
Linköping University
2010-02-10

Peter Fritzson

Integrated Model-Based Development with
OpenModelica and ModelicaML

partly in the OPENPROD project

class x {
public
int a;
float b;
int func (int a,int b);
Asa asad
Asda ad
Asd ad cc
Aac sdscfcc c a
Ascccv ca
Ascc cac
}

class x {
public
int a;
float b;
int func (int a,int b);
Asa asad
Asda ad
Asd ad cc
Aac sdscfcc c a
Ascccv ca
Ascc cac
}

class x {
public
int a;
float b;
int func (int a,int b);
Asa asad
Asda ad
Asd ad cc
Aac sdscfcc c a
Ascccv ca
Ascc cac
}

class x {
public
int a;
float b;
int func (int a,int b);
Asa asad
Asda ad
Asd ad cc
Aac sdscfcc c a
Ascccv ca
Ascc cac
}

2 © Peter Fritzson

MODPROD Center Associated Project:
OPENPROD – Large 3-year ITEA2 EU Project
28 partners from 5 countries: 11 large industries,
7 SMEs, 5 research institutes, and 5 universities.
Project size: > 90 person years,
Budget: About 11 Mill. €, Duration June 2009 - Aug 2012.
Coordination by Sune Horkeby, Peter Fritzson

3 © Peter Fritzson

OPENPROD System Structure

Model-Driven Development
Environment, WP2

Compiler
frontend

Compiler
Middleend

Model Compiler
WP3

CodeGen & Simulation
WP4

Interoperability
WP5

Graphical Presentation
WP2

Parallel Code
Multi-core

Real-time
Code Gen

Hybrid
QSS Simul

TLM-based
Co-simulation

On-line
analysis

3D
animation

2D/3D Graphic
Model Spec

Browser
&Debugger

Requirement
modeling

Graphical
Presentation

Aspect
orientation

Model
Ext Format

Modeling
Ontology

Control
Interop

Uncertainty
Sensitivity

Modelica
UML Integr

4 © Peter Fritzson

OPENPROD Vision of Integrated
Model-Based Product Development

Product
models

Requirements
models

Unified Modeling: Meta-modeling& Modelica& UML & OWL

Business
Process
Control

Requirements
Capture

Model-Driven
Design
(PIM)

Compilation
& Code Gen

(PSM)

System
Simulation

Software &
Syst Product

Feedback

Platform
models

Process
models

Product
models

Requirements
models

Unified Modeling: Meta-modeling& Modelica& UML & OWL

Business
Process
Control

Requirements
Capture

Model-Driven
Design
(PIM)

Compilation
& Code Gen

(PSM)

System
Simulation

Software &
Syst Product

Feedback

Platform
models

Process
models

OPENPROD Vision of unified modeling framework for model-driven
product development from platform independent models (PIM)
to platform specific models (PSM)

Current work based on Eclipse, UML/SysML, OpenModelica

5 © Peter Fritzson

Business Process Models

Business
Process
Control

Process
models

Business
Process
Control

Process
models

• In OPENPROD WP2:

• VTT develops business processing
tool using Simantics and
OpenModelica, based on System
Dynamics.

• Industrial applications by partners:
Nokia, Metso, Pyöru

6 © Peter Fritzson

Modeling Business Processes (VTT)

• Problem Articulation
• Problem, variables, time scale, interfaces…
• (Model only aspects relevant to the problem)

• Formulation of Dynamic
Hypothesis
• Hypothesis, causal relations

• Formulation of a Simulation
Model
• Structure, submodels, parameter estimation,

...

• Testing
• Comparison to historical data, sensitivity...

