Ontology-Based Technologies for Data Access and Integration in the Materials Design Domain

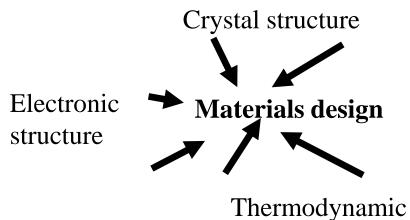
Huanyu Li

Main Supervisor: Patrick Lambrix Secondary Supervisors: Nahid Shahmehri, Olaf Hartig, Rickard Armiento

Ontology-Based Technologies for Data Access and Integration in the Materials Design Domain

Agenda

- Research Background
- Motivation
- Problem Formulation
- Finished and Ongoing Work
 - > An Ontology for the Materials Design Domain
 - > A Method for Extending Ontologies with Applications to the Materials Science Domain
 - Ontology-Driven GraphQL Server Generation for Data Access and Integration
- Conclusion and Future Work


Research Background

Ontology-Based Technologies for Data Access and Integration in the Materials Design Domain

Research Background

- Materials design, design materials with desired properties (e.g., non-toxic, high strength)
- The space of potentially useful materials yet to be discovered is immense (e.g., many billions of possible combinations up to 6 different chemical elements)
 - Exploring by experimental techniques
 - Simulating by computer programs to generate reliable materials data
- Materials calculations run such computer programs with different computational methods

Research Background

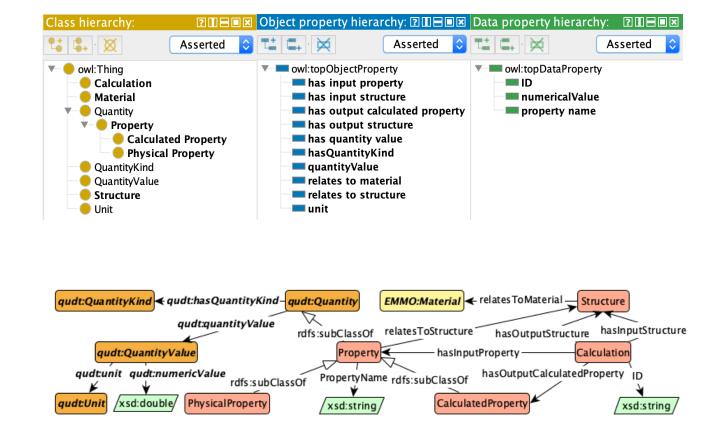
- Many software programs can do materials calculations
- A lot of databases provide materials calculation data via Web APIs (e.g., REST APIs)
 - Materials databases are heterogenous in nature
 - APIs follow different data schemas
- A data-driven workflow of materials design will search these databases with desired combinations of properties

Ontology-Based Technologies for Data Access and Integration in the Materials Design Domain

The result from Materials Project

Querying Materials Databases

- Searching 'GaN' in Materials Project and OQMD
 - Different number of fields returned, different terminology for the same concept
 - Some semantics could be added
- OPTIMADE (Open Databases Integration for Materials Design)
 - To design a common API


Materi	als Id 🍦	Formula	Spacegr	oup 🐴 👘	ormation nergy (eV		Band Gap (eV)	Volume	Nsites	Density (gm/cc)		
mp-830		GaN	aN F43m		0.657	0.005	1.563	23.48	2	5.921		
mp-2853		GaN	N Fm3m		0.184	0.478	0.395	19.47	2	7.141		
mp- 1007824		GaN P6 ₃ /mm		nc -0.307		0.355	1.105	75.361	4	3.69		
mp-804		GaN	P6 ₃ mc	-0	0.663	0	1.743	46.943	4	5.924		
mp- 1181864		GaN	P6 ₃ mc	0	.11	0.773	0.671 🔺	92.509	8	6.012		
	¥***							The r	esult fro	om OQM	D	
					******			The r	esult fro	om OOM	D	
ID	Composition Spacegroup Formation Energy [eV/atom] Prototype # of atoms		n.(1977). Crystal stru	Reference 7). Crystal structure refinement of AI N and Ga N. Solid State Communications,								
6450	GaN	P63mc	-0.579	ZnS(2H)	4							
97045	97045 GaN P63mc -(-0.579	ZnS(2H) 4		Ren, Y., Gateshki, M., Petkov, V., Choi, J., Gillan, E.g. (2005). Structure of nanocrystalline Ga N from X-ray diffraction, Rietveld and atomic pair distribution function analyses. Journal of Materials Chemistry, 15.						
1105884 GaN		Fm-3m	-0.101	B1_NaCl	2							
1234952			-0.100	L1_1_CuPt 2								
1229533	GaN	P-6m2	0.367	B_h_WC								
306699 GaN		Pm-3m	1.040	B2_CsCl	2							
101873 GaN		P63mc			8	Gajbhiye, N.s., Bhattacharyya, S., Shivaprasad, S.m.(2008). Synthesis and characterization of epsilon-(F N)/Ga N, 54/46-composite nanowires. Materials Research Bulletin, 43.			I-(Fe3			
1220368 GaN		Pmma		B19_AuCo	4							

