Predicting Player Trajectories in Shot Situations in Soccer

Per Lindström, Ludwig Jacobsson, Niklas Carlsson and Patrick Lambrix
Outline

• Motivation
• Method
• Results
• Conclusion
Motivation

• How would player X behave in a particular situation?
• What happens if we replace player Y?
• Find a player that behaves similarly to player Z
Motivation

• Is player behaviour latent information in their movement data?

• Given a tracking data set, is it possible to learn individual player movement patterns?
Outline

• Motivation
• Method
• Results
• Conclusion
Data

- Swedish top-tier league (Allsvenskan)
- First half of the 2019 season, which spans March-November
- 79 games
- 276 players
- 1,668 shots (193 goals, 1,475 non-goals)
- Tracking data for all players and the ball
- Data provided by Signality
Data

- Extracted 20 second sequences around shots
- 150 players with most played games
- 21,284 training sequences
- 5,188 validation sequences
Model

• Policy π

• State $x \equiv (s, c)$

• Action a

• Expert π^*
Model

- Behavioural Cloning

\[\pi : s, c \rightarrow a \]

- General Imitation learning

\[\pi : s_o, c \rightarrow \tau = \{ a_0, s_1, \ldots, a_{T-s}, s_T \} \]
Model

• Behavioural Cloning

Distribution of states given by $\pi^* : P^* = P(x | \pi^*)$

$$\hat{\pi}_\theta = \operatorname{argmin}_\theta \mathbb{E}_{x \sim P^*} \mathcal{L}(\pi^*(x), \pi_\theta(x))$$

• General Imitation learning

Distribution of states given by $\pi_\theta : P(x | \theta)$

$$\hat{\pi}_\theta = \operatorname{argmin}_\theta \mathbb{E}_{x \sim P(s|\theta)} \mathcal{L}(\pi^*(x), \pi_\theta(x))$$
Outline

- Motivation
- Method
- Results
- Conclusion
Action comparison

Absolute actions

Error=9.01, $\sigma=7.22$ m

Relative actions

Error=6.89, $\sigma=5.84$ m
Window size

<table>
<thead>
<tr>
<th>Window</th>
<th>Mean</th>
<th>Stddev</th>
<th>Conf interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>7.60</td>
<td>6.23</td>
<td>[7.47, 7.73]</td>
</tr>
<tr>
<td>20</td>
<td>7.14</td>
<td>5.70</td>
<td>[7.02, 7.26]</td>
</tr>
<tr>
<td>30</td>
<td>7.42</td>
<td>6.05</td>
<td>[7.30, 7.55]</td>
</tr>
<tr>
<td>40</td>
<td>7.72</td>
<td>6.04</td>
<td>[7.60, 7.85]</td>
</tr>
<tr>
<td>50</td>
<td>7.23</td>
<td>6.30</td>
<td>[7.10, 7.36]</td>
</tr>
</tbody>
</table>
CDF over time

![CDF graph over time](image-url)
Cross-evaluation

<table>
<thead>
<tr>
<th>Observed expert player</th>
<th>G1</th>
<th>D1</th>
<th>D2</th>
<th>D3</th>
<th>D4</th>
<th>M1</th>
<th>M2</th>
<th>M3</th>
<th>O1</th>
<th>O2</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1</td>
<td>3.56</td>
<td>8.33</td>
<td>7.82</td>
<td>10.22</td>
<td>10.96</td>
<td>8.83</td>
<td>11.54</td>
<td>10.01</td>
<td>10.02</td>
<td>7.75</td>
</tr>
<tr>
<td>D1</td>
<td>7.1</td>
<td>6.86</td>
<td>6.46</td>
<td>7.96</td>
<td>7.63</td>
<td>7.35</td>
<td>9.51</td>
<td>7.28</td>
<td>7.82</td>
<td>7.22</td>
</tr>
<tr>
<td>D2</td>
<td>6.71</td>
<td>8.05</td>
<td>5</td>
<td>7.25</td>
<td>7.77</td>
<td>8.03</td>
<td>10.04</td>
<td>8.01</td>
<td>8.19</td>
<td>8.75</td>
</tr>
<tr>
<td>D3</td>
<td>4.63</td>
<td>7.85</td>
<td>5.63</td>
<td>7.19</td>
<td>7.74</td>
<td>8.13</td>
<td>8.69</td>
<td>7.34</td>
<td>7.24</td>
<td>6.8</td>
</tr>
<tr>
<td>D4</td>
<td>14.17</td>
<td>16.05</td>
<td>10.98</td>
<td>13.82</td>
<td>6.81</td>
<td>12.15</td>
<td>13.18</td>
<td>12.74</td>
<td>12.08</td>
<td>10.84</td>
</tr>
<tr>
<td>M1</td>
<td>4.24</td>
<td>8.04</td>
<td>5.94</td>
<td>7.08</td>
<td>7.67</td>
<td>5.75</td>
<td>8.48</td>
<td>6.4</td>
<td>7.07</td>
<td>5.82</td>
</tr>
<tr>
<td>M2</td>
<td>5.61</td>
<td>8.69</td>
<td>6.75</td>
<td>7.4</td>
<td>7.26</td>
<td>7.14</td>
<td>8.17</td>
<td>6.16</td>
<td>7.46</td>
<td>7.27</td>
</tr>
<tr>
<td>M3</td>
<td>4.98</td>
<td>7.54</td>
<td>5.79</td>
<td>7.02</td>
<td>7.22</td>
<td>6.27</td>
<td>8.17</td>
<td>5.56</td>
<td>6.58</td>
<td>5.08</td>
</tr>
<tr>
<td>O1</td>
<td>5.73</td>
<td>8.69</td>
<td>7.23</td>
<td>8.14</td>
<td>7.65</td>
<td>6.76</td>
<td>8.31</td>
<td>6.39</td>
<td>6.31</td>
<td>6.33</td>
</tr>
<tr>
<td>O2</td>
<td>4.63</td>
<td>8.22</td>
<td>7.92</td>
<td>8.99</td>
<td>8.62</td>
<td>8.75</td>
<td>9.9</td>
<td>8.06</td>
<td>8.74</td>
<td>5.6</td>
</tr>
</tbody>
</table>
Outline

• Motivation
• Method
• Results
• Conclusion
Conclusion

• It is possible to learn the behaviour of individual players given their movement data

• Future research
 • Extend to more types of situations
 • Multi-agent modelling
 • Extrinsic measurement such as expected goals
Thank you

Questions?

Contact: perlindstroem@gmail.com