An Approach for Repairing Ontologies and Ontology networks

Ying Li

Main Supervisor: Patrick Lambrix Co-Supervisor: Olaf Hartig

Agenda

- Background and Motivation
- Preliminaries
- Problem Formulation
- Repairing Approach
- Conclusion and Future work

Background and Motivation

A researcher is conducting a literature review on the relationship between diabetes and obesity to identify potential areas for further research.....

Keyword-based search

overwhelming number of results

NIH National Lil	Drary of Medicine Biotechnology Information	Log in
Pub Med [®]	diabetes and obesity X Advanced Create alert Create RSS	Search User Guide
	Save Email Send to Sort by: Best match 🖨 Displ	ay options 🗱
My NCBI FILTERS	148,492 results	850 > >>
RESULTS BY YEAR	 Obesity Phenotypes, Diabetes, and Cardiovascular Diseases. Piché ME, Tchernof A, Després JP. Cite Circ Res. 2020 May 22;126(11):1477-1500. doi: 10.1161/CIRCRESAHA.120.316101. Epub 202 PMID: 32437302 Review. 	0 May 21.
1896 20	 Obesity and type 2 diabetes in children: epidemiology and treatment. Pulgaron ER, Delamater AM. 	

Keyword-based search

Keyword AmbiguitySynonymyLack of Context

Ontology-based search

Standardized Terminology

A biomedical ontology contains concepts related to diabetes, obesity, and their interrelationship.

National Center for Biomedical Ontology (NCBO) BioPortal

e.g., Concepts: DiabetesMellitus and Obesity

DiabetesInsipidus ClassicalDiabetesInsipidus PsychogenicDiabetesInsipidus DiabetesMellitus SecondaryDiabetes TypeIDiabetesMellitus **BrittleDiabetes** TypeIIDiabetesMellitus **EndocardialFibroelastosis** ۰ Epilepsy FabryDisease FarberLipogranulomatosis FibrosingAlveolitis Galactosaemia Mass BodyMass BodyWeightSymptom BodyWeightWithDecreasingTrend BodyWeightWithIncreasingTrend HighBodyWeight HighBodyWeightSymptom Obesity ObesitySymptom LowBodyWeight WeightControl WeightGain WeightLoss

Ontology-based search

•Semantic Search

> specify the query in terms of synonyms, specific subtypes or aspects of diabetes......

🛑 DiabetesMellitus DiabetesMellitus Display name TypelDiabetesMellitus TypelDiabetesMellitus TypellDiabetesMellitus TypellDiabetesMellitus IRI 😑 DiabetesMellitus http://www.co-ode.org/ontologies/galen#DiabetesMellitus TvpelDiabetesMellitus http://www.co-ode.org/ontologies/galen#TypelDiabetesMellitus TvpellDiabetesMellitus http://www.co-ode.org/ontologies/galen#TypellDiabetesMellitus rdfs:comment - TypelDiabetesMellitus rdfs:comment [type: xsd:string] Synonym: InsulinDependentDiabetesMellitus EquivalentClasses G SecondaryDiabetes SecondaryDiabetes EquivalentTo DiabetesMellitus and (isConsequenceOf some Body BrittleDiabetes BrittleDiabetes EquivalentTo TypelDiabetesMellitus and (hasSeverity some (Severity a DurationOfDiabetes DurationOfDiabetes EquivalentTo Duration and (isDurationOf some DiabetesMellitus) DiabeticPerson DiabeticPerson EquivalentTo Human and (isActedOnSpecificallyBy some DiabetesMel DiabeticNephropathy DiabeticNephropathy EquivalentTo Nephropathy and (isConsequenceOf some Diabetes PositiveFamilvHistorvOfDiabetes PositiveFamilyHistoryOfDiabetes EquivalentTo FamilyHistory and (isHistoryOf some (pre DiabeticVagalNeuropathy DiabeticVagalNeuropathy EquivalentTo PathologicalPhenomenon and (LocativeAttribute PositiveFamilyHistoryOfInsulinDependantDiabetes PositiveFamilyHistoryOfInsulinDependantDiabetes EquivalentTo FamilyHistory and (isHistory) PositiveFamilyHistoryOfNonInsulinDependantDiabetes PositiveFamilyHistoryOfNonInsulinDependantDiabetes EquivalentTo FamilyHistory and (SubClassOf OiabetesMellitus DiabetesMellitus SubClassOf NAMEDSystemicDisease DiabetesMellitus DiabetesMellitus SubClassOf isConsequenceOf some FailureOfCellGlucoseUptake TypelDiabetesMellitus TypelDiabetesMellitus SubClassOf DiabetesMellitus TypelDiabetesMellitus TypelDiabetesMellitus SubClassOf LocativeAttribute some BetalsletCell TypelDiabetesMellitus TypelDiabetesMellitus SubClassOf isConsequenceOf some (FailureOfCellGlucoseUp) TypellDiabetesMellitus SubClassOf DiabetesMellitus TypellDiabetesMellitus