Ontology-Based Technologies for Data Access and Integration in the Materials Design Domain

Semantics are needed

- What ontologies can do
 - ✓ Standardized terminology
 - ✓ Relationships between terms
 - ✓ Mapping between terminologies
 - ✓ Making data FAIR
 - Findability
 - Accessibility
 - Interoperability
 - Reusability
- Ontology Construction
- Ontology Extension

Motivation

Motivation

- A need for a unified way for querying data among multiple databases
 - Materials design interoperability largely happens via the file-based exchange with certain formats, which is not guided by an ontology
 - Data needs to be FAIR (Findability, Accessibility, Interoperability, Reusability)
- Few methods using existing data as domain knowledge to extend ontologies (semi-)automatically
- The lack of methods accessing and integrating data over multiple heterogeneous data sources where data is shared via Web APIs (e.g., REST APIs)
 - Current ontologies related to materials science do not cover knowledge of materials design (e.g., materials calculations)
 - Traditional ontology-based data access and integration focus on relational data

Problem Formulation

Problem Formulation

- RQ1: How can materials domain ontologies be extended by mining unstructured text?
- RQ2: How can ontology-based techniques be used to access and integrate data from heterogeneous sources?
 - RQ2.1: How can ontologies be leveraged to generate GraphQL APIs for data access and data integration?
 - RQ2.2: How to enable ontology-based data access and integration in the materials design domain?

Finished Work and Ongoing Work

Finished and Ongoing Work

- [1] Lambrix P, Armiento R, Delin A, Li H, <u>Big Semantic Data Processing in the Materials</u> <u>Design Domain</u>, Encyclopedia of Big Data Technologies, Springer, 2018.
 - [*] Update version: Lambrix P, Armiento R, Delin A, Li H, *FAIR Big Data in the Materials Design Domain*
- [2] Li H, Armiento R, Lambrix P, <u>An Ontology for the Materials Design Domain</u>, The 19th International Semantic Web Conference, Athens Greece (Virtual Conference), 2020.
- [3] Li H, Armiento R, Lambrix P, <u>A Method for Extending Ontologies with Application to</u> the Materials Science Domain, Data Science Journal, 2019.
- [4] Li H, Hartig O, Armiento R, Lambrix P, <u>Ontology-Driven GraphQL Server Generation</u> for Data Access and Integration (Ongoing).

Other Publications

- [5] Li H, Dragisic Z, Faria D, Ivanova V, Jimenez-Ruiz E, Lambrix P, Pesquita C, <u>User validation</u> in ontology alignment: functional assessement and impact, The Knowledge Engineering Review, 2019.
- [6] Dragisic Z, Ivanova V, Li H, Lambrix P, <u>Experiences from the anatomy track in the ontology</u> alignment evaluation initiative, Journal of Biomedical Semantics 8:56, 2017.
- [7] Li H, Armiento R, Lambrix P, <u>Extending Ontologies in the Nanotechnology Domain using</u> <u>Topic Models and Formal Topical Concept Analysis on Unstructured Text</u>, ISWC 2019 Posters & Demonstrations, Industry and Outrageous Ideas Tracks, CEUR, 2019.
- [8] Keskisärkkä R, Li H, Cheng S, Carlsson N, Lambrix P, <u>An Ontology for Ice Hockey</u>, ISWC 2019 Posters & Demonstrations, Industry and Outrageous Ideas Tracks, CEUR, 2019.
- [9-13] Co-authored in synthesis papers of Results of the Ontology Alignment Evaluation Initiative from 2016 to 2020

