Ontology Alignment

- Many ontologies have been developed
 - Many of them have overlapping information
- Use of multiple ontologies
 - e.g. custom-specific ontology + standard ontology
- Bottom-up creation of ontologies
 - experts can focus on their domain of expertise
 - Important to know the inter-ontology relationships

An Alignment Framework

Matcher Strategies

- Strategies based on linguistic matching
- Structure-based strategies
- Constraint-based
- Instance-based
- Use of auxiliary information

Ontology Alignment

<table>
<thead>
<tr>
<th>SIGNAL-ONTOLOGY (SigO)</th>
<th>GENE-ONTOLOGY (GO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>immune response</td>
<td>immune response</td>
</tr>
<tr>
<td>allergic response</td>
<td>acute-phase response</td>
</tr>
<tr>
<td>antigen processing</td>
<td>anaphylaxis</td>
</tr>
<tr>
<td>complement activation</td>
<td>antigen presentation</td>
</tr>
<tr>
<td>cytokine response</td>
<td>antigen processing</td>
</tr>
<tr>
<td>inflammation</td>
<td>cellular defense response</td>
</tr>
<tr>
<td>intestinal immunity</td>
<td>T-cell activation</td>
</tr>
<tr>
<td>leukotriene response</td>
<td>T-cell development</td>
</tr>
<tr>
<td>leukotriene metabolism</td>
<td>T-cell selection in thymus</td>
</tr>
<tr>
<td>natural killer cell response</td>
<td>B-cell activation</td>
</tr>
<tr>
<td>T-cell activation</td>
<td>B-cell differentiation</td>
</tr>
<tr>
<td>T-cell selection in thymus</td>
<td>B-cell proliferation</td>
</tr>
<tr>
<td>cytokine biosynthesis</td>
<td>cellular defense response</td>
</tr>
<tr>
<td>regulation of cytokine biosynthesis</td>
<td>cytokine production</td>
</tr>
<tr>
<td>complement signaling</td>
<td>T-cell activation</td>
</tr>
</tbody>
</table>

define the relationships between the terms in different ontologies

Matcher Strategies

- Strategies based on linguistic matching
- Structure-based strategies
- Constraint-based
- Instance-based
- Use of auxiliary information
Matcher Strategies

- Strategies based on linguistic matching
 - Structure-based strategies
 - Constraint-based approaches
 - Instance-based strategies
 - Use of auxiliary information

Matcher Strategies

- Strategies based on linguistic matching
 - Structure-based strategies
 - Constraint-based approaches
 - Instance-based strategies
 - Use of auxiliary information

Matcher Strategies

- Strategies based on linguistic matching
 - Structure-based strategies
 - Constraint-based approaches
 - Instance-based strategies
 - Use of auxiliary information

Matcher Strategies

- Strategies based on linguistic matching
 - Structure-based strategies
 - Constraint-based approaches
 - Instance-based strategies
 - Use of auxiliary information

Combination Strategies

- Usually weighted sum of similarity values of different matchers

Filtering techniques

- Threshold filtering
- Double threshold filtering
Alignment Strategies

- Many alignment strategies (matchers, combinations, filters) available.

- Question: For a given alignment task, how to choose a strategy?

Recommending strategies

- Use knowledge about previous use of alignment strategies (Mochol, Jentzsch, Euzenat 2006)
 - Not so much knowledge available
 - OAEI

- Parameters for ontologies, similarity assessment, matchers, combinations and filters + optimize parameters (Ehrig, Staab, Sure 2005)
 - Based on validation of alignment suggestions by users

Our approach - idea

- Use the actual ontologies to align to find good candidate alignment strategies

- User/oracle with minimal alignment work

- Complementary to the other approaches

Idea

- Select small segments of the ontologies
- Generate alignments for the segments (expert/oracle)
- Use and evaluate available alignment algorithms on the segments
- Recommend alignment algorithm based on evaluation on the segments

