The Nostrum Network on Chip

Mikael Millberg, Erland Nilsson, Richard Thid, Johnny Öberg, Zhonghai Lu, Axel Jantsch

Royal Institute of Technology, Stockholm

November 24, 2004
Overview

Topology and Structure

Protocol Stack
The Network Layer and the Switch
Data Protection
Simulation Environment
Clocking
Nostrum Topology: Mesh

Characteristics:
- Resource-to-switch ratio: 1
- A switch is connected to 4 switches and 1 resource
- A resource is connected to 1 switch
- Max number of hops grows with 2^n

Motivation:
- Regularity of layout; predictable electrical properties
- Expected locality of traffic
The Node in a Mesh

NI: Network Interface:
- Compulsory
- HW
- Implements the network layer protocol

Adapter: Resource specific interface circuit;

SLI: Session Layer Interface:
- Optional
- Hardware and/or software
- Implements the session layer protocol
Overview

Topology and Structure

Protocol Stack

The Network Layer and the Switch

Data Protection

Simulation Environment

Clocking
Communication is Key

Communication Layers:

- Physical layer: switch-to-switch and switch-to-resource
- Data link layer: switch-to-switch and switch-to-resource
- Network layer: resource-to-resource
- Session layer: process-to-process
- Application layer: application-to-application
Physical Layer

Parameters:
- Physical distance
- Number of lines
- Activity control
- Buffers and pipelining

Nostrum status:
- Channel dimension: $2mm \times 100\mu m$
- 128 data lines in each direction on 4 metal layers
- No pipelining
- On/off control for power saving

130 x 2 = 260 wires
Data Link Layer

Parameters:
- Line frequency versus switch frequency
- Buffering
- Error correction
- Power optimization encoding

Nostrum status:
- Physical packet = data link packet
- Physical clock = data link clock
- Single packet input buffer
- Error correction
- On/off activity control
Network Layer

Parameters:

- Link layer cell size vs. network layer packet size
- Network address scheme
- Routing algorithm
- Priority classes
- Error correction

Nostrum status:

- Link layer packet = network layer packet
- Relative x-y addresses
- Deflective routing with no buffers and no routing tables
- Virtual circuits with guaranteed bandwidth and delays
- No error protection
Session Layer

Parameters:
- Task level communication primitives
- Message passing
- Shared memory based communication
- Synchronization
- Error correction

Nostrum status:
- Set of communication primitives defined
- Both message passing and shared memory
- User controlled synchronization
- Optional end-to-end data protection
Session Layer Communication

• Message passing communication:
 ★ open/listen/accept/bind primitives to open a channel
 ★ send/receive to communicate
 ★ close to tear down the channel
 ★ blocking/non-blocking send/receive

• Shared memory communication:
 ★ allocation
 ★ read/write
 ★ free
 ★ interruptible/non-interruptible

• VHDL, C and SystemC libraries under development
Application Layers

Application specific communication services; E.g. the NoC operating system could use:

- Task/resource database access protocol
- Task migration protocol
Overview

Topology and Structure

Protocol Stack

The Network Layer and the Switch

Data Protection

Simulation Environment

Clocking
The Network Layer

- Packet switched best effort service
 - Packets are guaranteed to arrive
 - Packet payload may be protected (4 levels of protection)
 - Load dependable delay in the network
 - Load dependable delay at the network access point
- Virtual circuit service
 - Guaranteed bandwidth
 - Guaranteed maximum delay
 - Multicast circuits
 - Based on packet switching service
The Bufferless Switch

- No buffers
- No routing table
- Small area
- Short delay
- Low power consumption
- Non-shortest path
- Header overhead due to destination address
Stress Value Effect on Buffer Sizes and Delays

Largest average buffer size: 3.2
Largest average buffer size: 0.1
Stress Value Effect on Maximum Load

![Graph showing stress value effect on maximum load](image)
Looped Container based Virtual Circuit

- A container packet loops between two or more end points
- The looping container establish a closed virtual circuit
- The virtual circuit allows multicast and bus protocol emulation
- Possible bandwidth allocation:

\[2^{j-d}B \]

where \(B = \text{link bandwidth} \), \(d = \text{length of the container loop} \), \(1 \leq j \leq d \)

- Examples:
 - \(d = 2 \): possible allocations: 100% and 50%
 - \(d = 4 \): possible allocations: 100%, 50%, 25%, 12.5%