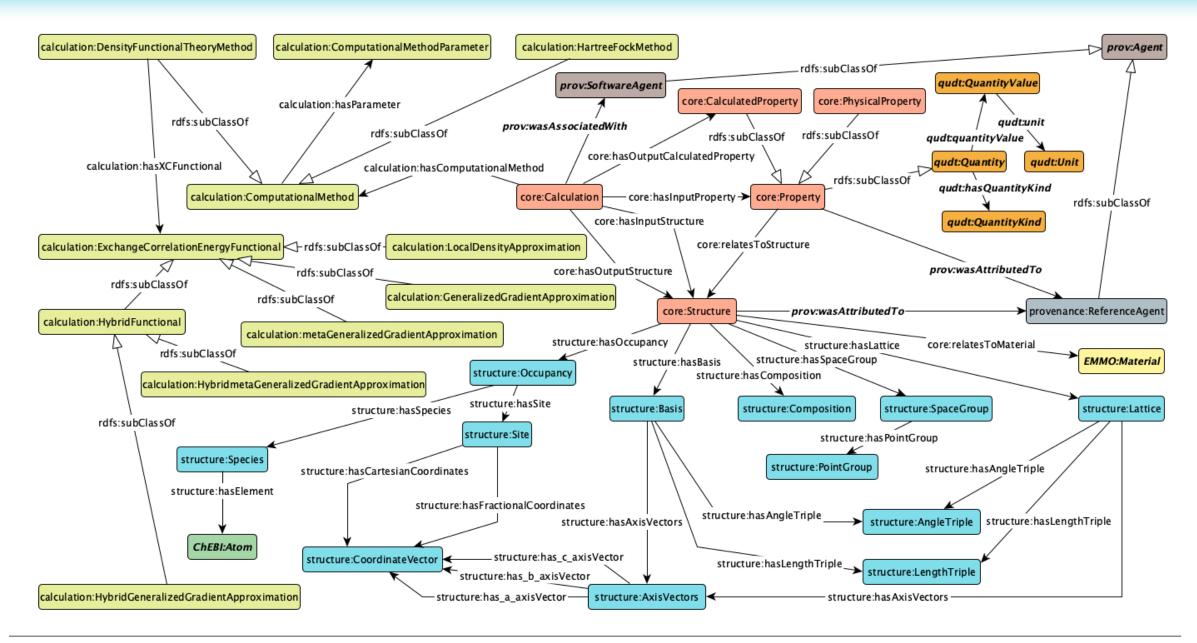
Overview

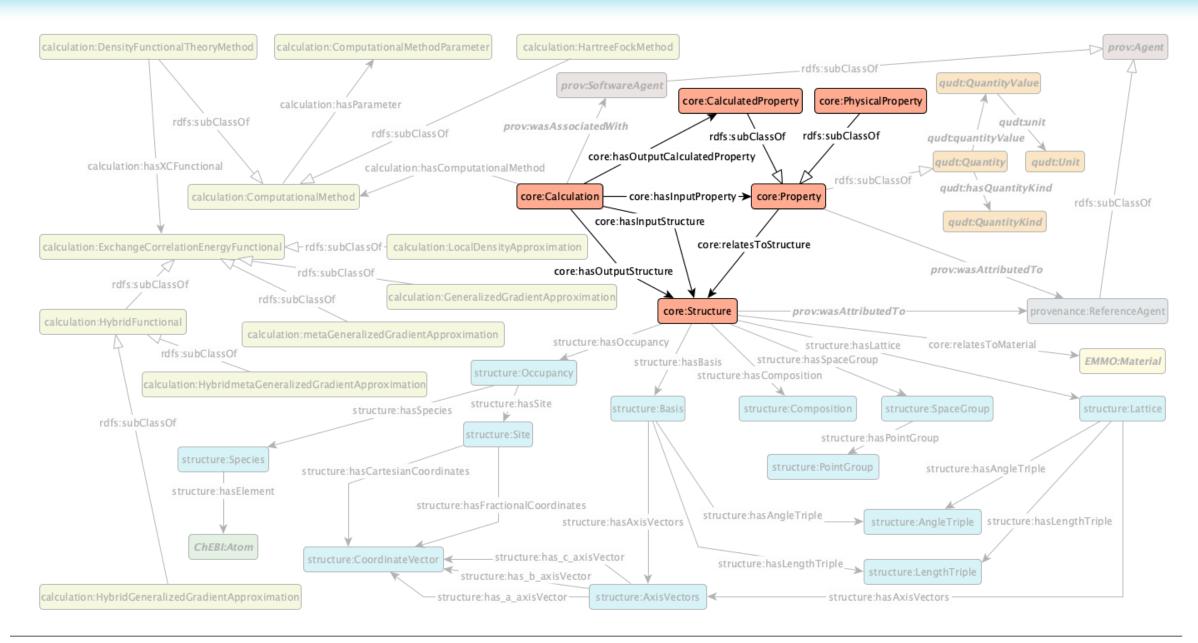
- Materials Design Ontology (MDO) is a domain ontology for the materials design field
 - To provide a conceptual model over multiple databases in the field
 - One of the contributions to address the RQ2
 - How can ontology-based techniques be used to access and integrate data from heterogeneous sources?

