

Dynamic Modelling of Roller Screws

MODPROD 2010, Linköping, Sweden

Lars-Erik Stacke, Dag Fritzson, Iakov Nakhimovski (SKF ERC), Gerard Buvril, Jean-Paul Giraudeau (SKF Transrol)

2010-02-10

Outline

- Roller screw utilization and trends
- BEAST model of roller screws
- Some simulation results
- Verification
- Summary

Roller screw utilization and trends

Planetary roller screw

Roller screw applications

Industrial Guns

Injection Molding

Servo-presses

Steel industry

Broaches

Heavy presses

Trends in the market

- •The trend is to move from hydraulic to electro-mechanical system (power consumption, productivity, accuracy, flexibility, noise level, ...)
- •The reason of this trend is mainly due to improvements of the AC servo motors, the driver, the electronics, etc
- •Roller screws allows higher speeds, higher loads, and higher reliability compared to other solutions, e.g., ball screws, rack & pinion, pulley & belt, acme screws
- •BUT, better knowledge of the limits of the roller screw is needed, based on experience, tests, basic research, and calculation models

BEAST model of roller screws

BEAST - a virtual test rig

- Multi-body simulation software
- Specialized in contact problems
- Detailed surface description
- Accurate tribology
- Application operating conditions
- Focus on creating understanding of systems with contacts
- BEAST was originally developed for rolling bearings, but can be used for any "contacting" machine element

Main roller screw components - shaft

Main roller screw components - rollers

Main roller screw components – roller guides

Main roller screw components - gears

Main roller screw components - nut

Working mode of planetary roller screws

- Translates rotation to axial displacement.
- •Rollers roll perfectly in the nut. This is ensured by the gear mesh.
- •The load is distributed over a large number of contacts, giving high load capacity.
- •Shaft and nut may have several thread starts, to give higher axial speed and maintain a large number of contacts.

Roller screw analysis in BEAST

Contact conditions

- Contact pressure
- Load distribution
- Sliding speed
- Friction
- Smearing
- Wear
- ...

Gobal conditions

- Efficiency
- Stiffness
- Thermal management
- ...

3

Some simulation results

- Perfect geometry
- No clearance
- •Structurally rigid bodies

Perfect geometry

•Clearance

Structurally rigid bodies

- Perfect geometry
- No clearance
- •Elastic bodies

- Geometrical deviations
- •Clearance
- •Elastic bodies

Roller – shaft contact pressure distributions

Roller – slip speed distributions

Roller - Shaft

Roller - Nut

Verifications

Stiffness

Stiffness

Efficiency

Efficiency

5 Summary

Summary

- Roller screw is a growing segment
- Roller screws are high performance, but complex machine elements
- Simulation models will:
- help building product understanding
- facilitate product optimization
- provide a basis for right-sizing

