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CUDA

What is CUDA?

Compute Unified Device Architecture

Developed by NVIDIA as the architecture for their GPUs
Scalable architecture suitable for data-parallel tasks

First CUDA-enabled GPUs released in late 2006

Programmable
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General-Purpose computing on Graphics Processing Units
(GPGPU)
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CUDA

Why use GPUs?

—»— Intel CPUs GTX 295
w 1500 —e— NVIDIA GPUs
\ 7
[a
@)
T 1,000
Ch 8800 GTS (G92) GTX 280
~ 8800 GTX 8800 Ultra
(9]
@ 500 |
E6600 Q6600 QX6800 QX9775 i7 965
N L
Feb 2007 Aug 2007 Mar 2008 Sep 2008 Jan 2009

Date

Per Ostlund
Simulation of Modelica Models on the CUDA Parallel Architecture

Department of Computer and Information Science Linkdpings universitet




Background
[o]e] lele]e]

CUDA

CUDA hardware architecture
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CUDA

C for CUDA

» Extension of C

» CUDA runtime API

» Host and Device

» Kernels

» Kernels defined with __global__

» Kernels launched with <<<...>>> syntax

» One kernel executed by multiple threads, divided into blocks.

» Blocks automatically allocated on multiprocessors.
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CUDA

// The kernel

__global__ void brighten_pixel(int image [256][256])
{

int pixel_x = blockIdx.x * blockDim.x + threadIdx.x;
int pixel_y = blockIdx.y * blockDim.y + threadIdx.y;

image [pixel_x][pixel_y]l += 10;
}

int main ()

{

// Invoking the kernel

dim3 grid_dim (16, 16); // 16xz16 blocks in the grid
dim3 block_dim (16, 16); // 16z16 threads in each block

brighten_pixel<<<grid_dim, block_dim>>>(image);
}
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Numerical Integration

Problem to solve
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Numerical Integration

Numerical integration
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Numerical Integration

Fourth order Runge-Kutta method (RK4)
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Previous Work

Previous work

» Peter Aronsson: Automatic Parallelization of Equation-Based
Simulation Programs

» Hakan Lundvall: Automatic Parallelization using Pipelining for
Equation-Based Simulation Languages

» ModPar
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Previous Work

Task graphs

r=3xy+ ¢
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Previous Work

Task merging

Aronsson's Task Merging Method (ATMM)
Reduce the number of nodes that need to be scheduled

Finding parallelism

vV v v Y

Simpler set of rules compared with ATMM
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Overview
Overview

Modelica Model
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| DAELow

| CudaCodegen |
i,Equations

| TaskGraph |
i,Task graph

| TaskMerger |
iMerged task graph

[ Scheduler ]
lScheduIed tasks

| CodeGenerator |

¥
CUDA Code
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Overview

Modelica to task graph

OMC front-end used to parse models
CudaCodegen exports equations to external C+ module
The C+ module builds a task graph
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Scheduling

Scheduling overview

» Nodes containing tasks scheduled on processors

» Tasks scheduled in correct order
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Scheduling

Critical path scheduling

1. Find critical path in task
graph

2. Schedule it on processor
with least work

3. Remove critical path from
task graph

4. Continue until all nodes are
scheduled
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Scheduling

Finding equivalent nodes

2= ayx by + G 7 = agx by + F $3:a3*b3+c%’
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Scheduling

Task scheduling
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Scheduling

Task scheduling
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Scheduling

Task scheduling
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Task scheduling
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Scheduling eoee
Communication
» Block synchronization not e
supported by CUDA
» Communicate with global e
memory

» Locks and signals
» Inefficient ° 6

» Limits number of thread

blocks @ e @
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Code Generation

Schedule

Execution Path
Execution Path List l uu
Processor Schedule —
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Code Generation

Code generation for tasks

>
»
| 4
>

Per Ostlund Department of Computer and Information Science Linkdpings universitet

Generate code for tasks based on their type
Create temporary variables
Assign results

Use shared memory for better performance
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Shared memory allocation
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Code Generation

Task execution example

__device__ void execute_tasks_3(real *dx, real *x, real *y, real *c, bool *1, real t)
{

int id = threadIdx.x;

extern __shared__ real sl[];

allocate_3(s, dx, x, y);

if (threadIdx.x < 20)

{
real tmp0 = s[1 + 4 % id] + s[0 + 4 * id];
real tmpl = -2 * s[2 + 4 x id];
real tmp2 = tmpl + tmpO;
real tmp3 = powf (64, 2);
s[3 + 4 x id] = tmp3 * tmp2;
}
if (threadIdx.x == 0)
{

copy_back_3(s, dx, x, y);
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Code Generation