• Policy Design and
Evaluation
• Scenarios, new policies, strategies, ”what if”-

simulation, sensitivity in different situations

7 © Peter Fritzson

Capturing and Transformations of Requirements

Requirements
models

Requirements
Capture

Requirements
models

Requirements
Capture

• Approach 1: SysMLText boxes

• Approach 2: ModelicaML –
requirements in text and slightly
formalized

• Approach 3: Use the behavior
engineering approach on capturing
and formalizing requirements

8 © Peter Fritzson

Approach 1: SysML Requirement diagrams
(= text boxes) in ModelicaML-2007

9 © Peter Fritzson 9

Approach 1 &2: Requirements Modeling in Eclipse
using ModelicaML-2007. Also use equations

10 © Peter Fritzson

Approach 1 & 2: ModelicaML-2009
Example: Representation of System Requirements

Textual Requirement Formalized Requirement

11 © Peter Fritzson

ModelicaML-2009:
Simulation and Requirements Evaluation

Req. 001 is instantiated 2 times (there are 2 tanks in

the system)

tank-height is 0.6m

Req. 001 for the tank2 is violated

Req. 001 for the tank1 is not violated

12 © Peter Fritzson

Approach 3 – Use Behavior Engineering for More
Formal Requirements Capture and Analysis

Developed by Prof. Geoff Dromey, Griffith Univ, Brisbane
• 5 Large-scale industry projects

• In Defence, Transportation, Banking and Finance
• Between 800-1250 requirements

• All previously reviewed with respective organisations
internal review processes

• Defect detection rate approximately 2 to 3 times that of
traditional ad-hoc, checklist-based, and scenario-based
reading techniques reported in Porter, 1998.

Requirements Evaluation Using Behavior Trees
Findings from Industry

Daniel Powell
http://aswec07.cs.latrobe.edu.au/5.zip

http://aswec07.cs.latrobe.edu.au/5.zip�

13 © Peter Fritzson

Formalization - Requirements Translation

Formalization
– clarification and preservation of intent
– strict use of original vocabulary
– removes ambiguity, aliases, etc
– aids stakeholder validation, understanding
– approaches repeatability

1 CAR
?? Arrives ??

1 GATE
? Open ? 1 GATE

? Closed ?

 Functional Requirement
When a car is arrives,

if the gate is open the car proceeds,
otherwise if the gate is closed, when

the driver presses the button
it causes the gate to open 1 CAR

[Proceeds] 1 DRIVER
??[[Presses]Button]??

1 BUTTON
[Pressed]

1 GATE
[Open]

Behavior TreeBehavior Tree

14 © Peter Fritzson

A Brief Introduction to Behavior Engineering (BE)

• Behavior Engineering (BE) acronyms …

Behavior Modeling Process
(BMP)

Behavior Modeling Language (BML)

Behavior Trees (BT) Composition Trees (CT)

Requirements Translation
Requirement Behavior Trees

(RBTs)
Requirement Composition Tree

(RCT)

Requirements Integration
Integrated Behavior Tree

(IBT)
Integrated Composition Tree

(ICT)

System Specification
Model Behavior Tree

(MBT)
Model Composition Tree

(MCT)

System Design
Design Behavior Tree

(DBT)
Design Composition Tree

(DCT)

15 © Peter Fritzson

A Brief Introduction to Behavior Engineering
Summary of Behavior Tree Notation

Summary
of the

Behavior
Tree

Notation

16 © Peter Fritzson

Translation from a Requirement in English
to a Requirement Behavior Tree (RBT)

How to translate from a Requirement in Natural
Language to an RBT

R6. If a caution signal is returned to the ATP controller then the alarm
is enabled within the driver’s cab. Furthermore, once the alarm
has been enabled, if the speed of the train is not observed to be
decreasing then the ATP controller activates the train’s braking
system.

The Tag traces these Behavior Tree nodes back to
Requirement 6.

A ‘+’ and a yellow color denote the behavior is implied
by the requirements

Flow
of

Control

Red color denotes behavior is missing in the requirements

17 © Peter Fritzson

Case Study: An Automated Train Protection
System

BE Model of the ATP System
(yellow: implied from requirements, red: missing)

18 © Peter Fritzson

Case Study:
An Automated Train Protection System
Modelica Model of the ATP System (graphical view)

19 © Peter Fritzson

Modeldriven Design

Product
models

Model-Driven
Design
(PIM)

Product
models

Model-Driven
Design
(PIM)

• Graphical modeling of software and
systems using UML and SysML
• software models, system overview models

