Simulation of Modelica Models on the CUDA
Parallel Architecture

Per Ostlund

Department of Computer and Information Science
Linképings universitet

February 7, 2010

Per Ostlund Department of Computer and Information Science Linkdpings universitet

Simulation of Modelica Models on the CUDA Parallel Architecture

Outline

Background
CUDA
Numerical Integration
Previous Work

Implementation
Overview
Scheduling
Code Generation
RK4 Solver for OMC

Results
Hardware
Measurements

Conclusions

Per Ostlund Department of Computer and Information Science Linkdpings universitet

Simulation of Modelica Models on the CUDA Parallel Architecture

Background
@00000

CUDA

What is CUDA?

Compute Unified Device Architecture

Developed by NVIDIA as the architecture for their GPUs
Scalable architecture suitable for data-parallel tasks

First CUDA-enabled GPUs released in late 2006

Programmable

v V.V vV v Y

General-Purpose computing on Graphics Processing Units
(GPGPU)

Per Ostlund Department of Computer and Information Science Linkdpings universitet

Simulation of Modelica Models on the CUDA Parallel Architecture

Background
[o] lelele]e]

CUDA

Why use GPUs?

—»— Intel CPUs GTX 295
w 1500 —e— NVIDIA GPUs
\ 7
[a
@)
T 1,000
Ch 8800 GTS (G92) GTX 280
~ 8800 GTX 8800 Ultra
(9]
@ 500 |
E6600 Q6600 QX6800 QX9775 i7 965
N L
Feb 2007 Aug 2007 Mar 2008 Sep 2008 Jan 2009

Date

Per Ostlund
Simulation of Modelica Models on the CUDA Parallel Architecture

Department of Computer and Information Science Linkdpings universitet

Background
[o]e] lele]e]

CUDA

CUDA hardware architecture

Streaming ~
Multiprocessor AN
Instruction Unit

Graphics Processing Unit
sM][sm][sm][sm]
[sm][sm][sm][sm]
ACsm][sM][s™M][sm]]

’
’
7

niumiinllunv
IO OO
niimniinllum
OOl ™O|| O

Per Ostlund Department of Computer and Information Science Linkdpings universitet
Simulation of Modelica Models on the CUDA Parallel Architecture

Background

Cuon
Memory
Streaming
Multiprocessor
- Regiters [ou e |
> Shared
> Clova
> bocal
» Some read-only data caches -
SP
SFU

Per Ostlund Department of Computer and Information Science Linkdpings universitet

Simulation of Modelica Models on the CUDA Parallel Architecture

Background
O000e0

CUDA

C for CUDA

» Extension of C

» CUDA runtime API

» Host and Device

» Kernels

» Kernels defined with __global__

» Kernels launched with <<<...>>> syntax

» One kernel executed by multiple threads, divided into blocks.

» Blocks automatically allocated on multiprocessors.

Per Ostlund Department of Computer and Information Science Linkdpings universitet

Simulation of Modelica Models on the CUDA Parallel Architecture

Background
O0000®

CUDA

// The kernel

__global__ void brighten_pixel(int image [256][256])
{

int pixel_x = blockIdx.x * blockDim.x + threadIdx.x;
int pixel_y = blockIdx.y * blockDim.y + threadIdx.y;

image [pixel_x][pixel_y]l += 10;
}

int main ()

{

// Invoking the kernel

dim3 grid_dim (16, 16); // 16xz16 blocks in the grid
dim3 block_dim (16, 16); // 16z16 threads in each block

brighten_pixel<<<grid_dim, block_dim>>>(image);
}

Per Ostlund Department of Computer and Information Science Linkdpings universitet

Simulation of Modelica Models on the CUDA Parallel Architecture

Background
[ele}

Numerical Integration

Problem to solve

u=A-sin(wt)

P P uz = Ro - iy

109 1000w = u—u

1P n n Ug = U — Uz
220VT< i =
P P R’

o0 1=1 + 9
0.01F —__ 0.1H i
on n = C
. Uy
(3% 2= L

Per Ostlund Department of Computer and Information Science Linkdpings universitet

Simulation of Modelica Models on the CUDA Parallel Architecture

Background
[ele}

Numerical Integration

Problem to solve

u=A- sin(wt)
P P uz = RQ . ’iQ
1092 10052 U = U — U
1P n n Uy = U — U3
220VT< i =
P P Iy
0 1 =11 + 19
0.0lF __—_ 0.1H i
on n “2=7c
3 U4
o =

o
~

Per Ostlund Department of Computer and Information Science Linkdpings universitet