Shared memory allocation example

__device__ void allocate_3(real *s, real *dx, real *x, real x*y)
{
real *s_temp = &s[80];
s_temp[threadIdx.x] = x[2 + threadIdx.x];
if (threadIdx.x == 0)
s[0] = s_temp[0];
s[2] = s_temp[1];
s[1] = s_templ[2];
s[21] = s_temp[17];
s[24] = s_temp[18];
s[26] = s_temp[19];
¥
s_temp[threadIdx.x] = x[22 + threadIdx.x];
if (threadIdx.x == 0)
{
}
if (threadIdx.x == 0)
s[78] = y[1];
}
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Code Generation

Copy-back function example

__device__ void copy_back_3(real *s, real #*dx, real *x, real xy)
{

dx [3] = s[3];

dx[6] = s[7];

dx [9] = s[11];

dx [67] = s[75];

dx [60] = s[79];

y[11 = s[78];
}
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Code Generation

Spreading the work

__global__ void execute_tasks(real *dx, real #*x, real *y, real *c, bool *1, real t)

switch(blockIdx.x)

{
case 0: execute_tasks_0(dx, x, y, ¢, 1, t); break;
case 1: execute_tasks_1(dx, x, y, ¢, 1, t); break;
case 2: execute_tasks_2(dx, x, y, ¢, 1, t); break;
case 3: execute_tasks_3(dx, x, y, ¢, 1, t); break;
case 4: execute_tasks_4(dx, x, y, ¢, 1, t); break;
case 5: execute_tasks_5(dx, x, y, ¢, 1, t); break;

}
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Code Generation

Main simulation loop example

int shmem_size = 100 * sizeof (real);

for(int step = 0; step < steps; ++step)
{

r_dx += DERIVATIVES;

r_x += STATES;

r_y += ALGEBRAICS;

execute_tasks <<<7, 20, shmem_size>>>(d_dx, d_x, d_y, d_c, d_1, t);
step_and_increment1<<<2, 32>>>(d_x, d_old_x, d_dx, d_k, half_h);

t += half_h;

execute_tasks <<<7, 20, shmem_size>>>(d_dx, d_x, d_y, d_c, d_1, t);
step_and_increment2<<<2, 32>>>(d_x, d_old_x, d_dx, d_k, half_h);
execute_tasks <<<7, 20, shmem_size>>>(d_dx, d_x, d_y, d_c, d_1, t);
step_and_increment3<<<2, 32>>>(d_x, d_old_x, d_dx, d_k, h);

t += half_h;

execute_tasks<<<7, 20, shmem_size>>>(d_dx, d_x, d
step_and_integrate<<<2, 32>>>(d_x, d_old_x, d_dx,

_y, d_c, d_1, t);
d_k, h_div_6);
cudaMemcpy (r_x, d_x, STATES * sizeof (real), cudaMemcpyDeviceToHost);
cudaMemcpy (r_dx, d_dx, DERIVATIVES * sizeof (real), cudaMemcpyDeviceToHost);

cudaMemcpy (r_y, d_y, ALGEBRAICS * sizeof (real), cudaMemcpyDeviceToHost);
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Implementation

RK4 Solver for OMC

RK4 Solver for OMC

» OMC supports using different solvers
» Only DASSL and Euler implemented so far
» RK4 solver implemented to compare GPU to CPU
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Hardware

Hardware specifications

Per Ostlund

Results
oeo

GeForce 8800 | Tesla C1060
GTS
Streaming Multiprocessors | 12 30
Scalar Processors | 96 240
Scalar Processor Clock (MHz) | 1200 1300
Single Precision GFLOPS | 346 933
Double Precision GFLOPS | N/A 78
Memory Amount (MB) | 320 4096
Memory Interface | 320-bit 512-bit
Memory Clock (MHz) | 800 800
Memory Bandwidth (GB/s) | 64 102
PCle Version | 1.0 2.0 (1.0 used)
PCle Bandwidth (GB/s) | 4 8 (4 used)
CUDA Compute Capability | 1.0 1.3
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Model

model WaveEquationSample
parameter Real L = 10 "Length of duct";

parameter Integer n = 30 "Number of sections';
parameter Real dL = L/n "Section length";
parameter Real c = 1;

Real[n] p(start = £i11(0,n));
Real[n] dp(start = £ill(0,n));

equation
pl1] = exp(-(-L/2)"2);
pln]l = exp(-(L/2)72);
dp = der(p);

for i in 2:n-1 loop
der (dp[il) = c¢~2 * (p[i+1] - 2*p[i] + pl[i-11) / dL~"2;
end for;
end WaveEquationSample;
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Measurements *°
Measurements
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Results

Measurements
Measurement breakdown
8800 GTS | C1060 C1060
single precision | double precision
Task Execution | 0.164 0.592 0.389
Shared Memory | 1.440 1.426 2.287
Integration | 0.417 0.400 0.445
Memory Transfers | 1.104 1.332 2.278
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Conclusions

v

Possible to get significant speedups by using GPU
Perhaps a hybrid CPU+GPU approach is better though

Reducing generated code size necessary for larger models

v

v

v

New architecture next year: Fermi
OpenCL

>
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