• Graphical modeling using Modelica
• Models of physical systems and embedded system

software as well as system architecture

• Textual modeling using Modelica
• OpenModelica MDT Eclipse plugin

20 © Peter Fritzson

Modelica Graphic Connection Diagram and
ModelicaML/UML Class Internal Diagram

• Modelica Connection
diagram
• Better visual comprehension
• Predefined connector

locations

• Class Internal diagram
• Nested models
• Top-model parameters and

variables
• Flow direction
• Other ModelicaML elements

21 © Peter Fritzson

Example: ModelicaML
Representation of System Behavior

State Machine of

the Tank

State Machine of the

Controller

Conditional Algorithm

(Activity Diagram)

22 © Peter Fritzson 22

Modelica Perspective

The OpenModelica MDT Eclipse
Environment for Textual Modeling (I)

Modelica Editor

Modelica Browser

Modelica Code Assistant

MetaModelica Debugging

23 © Peter Fritzson 23

MDT: Code Browsing

Code Browsing for
easy navigation within
Modelica files.
Automatic update on
file save.

24 © Peter Fritzson 24

MDT: Parse Error detection

Parse error
detection on
file save

25 © Peter Fritzson 25

MDT: Semantic Error Detection

Semantic error
detection on
compilation

26 © Peter Fritzson 26

MDT: Code Assistance – on import Statements

Code Assistance on
imports

27 © Peter Fritzson 27

MDT: Code Assistance on Function Calls

Code Assistance on
function calls

28 © Peter Fritzson 28

MDT: Code Indentation

Code
Indentation

29 © Peter Fritzson 29

MDT: Code Outline and Hovering Info

Code Outline for
easy navigation within
Modelica files

Identifier Info on
Hovering

30 © Peter Fritzson 30

OpenModelica Eclipse MDT Debugging
Environment

 Type
information
for all
variables

 Browsing of
complex data
structures

31 © Peter Fritzson

Compilation and Code Generation

Compilation
&Code Gen

(PSM)

Platform
models

Compilation
&Code Gen

(PSM)

Platform
models

• Compilation to C code.

• OpenModelica Text template
language for transformation to
different platform languages.

• Generation to parallel platforms
(Intel multi-core, Nvidia multi-core)

32 © Peter Fritzson 32

The OpenModelica OMC Compiler – From Modelica
to C Code
• Implemented mainly in MetaModelica and C/C++
• The compiler has 91 packages

SCode
/explode

Lookup

Parse DAELow Inst

Ceval

Static

Absyn SCode
DAE: Equations

Algorithms

(Env, name)
SCode.Class

Exp.Exp

SCode.Exp
(Exp.Exp,

 Types.Type)

(Env, name)

Mod Connect

Derive

CodeGen

VarTransform

ClassInf

Prefix

SimCodeGen

DAE: Functions

Absyn

Data Type
Modules:

SCode

Types

Algorithm

DAE

Exp

DAEEXT

Dump

Utility
Modules:

Debug

ModUtil

System Print RTOpts

Builtin

DAELow.DAELow

C code

DAE,
substlist

DAE
Exp.Exp Exp.Exp

ClassInf.Event

Exp.Ident Prefix.Prefix

Types.Mod SCode.Mod Exp.Componentref DAE

ClassInf.State

.mo

Main

Util

ClassLoader

Dump DAE
Flat Modelica

MetaUtil

DFA

Patternm

Values.Value

Exp.Exp

33 © Peter Fritzson

Template Definition Example
OpenModelica Text Template Language

hello(String person) ::= <<
Hello <person>!
>>

whileStmt(String cond, list<String> statements) ::=
<<
while(<cond>) {

<statements \n>
}
>>

Used to easily produce differenent code generators, to C, C#, Java, etc.

