Tank2.h) =
(Tanks.Tank2.flowTop.vol_flow
+ Tanks.Tank2.flowBottom.vol_flow)
/ Tanks.Tank2.A;

dot Tanks_DOT_Tank2_DOT_h =
(Tanks_DOT_Tank2_DOT_flowTop_DOT_vol_flow
+ Tanks DOT Tank2 DOT flowBottom DOT vol flow)
/ Tanks_DOT_Tank2_DOT_A

Modelica:

CIF:

16

Translation of Modelica Equation Sections (I)

• Expressions and operators can be translated by adapting them
to the CIF syntax

• A Modelica model is translated into a single CIF model that is
composed of open CIF scopes in parallel composition

• Continuous (i.e. unconditional) equations are directly translated
into an open CIF scope, which contains a single mode

• initial equation sections are transferred to the init section of the
open CIF scope that hold all continuous (unconditional)
equations

initial equation
Tanks.Tank1.h = 0.25;
Tanks.Tank2.h = 0.45;

|(
init Tanks_DOT_Tank1_DOT_h = 0.25

& Tanks_DOT_Tank2_DOT_h = 0.45,
mode equation ...

|)

Modelica: CIF:

9

17

Translation of Modelica Equation Sections (II)

• Conditional equations are translated to if-then-else constructs
• If-then-else constructs are translated to separate open CIF scopes

– Simple if-then-else constructs
• Each branch is represented by a single mode in the open scope containing

the equations of that branch

if Tanks.V2.q == 1 then
Tanks.V2.vol_flow = 3.0;

else
Tanks.V2.vol_flow = 0.0;

end if;

|(
mode IF_0 = tcp false inv true

when (Tanks_DOT_V2_DOT_q = 1)
now goto IF_1

when (not(Tanks_DOT_V2_DOT_q = 1))
now goto IF_2

, IF_1 = inv Tanks_DOT_V2_DOT_vol_flow = 3.0
when (not(Tanks_DOT_V2_DOT_q = 1))

now goto IF_2
, IF_2 = inv Tanks_DOT_V2_DOT_vol_flow = 0.0

when (((Tanks_DOT_V2_DOT_q = 1)))
now goto IF_1

:: IF_O
)|

Modelica: CIF:

18

Translation of Modelica Equation Sections (II)

• Conditional equations are translated to if-then-else constructs
• If-then-else constructs are translated to separate open CIF scopes

– Simple if-then-else constructs
• Each branch is represented by a single mode in the open scope containing

the equations of that branch
• Transitions between the modes ensure immediate switching if the valuation

of the Boolean predicates changes

if Tanks.V2.q == 1 then
Tanks.V2.vol_flow = 3.0;

else
Tanks.V2.vol_flow = 0.0;

end if;

|(
mode IF_0 = tcp false inv true

when (Tanks_DOT_V2_DOT_q = 1)
now goto IF_1

when (not(Tanks_DOT_V2_DOT_q = 1))
now goto IF_2

, IF_1 = inv Tanks_DOT_V2_DOT_vol_flow = 3.0
when (not(Tanks_DOT_V2_DOT_q = 1))

now goto IF_2
, IF_2 = inv Tanks_DOT_V2_DOT_vol_flow = 0.0

when (((Tanks_DOT_V2_DOT_q = 1)))
now goto IF_1

:: IF_O
)|

Modelica: CIF:

10

19

Translation of Modelica Equation Sections (II)

• Conditional equations are translated to if-then-else constructs
• If-then-else constructs are translated to separate open CIF scopes

– Simple if-then-else constructs
• Each branch is represented by a single mode in the open scope containing

the equations of that branch
• Transitions between the modes ensure immediate switching if the valuation

of the Boolean predicates changes
– Nested if-then-else constructs

• A tree of modes is constructed to switch according to the conditions of the
if-then-else constructs

• All higher-level equations are shifted to the leafs of the tree
• One leaf is always active

• When-elsewhen constructs
– Modeled as CIF open scopes
– Boolean variables represent the states of the Boolean predicates

20

Translation of Modelica Algorithm Sections (I)

• Algorithms are modeled in a single open CIF scope
• The translation of each statement has a single CIF starting mode

and a single CIF end mode

|(
mode ALGORITHM_0 = when

(Tanks_DOT_Tank1_DOT_h >= Tanks_DOT_t_upper)
now goto ALGORITHM_1

, ALGORITHM_1 = tcp false now do
Tanks_DOT_V1L_u := 1.0

goto ALGORITHM_2
, ALGORITHM_2 = when
(not(Tanks_DOT_Tank1_DOT_h >= Tanks_DOT_t_upper))

now goto ALGORITHM_0
:: ALGORITHM_0
)|

when Tanks.Tank1.h >= Tanks.t_upper then
Tanks.V1L_u := 1.0;

end when;

Modelica:

The CIF:

11

21

Translation of Modelica Algorithm Sections (I)