The development of MDO

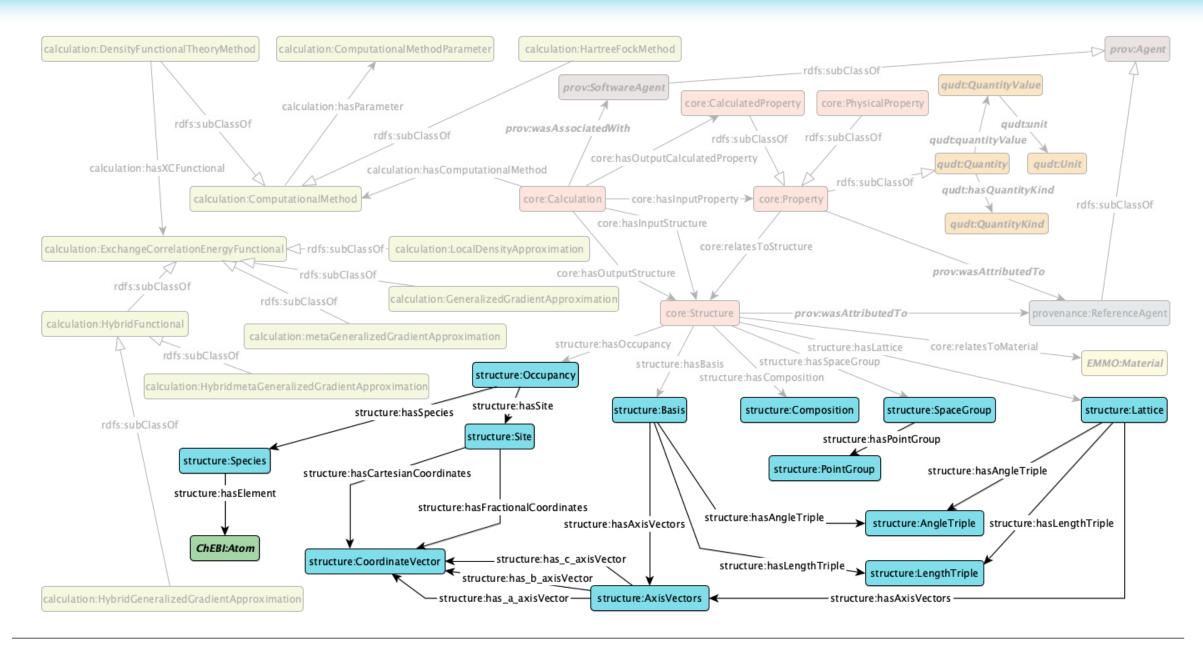
- NeOn methodology in ontology engineering
 - Requirement analysis (Use Cases, Competency Questions, Additional Restrictions)
 - Reusing concepts from existing ontologies
 - PROV-O (PROVenance Ontology), QUDT (Quantities, Units, Dimensions, and Type Ontology)
 - ChEBI (Chemical Entities of Biological Interest Ontology), EMMO (European Materials Modelling Ontology)
- Modular Design
 - Core Module, Structure Module, Calculation Module, Provenance Module
- Discussions with domain expert