Framework
Feasibility test

Experiment case - Ontologies
- NCI thesaurus
 - National Cancer Institute, Center for Bioinformatics
 - Anatomy: 3495 terms
- MeSH
 - National Library of Medicine
 - Anatomy: 1391 terms

Experiment case - Oracle
- UMLS
 - Library of Medicine
 - Metathesaurus contains > 100 vocabularies
 - NCI thesaurus and MeSH included in UMLS
 - Used as approximation for expert knowledge
 - 919 expected alignments according to UMLS

Experiment case - alignment strategies
- Matchers and combinations
 - N-gram (NG)
 - Edit Distance (ED)
 - Word List + stemming (WL)
 - Word List + stemming + WordNet (WN)
 - NG+ED+WL, weights 1/3 (C1)
 - NG+ED+WN, weights 1/3 (C2)
- Threshold filter
 - thresholds 0.4, 0.5, 0.6, 0.7, 0.8

Segment pair selection algorithms
- SubG
 - Candidate segment pair = sub-graphs according to is-a/part-of with roots with same name; between 1 and 60 terms in segment
 - Segment pairs randomly chosen from candidate segment pairs such that segment pairs are disjoint

Segment pair selection algorithms
- Clust - Cluster terms in ontology
 - Candidate segment pair is pair of clusters containing terms with the same name; at least 5 terms in clusters
 - Segment pairs randomly chosen from candidate segment pairs
Segment pair selection algorithms
- For each trial, 3 segment pair sets with 5 segment pairs were generated
 - SubG: A1, A2, A3
 - 2 to 34 terms in segment
 - Level of is-a/part-of ranges from 2 to 6
 - Max expected alignments in segment pair is 23
 - Clust: B1, B2, B3
 - 5 to 14 terms in segment
 - Level of is-a/part-of is 2 or 3
 - Max expected alignments in segment pair is 4

Segment pair alignment generator
- Used UMLS as oracle

Alignment toolbox
- Used KitAMO as toolbox
- Generates reports on similarity values produced by different matchers, execution times, number of correct, wrong, redundant suggestions

Recommendation algorithm
- Recommendation scores: F, F+E, 10F+E
 - F: quality of the alignment suggestions
 - Average f-measure value for the segment pairs
 - E: average execution time over segment pairs, normalized with respect to number of term pairs
- Algorithm gives ranking of alignment strategies based on recommendation scores on segment pairs

Expected recommendations for F
- Best strategies for the whole ontologies and measure F:
 1. (WL,0.8)
 2. (C1,0.8)
 3. (C2,0.8)

Results
- Top 3 strategies for SubG and measure F:
 A1: 1. (WL,0.8) (WL, 0.7) (C1,0.8) (C2,0.8)
 A2: 1. (WL,0.8) 2. (WL,0.7) 3. (WN,0.7)
 A3: 1. (WL,0.8) (WL, 0.7) (C1,0.8) (C2,0.8)
- Best strategy always recommended first
- Top 3 strategies often recommended
- (WL,0.7) has rank 4 for whole ontologies
Results

- Top 3 strategies for Clust and measure F:
 B1: 1. (C2,0.7) 2. (ED,0.6) 3. (C2,0.6)
 B2: 1. (WL,0.8) (WL, 0.7) (C1.0.8) (C2,0.8)
 B3: 1. (C1,0.8) (ED,0.7) 3. (C1,0.7) (C2,0.7) (WL,0.7) (WN,0.7)

- Top strategies often recommended, but not always
- (WL,0.7) (C1,0.7) (C2,0.7) ranked 4,5,6 for whole ontologies

Results

- SubG gives better results than Clust
- Results improve when number of segments is increased
- 10F+E similar results as F
- F+E
 - WordNet gives lower ranking
 - Runtime environment has influence

Conclusion

- Recommendation strategy for alignment algorithms with no previous knowledge and minimal user/oracle effort
- For the test case, good recommendations were generated

Future work

- Investigate influence of segment pair selection, recommendation measures, recommendation algorithms
- Test with other alignment algorithms
- Complementary to the other approaches
 - Use knowledge
 - Optimization