Simulation of Modelica Models on the CUDA Parallel Architecture

Background
[ele}

Numerical Integration

Problem to solve

u=A-sin(wt)
P P uz = Ry - iy
1092 10052 U = U — U
P n n Ug = U — U3
220VT< =
p p 1
tn 1=1 + 9
0.0l1F ___ 0.1H i
on n 1L2 - 6
oD 2= L

Per Ostlund Department of Computer and Information Science Linkdpings universitet

Simulation of Modelica Models on the CUDA Parallel Architecture

Background
(o] lo}

Numerical Integration

Numerical integration

(1)

Actual value

! Approximated value
|
|
|
|
|
|
|

time

tt+h

Department of Computer and Information Science gs universitet

Simulation of Modelica Models on the CUDA Parallel Architecture

Background
ooe

Numerical Integration

Fourth order Runge-Kutta method (RK4)

(m(t+%-k1),u(t+%),t+g)
(m(t+g-k2),u(t+g),t+g)
(@(t+h-ks),u(t+h),t+h)

()+h g (k1 +2 ka+2 ks+ky)

Per Ostlund Department of Computer and Information Science Linkdpings universitet

Simulation of Modelica Models on the CUDA Parallel Architecture

Background
@00

Previous Work

Previous work

» Peter Aronsson: Automatic Parallelization of Equation-Based
Simulation Programs

» Hakan Lundvall: Automatic Parallelization using Pipelining for
Equation-Based Simulation Languages

» ModPar

Per Ostlund Department of Computer and Information Science Linkdpings universitet

Simulation of Modelica Models on the CUDA Parallel Architecture

Background
(o] le}

Previous Work

Task graphs

r=3xy+ ¢

Department of Computer and Information Science Linkdpings universitet

Simulation of Modelica Models on the CUDA Parallel Architecture

Background
[efe]]

Previous Work

Task merging

Aronsson's Task Merging Method (ATMM)
Reduce the number of nodes that need to be scheduled

Finding parallelism

vV v v Y

Simpler set of rules compared with ATMM

Per Ostlund Department of Computer and Information Science Linkdpings universitet

Simulation of Modelica Models on the CUDA Parallel Architecture

Implementation

@0

Overview
Overview

Modelica Model

’
[OMC Front-end |

| DAELow

| CudaCodegen |
i,Equations

| TaskGraph |
i,Task graph

| TaskMerger |
iMerged task graph

[Scheduler]
lScheduIed tasks

| CodeGenerator |

¥
CUDA Code

Department of Computer and Information Science Linkdpings universitet

Simulation of Modelica Models on the CUDA Parallel Architecture

Implementation
oe

Overview

Modelica to task graph

OMC front-end used to parse models
CudaCodegen exports equations to external C+ module
The C+ module builds a task graph

>
»
| 4
>

Per Ostlund Department of Computer and Information Science Linkdpings universitet

The task graph is merged and scheduled

Simulation of Modelica Models on the CUDA Parallel Architecture

Implementation
[leJele]e]

Scheduling

Scheduling overview

» Nodes containing tasks scheduled on processors

» Tasks scheduled in correct order

Per Ostlund Department of Computer and Information Science Linkdpings universitet

ulation of Modelica Models on the CUDA Parallel Architecture

Implementation
(o] Jelele]

Scheduling

Critical path scheduling

1. Find critical path in task
graph

2. Schedule it on processor
with least work

3. Remove critical path from
task graph

4. Continue until all nodes are
scheduled

Per Ostlund Department of Computer and Information Science Linkdpings universitet

Simulation of Modelica Models on the CUDA Parallel Architecture

Implementation
00e00

Scheduling

Finding equivalent nodes

2= ayx by + G 7 = agx by + F $3:a3*b3+c%’

Department of Computer and Information Science L ngs universitet

Simulation of Modelica Models on the CUDA Parallel Architecture

Implementation
(ele]e] Jo]

Scheduling

Task scheduling

Department of Computer and Information Science Linkdpings universitet

Simulation of Modelica Models on the CUDA Parallel Architecture

Implementation
(ele]e] Jo]

Scheduling

Task scheduling

OO :

OO - e

Department of Computer and Information Science Linkdpings universitet

Simulation of Modelica Models on the CUDA Parallel Architecture

Implementation
(ele]e] Jo]

Scheduling

Task scheduling

Time

OO

[e[o][=]o]o]e]=]

Per Ostlun Department of Computer and Information Science Linkdpings universitet

Simulation of Modelica Models on the CUDA Parallel Architecture

Implementation
(ele]e] Jo]

Scheduling

Task scheduling

Time

OO

[2]o[o]~[o]o]x]=]

Per Ostlun Department of Computer and Information Science Linkdpings universitet

Simulation of Modelica Models on the CUDA Parallel Architecture

Implementation

Scheduling eoee
Communication
» Block synchronization not e
supported by CUDA
» Communicate with global e
memory

