Introduction

This is an introductory course in systems engineering with emphasis on model-based systems development, design, and analysis using tools. The course includes general methods which are useful within a range of system engineering domains, e.g., computer science, software engineering, machine design, electrical engineering, vehicular systems, aerospace applications, transport systems, project management, sustainability life cycle design and analysis, maintenance.

After the course, students should be able to:

- Describe how products and services from different technical areas can be integrated into a system.
- Describe basic concepts in Systems Engineering.
- Specify and analyze system requirements.
- Design and model a system architecture.
- Use modeling languages such as Modelica and UML to describe a small system.
- Model, analyze, simulate, and optimize a system.
- Plan implementation of a system.
- Validate a system.
- Perform environmental and lifecycle design and management of a system.

Case Study with an Electric Vehicle

The course contains a case study with the design of a plug-in charging electric vehicle. This includes system analysis, design, modeling and simulation, requirement formalization and verification, choice of components, optimization goal, etc.

The plug-in electric vehicle model has the following very simplified schematic connection diagram:
A model library in Modelica with model components relevant for electric cars will be made available. Tool support for modeling, simulation, requirement formalization, requirement verification, optimization, etc. will be available using OpenModelica.

Course Literature

- Peter Fritzson. The DrModelica Interactive Electronic Notebook. Available in OMNotebook in the OpenModelica installer and on the web: http://omwebbook.openmodelica.org/DrModelica
- Functional Mockup Interface (FMI) Overview. Slide presentation.
- Papers on optimization
- Papers on systems engineering

Short Overview of Course Parts and Lecturers

Week 1

- 1 day, Modelica introduction, Lectures and exercises, Peter Fritzson
- 1 day, Modelica introduction, Lectures and exercises, Lena Buffoni
- 1/2 day, Modelica introduction, Own study, continued exercises; Lena Buffoni
- 1/2 day, Requirements and Dynamic Model-Based Verification, lecture, exercises, Lena Buffoni
- 1 day, Electric Vehicle Modeling, Lectures and exercises, Lars Eriksson (Peter Fritzson)
- 1 day, Systems Engineering, basic concepts and industry perspective, Lectures Erik Herzog

Week 2

- 1/2 day, Functional Mockup Interface (FMI), Lecture and exercises (Lennart Ochel)
- 1/2 day, Own study, 2h exercise support (Lennart Ochel)
- 1 day, Thinking in Systems, sustainable systems modeling. Lectures and Exercises, Ola Leifler (Peter Fritzson)
- 1 day, Model-based system optimization and design exploration, Lectures and exercises, Robert Braun (Peter Fritzson)
1 day, Own study day, + 2h exercise support electric vehicle, Lars Eriksson (Peter Fritzson)
1 day, UML (Unified Modeling Language) and System Anatomy, Lectures and exercises, Kristian Sandahl.

Total: 10 days

In April: Written and oral exam

Detailed Overview of Lectures and Schedule

Day 1, March 18 9.15-17.00
Lecturers: Peter Fritzson

Lecture Introduction to Modeling and Simulation with Modelica and OpenModelica
Short presentations by participants about their interests, 3 min each. Email 1 slide each beforehand.
Introduction to Modelica and OpenModelica
Demo+short exercise: Graphic modeling with OMEdit
OpenModelica OMNotebook usage
Introduction to textual modeling
Demo+Exercise: OMNotebook and DrModelica

Lecture Modelica Classes, Inheritance and Equations
Lecture+Exercises: classes and inheritance (Lena)
Exercise01-classes-simple-textual.onb
Lecturing on Modelica equations.
Exercise03-classes-textual-circuit.onb

Lecture – Modelica Connectors, Packages and Libraries
Lecturing+Exercises: Component connectors and connections, graphical modeling (Lena)
Exercise02-graphical-modeling.onb
Lecturing on Modelica packages and libraries

Lecture – 3D Graphics with 3D animantion
Lecture and exercise on 3D graphics

Day 2, March 19, 08.15-16.30
Lecturers: Lena Buffoni

Lecture – Graphical Modeling with Control Feedback
Lecturing and exercise on adding a feedback loop with controller to the DCMotor.

Lecture – Modelica Algorithms and functions
Lecturing and Exercise04-equations-algorithms-functions.onb
Lecture – Modelica Hybrid Systems Including Clocked and State Machines
Lecturing and Exercise 05-hybrid-discreteevent.onb
Small exercise on clocked synchronous and/or state machine constructs.

Lecture – Modelica External Function Interface
Lecturing and Exercise on using Modelica’s external function interface

Day 3, March 20, 08.15-17.00
Lecturers: Lena Buffoni,
Half day, Modelica introduction, Own study, continued exercises; Lena Buffoni
Half day, 13.15-17.00, afternoon

Lecture – Formalization of Requirements and Dynamic Model-Based Verification
Lecture and hands-on exercise using OpenModelica on requirement modeling and dynamic verification.

Day 4, March 21, 08.15-16.00
Lecturers: Lars Eriksson

Lectures – Electric Vehicle Modeling
Introduction to electric vehicles and their modeling and simulation. Introduction to the electric vehicle case study.

Exercises on the electric vehicle model
Very short introduction to the model-based optimization case for this application and the OpenModelica optimization tool facilities.

Day 5, March 22, 08.15-16.00
Lecturers: Erik Herzog

Lecture – Systems Engineering, Basic Concepts I
Basic concepts. Industry perspective.

Lecture – Systems Engineering, Basic Concepts II
Continued. Basic concepts.

Day 6, Functional Mockup Interface, March 25, 08.15-17.00
Lecturers: Lennart Ochel
½ day, Functional Mockup Interface (FMI), Lecture and exercises 8.15-12.00
1/2 day, Own study, 2h exercise support (Lennart Ochel)

Day 7, March 26, 08.15-17.00 Lectures – Thinking in Systems and Sustainability
Lecturers: Ola Leifler, (Peter Fritzson)
Lecturing on systems thinking, complexity, life cycle
Exercises on modeling such aspects of a system

Day 8, March 27, 8.15-17.00
Lecturers: Robert Braun

Lecture – Model-Based System Optimization, Part I
Introduction to methods and tools to optimize a system based on a model, and design exploration. Exercises

Lecture – Model-Based System Optimization, Part II
Part II of methods and tools to optimize a system based on a model, and design exploration. Exercises

Day 9, Own Study Day, March 28, 08.15-17.00
Lecturers: Lars Eriksson
Lars is available 13.00-15.00 to answer questions and give advice on the electrical vehicle application case study. The lecture room is reserved for own and group work 8.15-17.00.

Day 10, March 29, 08.15-15.00
Lecturer: Kristian Sandahl

Lecture – UML
Catch-up lecture for those that are unfamiliar with UML
Use-cases, classes, sequence diagrams, and state charts. Standard UML
Exercises with Papyrus UML Tool

Lecture – System Anatomy
Introduction and practical exercise in creating a system anatomy as a way to create a common internal view of a system.

Examination day: April, 2019. (if this does not work for you, contact the course leaders)