A. Jantsch, KTH
Best Effort and Guaranteed Bandwidth Traffic

The background traffic and the AB traffic
Overview

Topology and Structure

Protocol Stack

The Network Layer and the Switch

Data Protection

Simulation Environment

Clocking
Data Protection

- Two level protection: Link layer and session layer

- Data link layer protection:
 - SEC-DED header protection (16/26 bits)
 - Four levels of payload protection:
 - Maximum bandwidth - no protection (102/102 bits)
 - Guaranteed integrity - DED protection (90/102 bits)
 - Minimum latency - SEC protection (90/102 bits)
 - High reliability - SEC-DED protection (81/102 bits)

- Session layer:
 - Normal mode: Send-and-Forget (SaF) service
 - Reliability mode: Acknowledgement-and-Retransmit (AaR) service
 - window size N, $1 \leq N \leq 64$
 - $2N$ packets are buffered in sender and receiver
 - End-to-end flow control mechanism

- in total 8 modes available
Overview

Topology and Structure

Protocol Stack

The Network Layer and the Switch

Data Protection

Simulation Environment

Clocking
Measurement Framework

- Points of measurement
- Level of abstraction
- Service type
Workload Models

- Spatial patterns
- Spatial probability distributions
- Temporal probability distributions
Simulation Scenario 1
Simulation Scenario 1 - cont’d

- Transaction delay
 - mean
 - max
 - min

- Delay (nanoseconds)

- Maximum bandwidth

- Minimum latency

A. Jantsch, KTH
Simulation Scenario 1 - cont’d

- Offered 0.94 GBit/s
- Offered 1.42 GBit/s
- Offered 1.8 GBit/s

A. Jantsch, KTH
Simulation Scenario 2
Simulation Scenario 2 - cont’d

Graph showing the relationship between accepted bandwidth (GBytes/s) and transaction delay, with offered bandwidth (GBytes/s) on the x-axis and delay (nanoseconds) on the y-axis. The graph includes lines for mean, max, and min values.
Simulation Scenario 2 - cont’d
Simulation Scenario 2 - cont’d

- Transaction latency. Offered 3.32 GBit/s
- Transaction latency. Offered 3.32 GBit/s
- Transaction latency. Offered 7.199 GBit/s

A. Jantsch, KTH
Simulation Scenario 3
Simulation Scenario 3 - cont’d

A. Jantsch, KTH
Simulation Scenario 3 - cont’d

Transaction latency. Offered 0.239 Gbit/s

Transaction latency. Offered 1.251 Gbit/s

Transaction latency. Offered 1.428 Gbit/s
Aethereal and Nostrum
Overview

Topology and Structure
Protocol Stack
The Network Layer and the Switch
Data Protection
Simulation Environment

Clocking
Globally Pseudosynchronous - Locally Synchronous Clocking

- Latency reduce with 29% at low load; 40% at high load
- Can handle 10% higher load
- More skew tolerant
- Clock skew and jitter is depending only on local constraints
- No global clock distribution with associated power gains
- Reduced peak power with 50% at best
- Jitter reduced significantly
Globally Pseudosynchronous Clocking - cont’d

- Downstream data create low latency paths (Data Motorways)
 - Guaranteed data motorways
 - Phase related data motorways
- Periphery roundtrip:
 - 14 cycles downstream
 - 21 cycles upstream
 - 24 cycles synchronous
Globally Pseudosynchronous Clocking - cont’d
Globally Pseudosynchronous Clocking - cont’d

- Graph 1: Average latency (ns) vs. Transmission rate (%)
 - Lines represent different schemes:
 - a, scheme 1 fixed
 - b, scheme 2 M=1
 - c, scheme 3 M=2
 - d, scheme 3 M=4
 - e, scheme 3 M=7

- Graph 2: Average latency (ns) vs. Square mesh size (N)
 - Lines represent different schemes and rates:
 - a, scheme 2 M=1, 10% rate
 - b, scheme 3 M=4, 10% rate
 - c, scheme 2 M=1, 50% rate
 - d, scheme 3 M=4, 50% rate
Summary of Nostrum Status

- Nostrum defines a 2 D mesh topology;
- Protocol stack for link layer, network layer and session layer;
- Packet switched and virtual circuit communication services;
- Buffer-less, loss-less switch with no routing tables;
- 2 level data protection scheme;
- Session layer communication primitives;
- Flexible NoC Simulator;

Further information: www.imit.kth.se/info/FOFU/Nostrum/
Next Steps

- Application Specific Nostrum based Platforms (ASP)
 - Network processor ASPs
 - Mobile device ASP
 - Automotive ASP
 - Prototyping ASP
 - First pass radio ASP
- Develop application specific traffic patterns
- Dynamic virtual circuits
- Admission protocol
- Communication refinement
- Application mapping
- Application designers interface