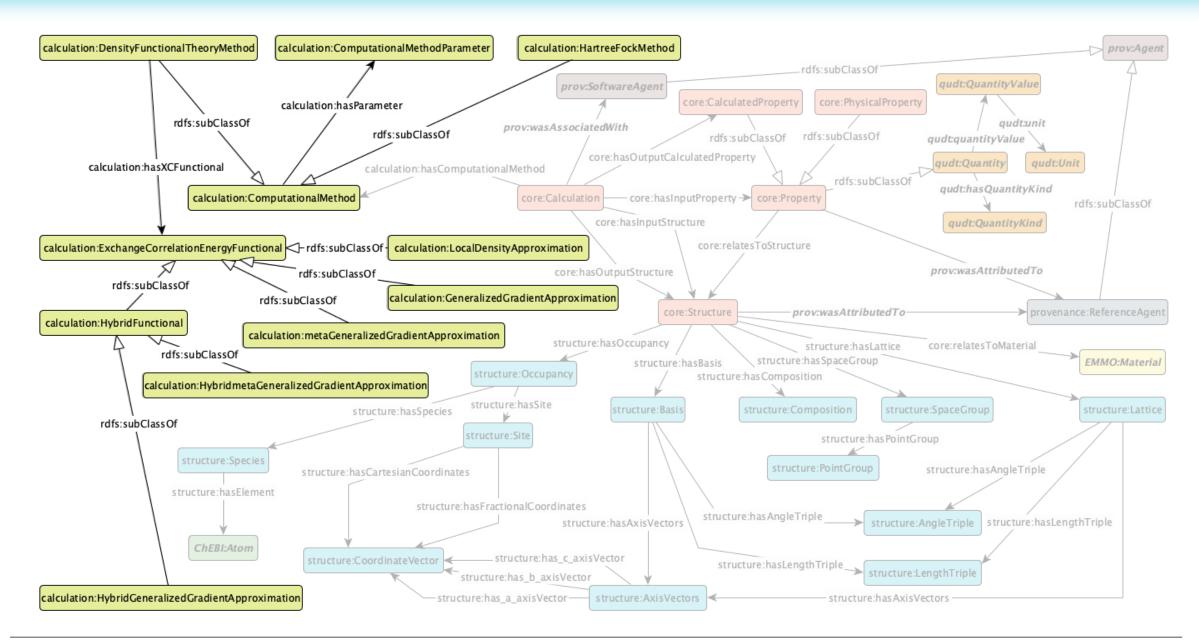
MDO-Use Cases

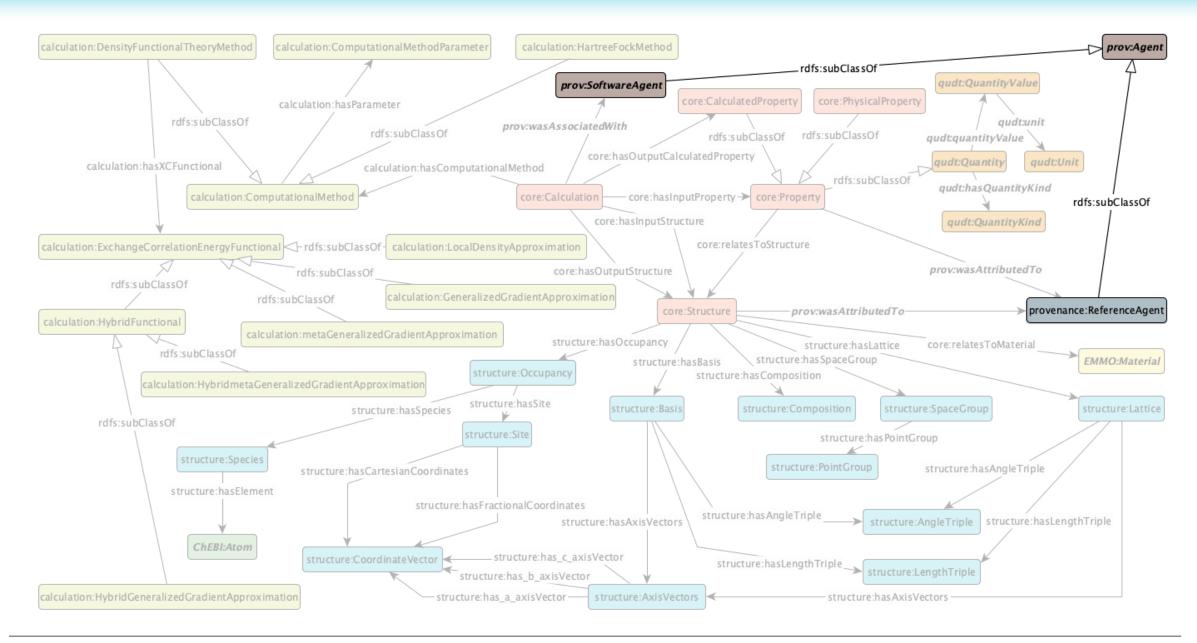

- MDO can represent knowledge in basic materials science
- MDO can represent materials calculations and standardize the publication of materials calculation data
- MDO can provide a standard to improve the interoperability among heterogeneous databases in the materials design domain
- MDO can map OPTIMADE's schema for enriching its search functionality