Case sensitive Whole words Ignore white space Regular expression Show all results

Entity

Search in IRIs Search in annotation values Search in logical axioms

DiabetesMellitus

Found in

 Interoperability and data integration (Query Expansion)

>expand search queries to include synonyms, related terms.....

Match

Ontology Alignment

•Defining the relations between the terms in different ontologies

- •An alignment: a set of mappings between ontologies
- >generated by tools and domain experts

i.e., dead(Galen) \sqsubseteq Dead(SNOMED) $Dead(SNOMED) \sqsubseteq dead(Galen)$

generated by tools and domain experts	GALEN ONTOLOGY	SNOMED CT
	<u>Cefaclor</u>	<u>Cefaclor</u>
	<u>SpecificGravity</u>	Specific gravity
, dead(Galen) \sqsubseteq Dead(SNOMED)	DoxazosinMesylate	Doxazosin mesylate
$Dead(SNOMED) \sqsubseteq dead(Galen)$	<u>HighDensityLipoprotein</u>	High density lipoprotein
	dead	Dead
	NephroticSyndrome	Nephrotic syndrome
	Lysosome	<u>Lysosome</u>
	<u>Thyroiditis</u>	<u>Thyroiditis</u>
	<u>Ethylenediamine</u>	<u>Ethylenediamine</u>
	Vanadium	<u>Vanadium</u>
	Formication	Formication
	Neisseria	Neisseria
	TransOralApproach	Transoral approach
An equivalence mapping P is equivalent to Q => two si	ubsumption mappings $P \sqsubseteq$	$Q and Q \sqsubseteq P$

Defects in Ontologies and Alignments

Axioms in ontologies/mappings between ontologies are not correct.
>It may lead to logical problems (i.e., incoherence or inconsistency) or statements that are not correct in the domain of the ontology

e.g., TAMBIS ontology contained 144 unsatisfiable concepts

Ontologies/Ontology networks are not complete
 >missing relations

e.g., MA and NCI (Ontology Alignment Evaluation Initiative, Anatomy track), 121 and 83, is-a missing relations

Influence of Defects

Incomplete results from the ontology based-query

Influence of Defects

•Incomplete results from the ontology based-query

Ontology debugging

Semantically-enabled applications require high-quality ontologies and alignments.
 Detection

≻Repair

Removing (wrong relations)

Completing (missing relations)

• Traditional debugging techniques repair ontologies/ontology networks with wrong knowledge by removing unwanted axioms and mappings, but may thereby remove consequences that are correct in the domain.

Motivation

Preserve correct knowledge as much as possible when removing wrong axioms from the ontology/ontology network.

A domain expert (Oracle) will validate the results

We proposed an interactive repairing approach to mitigate these effects of removing wrong axioms by, in addition to removing those axioms, also adding correct knowledge.

Completeness: Weakening Completion

Preliminaries

$\mathcal{EL}_{^{\!\!\!\perp}}\,Ontologies$

- *Nc*: atomic concepts
- NR: atomic roles
- A TBox is a finite set of axioms which in $\mathcal{E}_{\mathcal{L}\perp}$ are general concept inclusions (GCIs).