» Locks and signals
» Inefficient ° 6

» Limits number of thread

blocks @ e @

Per Ostlund Department of Computer and Information Science Linkdpings universitet

Simulation of Modelica Models on the CUDA Parallel Architecture

Implementation
@®0000000

Code Generation

Schedule

Execution Path
Execution Path List l uu
Processor Schedule —

Department of Computer and Information Science Linkdpings universitet

Simulation of Modelica Models on the CUDA Parallel Architecture

Implementation
O@000000

Code Generation

Code generation for tasks

>
»
| 4
>

Per Ostlund Department of Computer and Information Science Linkdpings universitet

Generate code for tasks based on their type
Create temporary variables
Assign results

Use shared memory for better performance

Simulation of Modelica Models on the CUDA Parallel Architecture

Shared memory allocation

w|0]1]2]3]4]5]6]|7]|8]o]10]11]12]13]14]15]

s tmp:| 0| 1|23]4|5]6]7[8]0]10]11]12]13]14]15]

I >

s{of1]2]3]4]5]6]|7]8]9]10]11]12]13]14]15]

Per Ostlund Department of Computer and Information Science Linkdpings universitet

Simulation of Modelica Models on the CUDA Parallel Architecture

Implementation
000@0000

Code Generation

Task execution example

__device__ void execute_tasks_3(real *dx, real *x, real *y, real *c, bool *1, real t)
{

int id = threadIdx.x;

extern __shared__ real sl[];

allocate_3(s, dx, x, y);

if (threadIdx.x < 20)

{
real tmp0 = s[1 + 4 % id] + s[0 + 4 * id];
real tmpl = -2 * s[2 + 4 x id];
real tmp2 = tmpl + tmpO;
real tmp3 = powf (64, 2);
s[3 + 4 x id] = tmp3 * tmp2;
}
if (threadIdx.x == 0)
{

copy_back_3(s, dx, x, y);

Department of Computer and Information Science Linkdpings universitet

Simulation of Modelica Models on the CUDA Parallel Architecture

Implementation
00008000

Code Generation

Shared memory allocation example

__device__ void allocate_3(real *s, real *dx, real *x, real x*y)
{
real *s_temp = &s[80];
s_temp[threadIdx.x] = x[2 + threadIdx.x];
if (threadIdx.x == 0)
s[0] = s_temp[0];
s[2] = s_temp[1];
s[1] = s_templ[2];
s[21] = s_temp[17];
s[24] = s_temp[18];
s[26] = s_temp[19];
¥
s_temp[threadIdx.x] = x[22 + threadIdx.x];
if (threadIdx.x == 0)
{
}
if (threadIdx.x == 0)
s[78] = y[1];
}

Department of Computer and Information Science Linkdpings universitet

Simulation of Modelica Models on the CUDA Parallel Architecture

Implementation
0O0000e00

Code Generation

Copy-back function example

__device__ void copy_back_3(real *s, real #*dx, real *x, real xy)
{

dx [3] = s[3];

dx[6] = s[7];

dx [9] = s[11];

dx [67] = s[75];

dx [60] = s[79];

y[11 = s[78];
}

Department of Computer and Information Science Linkdpings universitet

Simulation of Modelica Models on the CUDA Parallel Architecture

Implementation
00000080

Code Generation

Spreading the work

__global__ void execute_tasks(real *dx, real #*x, real *y, real *c, bool *1, real t)

switch(blockIdx.x)

{
case 0: execute_tasks_0(dx, x, y, ¢, 1, t); break;
case 1: execute_tasks_1(dx, x, y, ¢, 1, t); break;
case 2: execute_tasks_2(dx, x, y, ¢, 1, t); break;
case 3: execute_tasks_3(dx, x, y, ¢, 1, t); break;
case 4: execute_tasks_4(dx, x, y, ¢, 1, t); break;
case 5: execute_tasks_5(dx, x, y, ¢, 1, t); break;

}

Department of Computer and Information Science

imulation of Modelica Models on the CUDA Parallel Architecture

Implementation
O000000e

Code Generation

Main simulation loop example

int shmem_size = 100 * sizeof (real);

for(int step = 0; step < steps; ++step)
{

r_dx += DERIVATIVES;

r_x += STATES;

r_y += ALGEBRAICS;

execute_tasks <<<7, 20, shmem_size>>>(d_dx, d_x, d_y, d_c, d_1, t);
step_and_increment1<<<2, 32>>>(d_x, d_old_x, d_dx, d_k, half_h);

t += half_h;

execute_tasks <<<7, 20, shmem_size>>>(d_dx, d_x, d_y, d_c, d_1, t);
step_and_increment2<<<2, 32>>>(d_x, d_old_x, d_dx, d_k, half_h);
execute_tasks <<<7, 20, shmem_size>>>(d_dx, d_x, d_y, d_c, d_1, t);
step_and_increment3<<<2, 32>>>(d_x, d_old_x, d_dx, d_k, h);

t += half_h;

execute_tasks<<<7, 20, shmem_size>>>(d_dx, d_x, d
step_and_integrate<<<2, 32>>>(d_x, d_old_x, d_dx,

