Aligning Biomedical Ontologies Patrick Lambrix Linköpings universitet

Outline

- Ontologies and ontology alignment
- Ontology alignment strategies
- Evaluation of ontology alignment strategies
- Recommending ontology alignment strategies

Ontologies

"Ontologies define the basic terms and relations comprising the vocabulary of a topic area, as well as the rules for combining terms and relations to define extensions to the vocabulary."

Ontologies used ...

- for communication between people and organizations
- for enabling knowledge reuse and sharing
- as basis for interoperability between systems
- as repository of information
- as query model for information sources

Key technology for the Semantic Web

Ontologies in biomedical research

many biomedical ontologies
 e.g. GO, OBO, SNOMED-CT

 practical use of biomedical ontologies

e.g. databases annotated with GO

- Use of multiple ontologies
 e.g. custom-specific ontology + standard ontology
- Bottom-up creation of ontologies experts can focus on their domain of expertise
- → important to know the inter-ontology relationships

Defining ontologies is not so easy ...

Dyirbal classification of objects in the universe

- Bayi: men, kangaroos, possums, bats, most snakes, most fishes, some birds, most insects, the moon, storms, rainbows, boomerangs, some spears, etc.
- Balan: women, anything connected with water or fire, bandicoots, dogs, platypus, echidna, some snakes, some fishes, most birds, fireflies, scorpions, crickets, the stars, shields, some spears, some trees, etc.
- Balam: all edible fruit and the plants that bear them, tubers, ferns, honey, cigarettes, wine, cake.
- Bala: parts of the body, meat, bees, wind, yamsticks, some spears, most trees, grass, mud, stones, noises, language, etc.

Slide from talk by C. Goble

Outline

- Ontologies and ontology alignment
- Ontology alignment strategies
- Evaluation of ontology alignment strategies
- Recommending ontology alignment strategies

	linguistic	structure	constraints	instances	auxiliar;
ArtGen	name	parents, children		domain specific documents	WordNe
ASCO	name, label description	parents, children, siblings, path from root			WordNe
Chimaera	name	parents, children			
FCA-Merge	name			domain specific documents	
FOAM	name, label	parents, children	equivalence		
GLUE	name	neighborhood		instances	
HCONE	name	parents, children			WordNet
IF-Map				instances	a referen ontology
iMapper		leaf, non-leaf, children, related node	domain, range	instances	WordNet
OntoMapper		parents, children		documents	
(Anchor-) PROMPT	name	direct graphs			
SAMBO	name, synonym	is-a and part-of, descendants and ancestors		domain specific documents	WordNet UMLS
S-Match	label	path from root	semantic relations codified		WordNet

Combination Strategies

Usually weighted sum of similarity values of different matchers

Outline

- Ontologies and ontology alignment
- Ontology alignment strategies
- Evaluation of ontology alignment strategies
- Recommending ontology alignment strategies

Evaluation measures

- Precision:
 - # correct suggested alignments
 - # suggested alignments
- Recall:

correct suggested alignments # correct alignments

• F-measure: combination of precision and recall

Ontology Alignment Evaluation Initiative

OAEI

- Since 2004
- Evaluation of systems
- Different tracks
 - □ comparison: benchmark (open)
 - □ expressive: anatomy (blind)
 - directories and thesauri: directory, food, environment, library (blind)
 - □ consensus: conference

OAEI

- Evaluation measures
 - Precision/recall/f-measure
 - recall of non-trivial alignments
 - full / partial golden standard

OAEI 2007

- 17 systems participated
 - □ benchmark (13)
 - ASMOV: p = 0.97, r = 0.97
 anatomy (11)
 - AOAS: f = 0.86, r + = 0.50
 - SAMBO: f =0.81, r+ = 0.58
 - □ library (3)
 - Thesaurus merging: FALCON: p = 0.97, r = 0.87
 - Annotation scenario:
 - FALCON: pb =0.65, rb = 0.49, pa = 0.52, ra = 0.36, Ja = 0.30
 Silas: pb = 0.66, rb= 0.47, pa = 0.53, ra = 0.35, Ja = 0.29
 - □ directory (9), food (6), environment (2), conference (6)

OAEI 2007

- Systems can use only one combination of strategies per task
 - \rightarrow systems use similar strategies
 - □ text: string matching, tf-idf
 - structure: propagation of similarity to ancestors and/or descendants
 - □ thesaurus (WordNet)
 - □ domain knowledge important for anatomy task

Evaluation of algorithms

Results Comparison of the matchers CS_TermWN ⊇ CS_Dom ⊇ CS_Learn

- Combinations of the different matchers
 - combinations give often better results
 - no significant difference on the quality of suggestions for different weight assignments in the combinations
- Structural matcher did not find (many) new correct alignments
 (but: good results for systems biology schemas SBML PSI MI)

Recommending strategies - 3

- Based on inherent knowledge
 - □ Use the actual ontologies to align to find good candidate alignment strategies
 - $\hfill\square$ User/oracle with minimal alignment work
 - \Box Complementary to the other approaches
 - (Tan, Lambrix 2007)