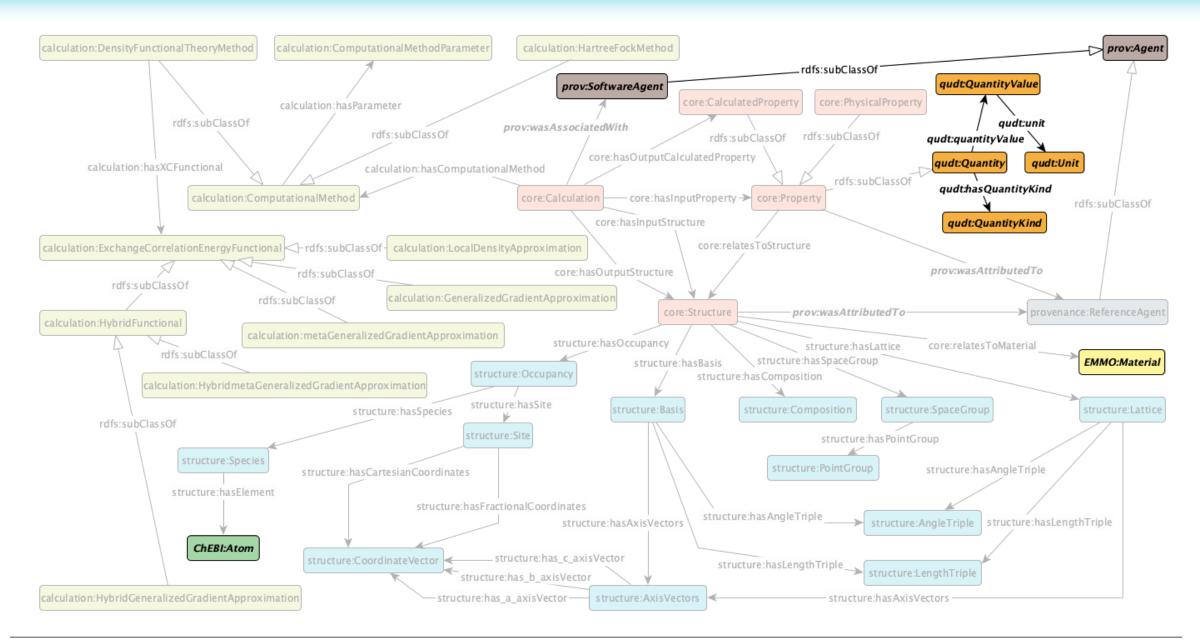

MDO-Competency Questions

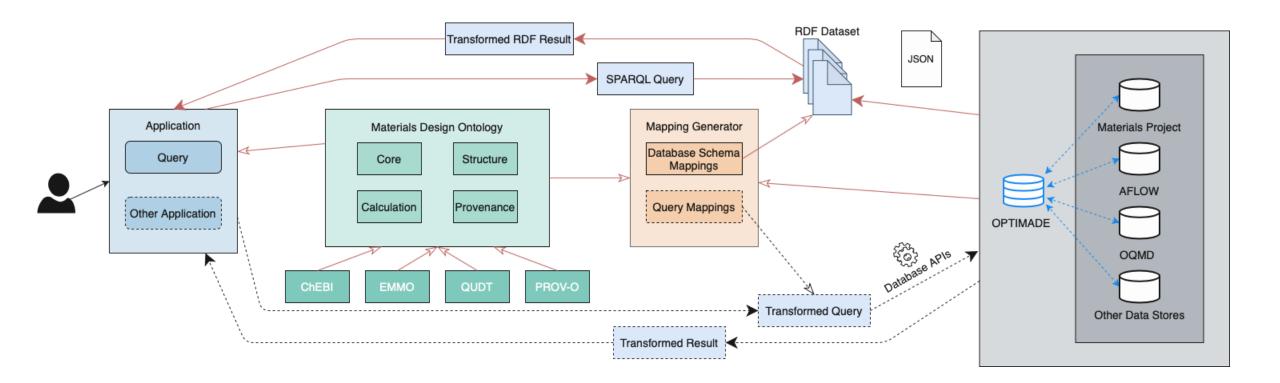
- Materials databases' APIs can /cannot answer, e.g.,:
 - \checkmark "What is the chemical formula of a material in the calculation?"
 - \checkmark "Which software produced the result of a calculation?"
 - ? "What are the input and output structures of a materials calculation?"
 - e.g., OQMD's API can answer structural information in terms of *'unit_cell'*, *'space group' and 'composition_generic'* but it does not reflect semantic relationships of such terms and *'Structure'* in the API schema
 - ? "For a series of materials calculations, what are the compositions of materials with a specific range of a calculated property (e.g., band gap)?"