_y, d_c, d_1, t);
d_k, h_div_6);
cudaMemcpy (r_x, d_x, STATES * sizeof (real), cudaMemcpyDeviceToHost);
cudaMemcpy (r_dx, d_dx, DERIVATIVES * sizeof (real), cudaMemcpyDeviceToHost);

cudaMemcpy (r_y, d_y, ALGEBRAICS * sizeof (real), cudaMemcpyDeviceToHost);

Department of Computer and Information Science Linkdpings universitet

Simulation of Modelica Models on the CUDA Parallel Architecture

Implementation

RK4 Solver for OMC

RK4 Solver for OMC

» OMC supports using different solvers
» Only DASSL and Euler implemented so far
» RK4 solver implemented to compare GPU to CPU

Per Ostlund Department of Computer and Information Science Linkdpings universitet

Simulation of Modelica Models on the CUDA Parallel Architecture

Results
[lele}

Hardware

Hardware

Per Ostlun Department of Computer and Information Science Linkdpings universitet
Simulation of Modelica Models on the CUDA Parallel Architecture

Hardware

Hardware specifications

Per Ostlund

Results
oeo

GeForce 8800 | Tesla C1060
GTS
Streaming Multiprocessors | 12 30
Scalar Processors | 96 240
Scalar Processor Clock (MHz) | 1200 1300
Single Precision GFLOPS | 346 933
Double Precision GFLOPS | N/A 78
Memory Amount (MB) | 320 4096
Memory Interface | 320-bit 512-bit
Memory Clock (MHz) | 800 800
Memory Bandwidth (GB/s) | 64 102
PCle Version | 1.0 2.0 (1.0 used)
PCle Bandwidth (GB/s) | 4 8 (4 used)
CUDA Compute Capability | 1.0 1.3

Department of Computer and Information Science Linkdpings universitet

Simulation of Modelica Models on the CUDA Parallel Architecture

Results
ooe
Hardware

Model

model WaveEquationSample
parameter Real L = 10 "Length of duct";

parameter Integer n = 30 "Number of sections';
parameter Real dL = L/n "Section length";
parameter Real c = 1;

Real[n] p(start = £i11(0,n));
Real[n] dp(start = £ill(0,n));

equation
pl1] = exp(-(-L/2)"2);
pln]l = exp(-(L/2)72);
dp = der(p);

for i in 2:n-1 loop
der (dp[il) = c¢~2 * (p[i+1] - 2*p[i] + pl[i-11) / dL~"2;
end for;
end WaveEquationSample;

Per Ostlund
Simulation of Modelica Models on the CUDA Parallel Architecture

Department of Computer and Information Science Linkdpings universitet

Results

Measurements *°
Measurements
T T T T
15| 8
. —o— E6600
-é’ = 8800 GTS
S —+— (1060 single
& 1p| |——C1060 double i
£
|_
c
o
55| 1
=}
IS
B
0

® | | |
30 60 120 240 480 960 19203840
n

Per Ostlund Department of Computer and Information Science Linkdpings universitet

Simulation of Modelica Models on the CUDA Parallel Architecture

Results

Measurements
Measurement breakdown
8800 GTS | C1060 C1060
single precision | double precision
Task Execution | 0.164 0.592 0.389
Shared Memory | 1.440 1.426 2.287
Integration | 0.417 0.400 0.445
Memory Transfers | 1.104 1.332 2.278

Per Ostlund Department of Computer and Information Science Linkdpings universitet

Simulation of Modelica Models on the CUDA Parallel Architecture

Conclusions

Conclusions

v

Possible to get significant speedups by using GPU
Perhaps a hybrid CPU+GPU approach is better though

Reducing generated code size necessary for larger models

v

v

v

New architecture next year: Fermi
OpenCL

>

Per Ostlund Department of Computer and Information Science Linkdpings universitet

Simulation of Modelica Models on the CUDA Parallel Architecture

	Background
	CUDA
	Numerical Integration
	Previous Work

	Implementation
	Overview
	Scheduling
	Code Generation
	RK4 Solver for OMC

	Results
	Hardware
	Measurements

	Conclusions