A text template is a text with holes in it

34 © Peter Fritzson

Integrating Parallelism and Mathematical Models
Three Approaches

• Automatic Parallelization of Mathematical Models (ModPar)
• Parallelism over the numeric solver method.
• Parallelism over time.
• Parallelism over the model equation system

• ... with fine-grained task scheduling

• Coarse-Grained Explicit Parallelization Using Components
• The programmer partitions the application into computational components

using strongly-typed communication interfaces.
• Co-Simulation, Transmission-Line Modeling (TLM)

• Explicit Parallel Programming
• Providing general, easy-to-use explicit parallel programming constructs

within the algorithmic part of the modeling language.
• NestStepModelica

35 © Peter Fritzson

Generating Parallel Code from Modelica
Task Graphs and Parallelized Application

1
2

3
2

2
1

4
1

5
2

6
2

7
1

8
1

5 0

0 0 0

0 010

Clustered Task Graph

1 2 4 8 16
Proc

0.5

1

1.5

2

2.5

3
Speedup

Thermofluid Pipe Application

36 © Peter Fritzson

E
quation tasks

E
quation tasks

S

E
quation tasks

S

E
quation tasks

E
quation tasks

E
quation tasks

S

S

S

S

S

S

S

S

S

SS

Use a graph
rewriting
system to
merge tasks
into larger
tasks, based
on latency and
bandwidth.

Task Merging vs New Approach with
Pipelining/Inlining

Some tasks
are duplicated
to avoid
communication
within a step

• Try to keep
communication
as close as
possible

• Only
communicate in
one direction
inside a time
step.

• Solver Inlining –
distribute the
solver across all
the processors

37 © Peter Fritzson

Recent Speedup Measurements on NVIDIA (nov 2009)
Modelica Model, Generated Code, Function of Problem Size

38 © Peter Fritzson

Conclusions
• Businesss process modeling on the way based on

System Dynamics

• Several ways of capturing and formalizing requirements
in ModelicaML and Behavior
Engineering+OpenModelica

• Graphic Modeling (ModelicaML, etc.) and tool support for
advanced textual modeling (MDT Eclipse plugin)

• Code generation from OpenModelica, now also using a
text template language.

• Parallelization and code generation to parallel platforms

	Slide Number 1
	MODPROD Center Associated Project:�OPENPROD – Large 3-year ITEA2 EU Project
	OPENPROD System Structure
	OPENPROD Vision of Integrated �Model-Based Product Development
	Business Process Models
	Modeling Business Processes (VTT)
	Capturing and Transformations of Requirements
	Approach 1: SysML Requirement diagrams �(= text boxes) in ModelicaML-2007
	Approach 1 &2: Requirements Modeling in Eclipse using ModelicaML-2007. Also use equations
	Approach 1 & 2: ModelicaML-2009�Example: Representation of System Requirements
	ModelicaML-2009: �Simulation and Requirements Evaluation
	Approach 3 – Use Behavior Engineering for More Formal Requirements Capture and Analysis
	Formalization - Requirements Translation
	A Brief Introduction to Behavior Engineering (BE)
	A Brief Introduction to Behavior Engineering�Summary of Behavior Tree Notation
	Translation from a Requirement in English�to a Requirement Behavior Tree (RBT)
	Case Study: An Automated Train Protection System
	Case Study: �An Automated Train Protection System
	Modeldriven Design
	Modelica Graphic Connection Diagram and ModelicaML/UML Class Internal Diagram
	Example: ModelicaML�Representation of System Behavior
	The OpenModelica MDT Eclipse �Environment for Textual Modeling (I)
	MDT: Code Browsing
	MDT: Parse Error detection
	MDT: Semantic Error Detection
	MDT: Code Assistance – on import Statements
	MDT: Code Assistance on Function Calls
	MDT: Code Indentation
	MDT: Code Outline and Hovering Info
	OpenModelica Eclipse MDT Debugging Environment
	Compilation and Code Generation
	The OpenModelica OMC Compiler – From Modelica� to C Code
	Template Definition Example�OpenModelica Text Template Language
	Integrating Parallelism and Mathematical Models�Three Approaches
	Generating Parallel Code from Modelica �Task Graphs and Parallelized Application
	Task Merging vs New Approach with � Pipelining/Inlining
	Recent Speedup Measurements on NVIDIA (nov 2009)�Modelica Model, Generated Code, Function of Problem Size
	Conclusions