Name	Syntax	Semantics
top	Т	$\Delta^{\mathcal{I}}$
bottom		Ø
conjunction	$P \sqcap Q$	$P^{\mathcal{I}} \cap Q^{\mathcal{I}}$
existential restriction	$\exists r.P$	$ \{ x \in \Delta^{\mathcal{I}} \mid \exists y \in \Delta^{\mathcal{I}} : $
		$(x,y) \in r^{\mathcal{I}} \land y \in P^{\mathcal{I}}\}$
GCI	$P \sqsubseteq Q$	$P^{\mathcal{I}} \subseteq Q^{\mathcal{I}}$

Table 1. \mathcal{EL}_{\perp} syntax and semantics.

• We base our work and examples on \mathcal{EL}_{\perp} , the discussions hold for ontologies represented by DLs in general.

Ontology network

Ontologies are represented using DL TBoxes.

An alignment between two ontologies is a set of mappings between the ontologies.

Definition 1. Let $\mathcal{T}_1, ..., \mathcal{T}_n$ be TBoxes representing ontologies $\mathcal{O}_1, ..., \mathcal{O}_n$, respectively. For $i, j \in [1..n]$ with i < j, let \mathcal{A}_{ij} be an alignment between ontology \mathcal{O}_i and \mathcal{O}_j . The network of the ontologies and their alignments is then represented by TBox $\mathcal{T} = (\bigcup_{i=1..n} \mathcal{T}_i) \cup (\bigcup_{i,j=1..n,i < j} \mathcal{A}_{ij}).$

More complete TBoxes

Definition 2. TBox T_1 is more complete than TBox T_2 iff

- 1) all correct knowledge in T_2 can also be derived in T_1 .
- 2) there is correct knowledge in T_1 that cannot be derived in T_2 .

More complete TBoxes

Definition 3. TBox T_1 is less incorrect than TBox T_2 iff

- 1) all incorrect knowledge in T_1 can also be derived in T_2 .
- 2) there is incorrect knowledge in T_2 that cannot be derived in T_1 .

Debugging and Removing- finding wrong axioms

A *Justification* for an axiom α in T is a set of axioms $T' \subseteq T$ such that $T' \vDash \alpha$ and $\forall T'' \subsetneq T' : T'' \nvDash \alpha$

 $Jus(A \sqsubseteq C) = \{ A \sqsubseteq B, B \sqsubseteq C \}$

Weakening - finding correct weaker axioms

Weakening - finding correct weaker axioms

Replace wrong $\alpha \sqsubseteq \beta$ with correct $sb_{\alpha} \sqsubseteq sp_{\beta}$

Completing - finding correct stronger axioms

Completing - finding correct stronger axioms

Problem Formulation

Problem Formulation

An ontology/ontology network represented by TBox T

Domain expert

Definition 4. (Repair) Let TBox $\mathcal{T} = (\bigcup_{i=1..n} \mathcal{T}_i) \cup (\bigcup_{i,j=1..n,i < j} \mathcal{A}_{ij})$ represent a network of ontologies \mathcal{O}_i represented by TBoxes \mathcal{T}_i , and their alignments \mathcal{A}_{ij} . Let Or be an oracle that given a TBox axiom returns true or false. Let W be a finite set of TBox axioms in \mathcal{T} such that $\forall \ \psi \in W$: $Or(\psi) =$ false. Then, a repair for Debug-Problem DP(\mathcal{T}, Or, W) is a tuple (A, D) where A and D are finite sets of TBox axioms such that $(i) \ \forall \ \psi \in A$: $Or(\psi) =$ true;

(ii) D is a finite set of asserted axioms in \mathcal{T} ; (iii) $\forall \psi \in D$: $Or(\psi)$ = false; (iv) $\forall \psi \in W$: $(\mathcal{T} \cup A) \setminus D \not\models \psi$. W is a set of the wrong axioms to remove from the ontology.