• Algorithms are modeled in a single open CIF scope
• The translation of each statement has a single CIF starting mode

and a single CIF end mode
• A sequence of algorithmic statements is translated into a chain of

modes (loops are possible)
• A depth-first recursive algorithm is employed to translate nested

statements
– Operates on a tree data structure that represents the hierarchy of the

(nested) algorithmic constructs
– Each node of the tree has an unique ID that is used to generate

unique mode names in the CIF

22

Translation of Modelica Algorithm Sections (II)

• If-then-else construct
– Starting mode (m0) is given from previous algorithmic statement
– Modes for if branch (m1) and else branch (m2)
– Recursive translation algorithm is invoked for the statements of the if- and

else-body
– End mode (m3) is returned to the invoking instance of the recursive algorithm

m0

Previous
statement

m2

m1
Translation
of code in
if branch

Translation
of code in
else branch

m3

Next
statement

Condition true

Condition false

12

23

Translation of Modelica Algorithm Sections (II)

• If-then-else construct
– Starting mode (m0) is given from previous algorithmic statement
– Modes for if branch (m1) and else branch (m2)
– Recursive translation algorithm is invoked for the statements of the if- and

else-body
– End mode (m3) is returned to the invoking instance of the recursive algorithm

• While-do construct
– Is similarly translated as the if-then-else construct
– A simple transition from else branch to end mode (with guard true) is added
– Returned end mode is connected from the last statement to the starting mode

• For construct
– Similar to the translation of the while-do construct
– Equipped with additional counting variables

24

Translation of Modelica Algorithm Sections (III)

• Assignments
– A new mode m1 is added to the open CIF scope
– An urgent transition m0 → m1 (with guard true and variable resets

according to the statement) resets the variables
– m1 is returned as the end mode of the translation

• terminate()
– CIF does not provide facilities to terminate the simulation → an

artificial deadlock is created
– A new mode m1 is added to the open CIF scope in which time

cannot progress (tcp false)
– No transition from m1 is added

• reinit()
– Translated like an assignment because the CIF does not

differentiate between state variables and algebraic variables in
reset/reinitialization operations

13

25

• Discretely controlled hybrid two-tank system2

– Designed to contain many constructs of equation-based languages

Example 1: Hybrid Controlled Two-Tank System

2 C. Sonntag: Modeling, Simulation, and Optimization Environments.
Handbook of Hybrid Systems Control - Theory, Tools, Applications, 2009.

Discrete controllers
Parallel algorithms
that switch V1L and
V3 depending on h1

and h21h 2h

26

Example 1: Simulation Results

Modelica

14

27

Example 1: Simulation Results

CIF

28

• A simple control example from the students lab at TU Dortmund
• A PI controller regulates temperature T3 using load Qheat

Example 2: Lab Plant at TU Dortmund

T2

T3

T1

F

Qheat

Outlets

15

29

• Lab plant model created from Modelica standard library
blocks in Dymola

• Automatically translated to the CIF using OMC
• CIF representation translated to gPROMS

Example 2: Modelica Model

30

Example 2: Dynamic Optimization with gPROMS/gOPT

• Dynamic optimization of controller parameters k and T
• Minimization of the integrated square error (ISE) between the

set point and the temperature T3

original

optimized

setpoint

16

31

Conclusions

• Goals of the MULTIFORM project
– Development of a model-based design flow framework
– Integration of model-based design and analysis tools

• Model exchange via the Compositional Interchange Format (CIF)
– Propagation of design parameters and decisions between all

levels of the design hierarchy
• The Compositional Interchange Format (CIF)

– Compact and powerful interchange language for general hybrid
systems

– Main features: formal compositional semantics, hierarchy and
modularity, different urgency and synchronization concepts

• Algorithmic translation from Modelica to the CIF
– Preprocessing using the OpenModelica Compiler (OMC)

• Flattening, syntactical simplification, inclusion of library components
– Recursive top-down translation to the CIF

32

• Planned extensions
– Improvement of the CIF language (simplified formal semantics etc.)

• CIF core language (almost) finalized
– Extension of the CIF with support for co-simulation

• Inclusion of (external) function calls in equation/algorithm sections
– Extension of the CIF with pure time delays
– Translation of meta information

• Annotations, units etc.

• MATLAB-based CIF simulator (Simulink integration)
• Goal: Direct support for the translation in OpenModelica

– Adaptation of the preprocessor to retain more structural information
that can be translated to the CIF
• Hierarchical and modular models

– Cooperation with Open-Source Modelica Consortium (OSMC),
Linköping University

• MULTIFORM: Cooperation with ITEA2 project OPENPROD

Outlook

17

33

Acknowledgements

This work has been performed as part of the project
Integrated Multi-formalism Tool Support for the Design of
Networked Embedded Control Systems (MULTIFORM)
that is funded within the Seventh Research Framework
Programme of the European Commission.
Grant agreement number: INFSO-ICT-224249
http://www.ict-multiform.eu/

Information on the CIF
Toolset, syntax, examples and publications
are available at:
http://se.wtb.tue.nl/sewiki/cif/general