Idea

- Select small segments of the ontologies
- Generate alignments for the segments (expert/oracle)
- Use and evaluate available alignment algorithms on the segments
- Recommend alignment algorithm based on evaluation on the segments

Experiment case - Oracle

UMLS

- □ Library of Medicine
- \Box Metathesaurus contains > 100 vocabularies
- $\hfill\square$ NCI thesaurus and MeSH included in UMLS
- $\hfill\square$ Used as approximation for expert knowledge
- □ 919 expected alignments according to UMLS

- Threshold filter
 - □ thresholds 0.4, 0.5, 0.6, 0.7, 0.8

Segment pair selection algorithms

 \Box Candidate segment pair = sub-graphs according to is-a/part-of with roots with same name; between 1 and 60 terms in segment

000

QA

□ Segment pairs randomly chosen from candidate segment pairs such that segment pairs are disjoint

Segment pair selection

- algorithms
- Clust Cluster terms in ontology □ Candidate segment pair is pair of clusters containing terms with the same name; at least 5 terms in clusters
 - □ Segment pairs randomly chosen from candidate segment pairs

Segment pair selection algorithms

- For each trial, 3 segment pair sets with 5 segment pairs were generated
- SubG: A1, A2, A3
 - □ 2 to 34 terms in segment
 - □ level of is-a/part-of ranges from 2 to 6
 - □ max expected alignments in segment pair is 23
- Clust: B1, B2, B3

algorithm

- \Box 5 to 14 terms in segment
- □ level of is-a/part-of is 2 or 3
- □ max expected alignments in segment pair is 4

Used UMLS as oracle

ക്രരം

36

(2) (A)

(A)A

Used KitAMO as toolbox

Alignment toolbox

 Generates reports on similarity values produced by different matchers, execution times, number of correct, wrong, redundant suggestions

Recommendation

- Recommendation scores: F, F+E, 10F+E
- F: quality of the alignment suggestions
- average f-measure value for the segment pairs
- E: average execution time over segment pairs, normalized with respect to number of term pairs
- Algorithm gives ranking of alignment strategies based on recommendation scores on segment pairs

Expected recommendations for F

- Best strategies for the whole ontologies and measure F:
- 1. (WL,0.8)
- 2. (C1,0.8)
- 3. (C2,0.8)

Results

- Top 3 strategies for SubG and measure F:
 A1: 1. (WL,0.8) (WL, 0.7) (C1,0.8) (C2,0.8)
 A2: 1. (WL,0.8) 2. (WL,0.7) 3. (WN,0.7)
 A3: 1. (WL,0.8) (WL, 0.7) (C1,0.8) (C2,0.8)
- Best strategy always recommended first
- Top 3 strategies often recommended
- (WL,0.7) has rank 4 for whole ontologies

Results

- Top 3 strategies for Clust and measure F:
- B1: 1. (C2,0.7) 2. (ED,0.6) 3. (C2,0.6)
- B2: 1. (WL,0.8) (WL, 0.7) (C1,0.8) (C2,0.8)
- B3: 1. (C1,0.8) (ED,0.7) 3. (C1,0.7) (C2,0.7) (WL,0.7) (WN,0.7)
- Top strategies often recommended, but not always
- (WL,0.7) (C1,0.7) (C2,0.7) ranked 4,5,6 for whole ontologies

Results

- SubG gives better results than Clust
- Results improve when number of segments is increased
- 10F+E similar results as F
- F+E

- WordNet gives lower ranking
- Runtime environment has influence

Current issues

- Systems and algorithms
 - $\hfill\square$ Complex ontologies
 - □ Use of instance-based techniques
 - □ Alignment types (equivalence, is-a, ...)
 - □ Complex alignments (1-n, m-n)
 - Connection ontology types alignment strategies

Current issues

Evaluations

- Need for Golden standards
- Systems available, but not always the alignment algorithms
- Evaluation measures
- Recommending 'best' alignment strategies

Further reading

- <u>http://www.ontologymatching.org</u>
 (plenty of references to articles and systems)
- Ontology alignment evaluation initiative: <u>http://oaei.ontologymatching.org</u> (home page of the initiative)
- Lambrix, Tan, SAMBO a system for aligning and merging biomedical ontologies, *Journal of Web Semantics*, 4(3):196-206, 2006.
 (description of the SAMBO tool and overview of evaluations of different matchers)
- Lambrix, Tan, A tool for evaluating ontology alignment strategies, *Journal* on Data Semantics, VIII:182-202, 2007.
 (description of the KitAMO tool for evaluating matchers)

Further reading

- Chen, Tan, Lambrix, Structure-based filtering for ontology alignment, *IEEE WETICE workshop on semantic technologies in collaborative applications*, 364-369, 2006.
 (double threshold filtering technique)
- Tan H, Lambrix P, 'A method for recommending ontology alignment strategies', International Semantic Web Conference, 494-507, 2007.
 Ehrig M, Staab S, Sure Y, 'Bootstrapping ontology alignment methods with APFEL, International Semantic Web Conference, 186-200, 2005.
 Mochol M, Jentzsch A, Euzenat J, 'Applying an analytic method for matching approach selection', International Workshop on Ontology Matching, 2006.

(recommendation of alignment strategies)