A repair (A,D) is a tuple containing two sets: A: a set of correct axioms to add to the TBox D: a set of wrong asserted axioms to remove from the Tbox.

When the axioms in D are removed and the axioms in A are added, the wrong axioms in W cannot be derived anymore.

Repairing Approach

Basic framework

Combinations of basic operations

Choices regarding in which order to perform the operations, and when to update the ontology, i.e.,

- Removing wrong axioms before/after weakening/completing
- Removing/weakening/completing all at once/one at a time
- The order of removing wrong axioms (which axiom will be removed first, second.....)
- Completing one at a time and adding new correct axioms as soon as they are found /wait until the end

In general, using as much knowledge as possible may lead to more complete ontologies, but also more validation effort.

Compare algorithms using the Hasse diagrams

R-none, AB-one/ OR-none, AB-all/ R-none, AB-none

R-one, AB-one/ R-one,AB-all

R-one, AB-none R-all, AB-none/ OR-all, AB-one/ R-all, AB-all

(all asserted axioms/one hitting set)

R: remove wrong axioms (one at a time/ all at once/none) AB: add back wrong axioms (none/one/all)

W-one,U-now/ W-one,U-end_one	O C-one,U-now
	C-one,U-end_one
W-all,U-now/ W-all,U-end_all/ W-all,U-end_one/ W-one,U-end_all	C-all,U-now/ C-all,U-end_all/ C-all, U-end_one/ C-one,U-end_all

W: weaken (one at a time/all at once) U: update the ontology

C: complete (one at a time/all at once) U: update the ontology

Using operators higher up in the diagrams leads to more complete ontologies and more validation work.

Removing before/after completion(Algorithm C9/C8)

Combinations of removing, weakening and completing

No previous work on combinations

Previous work on removing and weakening

Previous work on completing

R-none, AB-one/ OR-none, AB-all/ R-none, AB-none R-one, AB-one/ R-one,AB-all R-one, AB-none R-all, AB-none/ OR-all, AB-one/ R-all, AB-all

W-one,U-now/ C-one,U-now W-one,U-end_one C-one,U-end_one W-all,U-now/ C-all,U-now/ W-all,U-end_all/ C-all,U-end_all/ W-all,U-end_one/ C-all, U-end_one/ W-one,U-end all C-one,U-end_all

Ontology vs. Ontology network

There are also choices regarding the autonomy level of the ontologies and alignments in the ontology network, which reflects the policies of the ontology and alignment owners regarding updating and computing for their ontologies and alignments.

O (ontology) / M(mappings)
 MO (materialized ontology) / MM(materialized mappings)
 ON (ontology network)

Ontology vs. Ontology network

There are also choices regarding the autonomy level of the ontologies and alignments in the ontology network, which reflects the policies of the ontology and alignment owners regarding updating and computing for their ontologies and alignments.

O (ontology) / M(mappings)
 MO (materialized ontology) / MM(materialized mappings)
 ON (ontology network)

Ontology network

During the repairing process different levels of autonomy can be used at different stages:

Different levels of autonomy

>O (ontology) / M (mappings) --- Ontologies/Mappings are completely autonomous

- The set of wrong axioms W contains only axioms in the ontology (O) /mappings (M).
- Only the axioms within the ontology/mappings can be used for the computation of repairs. $\longrightarrow KB_0/KB_M$
- Solutions only include axioms in the ontology/mappings. $\longrightarrow AS_{\circ}/AS_{M}$

Different levels of autonomy

MO (materialized ontology) / MM (materialized mappings) --- computes derived axioms/mappings for the ontology/alignment, but then acts autonomously

- The set of wrong axioms W contains only axioms in the ontology/mappings.
- Only the axioms within the materialized ontology/mappings can be used for the computation of repairs. → KB_{MO}/KB_{MM}
- Solutions only include axioms in the ontology/mappings. → AS₀ / AS_M

Different levels of autonomy

>ON (ontology network) --- ontologies and alignments as integral parts of the network

- The set of wrong axioms W contain ontology axioms and mappings.
- The whole network is used for the computation of repairs. —>KBOM
- Solutions contain axioms and mappings. ASon

Debugging

Asserted axioms in Ontologies O₁ and O₂ O₁: B \sqsubseteq A, D \sqsubseteq B, C \sqsubseteq A, D \sqsubseteq B, F \sqsubseteq C O₂: d \sqsubseteq c, d \sqsubseteq a, e \sqsubseteq b, f \sqsubseteq e Mappings between O₁ and O₂ a \sqsubseteq A, D \sqsubseteq b, E \sqsubseteq e, F \sqsubseteq f A \sqsubseteq a, b \sqsubseteq D, e \sqsubseteq E, f \sqsubseteq F

We have used 'ON' in the debugging step where we validate all axioms in the justifications. This results in a wrong axiom $e \sqsubseteq b$ and a wrong mapping $b \sqsubseteq D$.

Weakening

Completing

'ON' leads to the most complete network

The network is repaired by removing the wrong axioms and adding the completed axioms.

RepOSE-A tool for repairing wrong axioms in ontologies/ontology networks.

Two versions:

- A Protégé plugin for ontology repairing based on Algorithm C9 in [1]
- The \mathcal{EL}_{\perp} version of the RepOSE system for both ontology repairing and network repairing.

Axiom weakening			
Select correct subsur set. Confirm by clickir	nption relations by clicking one concept in the Su ng Validate	ip-concept set and one concept in the Sub-concept	
	◀ Validate is-a relations:		×
PathologicalPro	CESS - Endocarditis -> GranulomaProcess Endocarditis -> InflammationProcess		
	Endocarditis -> NonNormalProcess		
	PathologicalProcess -> GranulomaPro	ocess	
	PathologicalProcess -> InflammationP		
Validate relations	PathologicalProcess -> NonNormalPro	ocess	
Validate relations.			
	Validate remo	ve this axiom directly Cancel	
Sub	N.	Sup	_
	PathologicalProcess	InflammationProcess	
	1	GranulomaProcess	
	Endocarditis	NonNormalProcess	
	< 3/3 >		
Remove wrong		Weakening d	one
		Go Back Continue	Cancel
			Ganoon

Conclusion and Future work

Conclusion

• We proposed an interactive approach to mitigate the negative effects of removing unwanted axioms from the ontology/ontology network.

• We defined combination operators that reflect choices in how and when to use the basic operations, as well as choices regarding the autonomy level of the ontologies and alignments in the ontology network.

Conclusion

• We showed the trade-offs for different combination strategies involving correctness, completeness and validation work.

 By using our framework together with existing algorithms for debugging weakening and completing, we essentially provide a blueprint for extending previous work and systems.

Future work

- TBox repairing -> ABox repairing
- Ontology -> Knowledge graph

References

[1] Ying Li, Patrick Lambrix (2023) Repairing \mathcal{EL} Ontologies Using Weakening and Completing, The Semantic Web. ESWC 2023., p. 298-315

- [2]Ying Li, Patrick Lambrix (2023) A System for Repairing EL Ontologies Using Weakening and Completing, The Semantic Web: ESWC 2023 Satellite Events, Hersonissos, Crete, Greece. [3] Ying Li, Patrick Lambrix (2023) Repairing \mathcal{EL}_{\perp} Ontologies using Debugging, Weakening and Completing (Extended abstract), 36th International Workshop on Description Logics, Rhodes, Greece, 2023.
- [4] Ying Li, Patrick Lambrix (2023) Repairing Networks of Ontologies using Weakening and Completing, 18th International Workshop on Ontology Matching, Athens, Greece.
- [5] Ying Li, Patrick Lambrix (2024) Repairing \mathcal{EL}_{\perp} Ontologies Using Debugging, Weakening and Completing. (Submitted)
- [6] Ying Li, Patrick Lambrix (2024) Repairing Networks of \mathcal{EL}_{\perp} Ontologies Using Weakening and Completing. (Submitted)