 - e.g., Materials Project's API can provide 'anonymous_formula', 'full_formula', and 'pretty_formula' for querying but it does not cover the domain knowledge that a *Composition* of a material has several attributes such as *Anonymous Formula*, *Full Formula*.

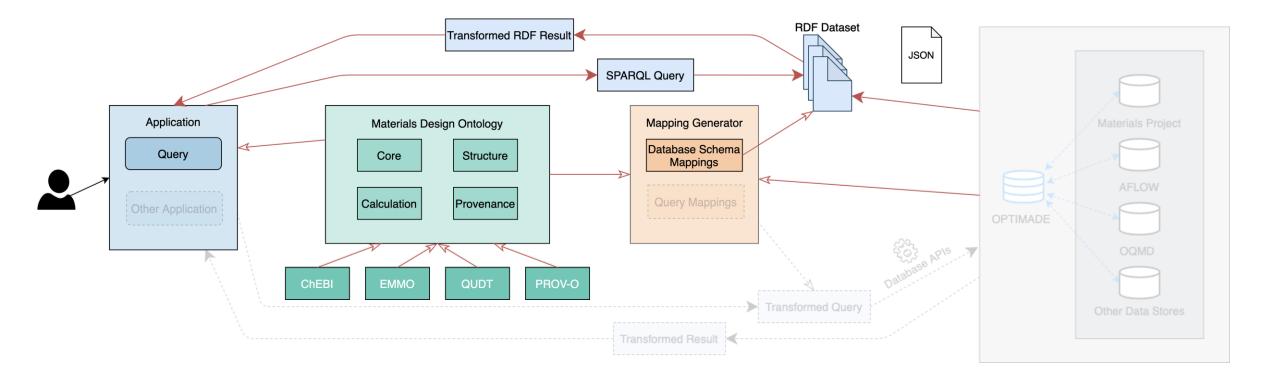












The Vision of MDO's Usage

MDO's Usage-Querying over a mapped RDF dataset

MDO's Usage-Querying over a mapped RDF dataset

- SPARQL-Generate is used to define mappings
- An example query is "What are the materials of which the value of band gap is higher than 5eV (electron volt)?"

```
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX core: <https://w3id.org/mdo/core/>
PREFIX structure: <https://w3id.org/mdo/structure/>
PREFIX qudt: <http://qudt.org/schema/qudt/>
SELECT ?descriptive_formula ?value WHERE {
  ?calculation rdf:type core:Calculation;
                core:hasOutputCalculatedProperty ?property;
                core:hasOutputStructure ?output_structure.
  ?property qudt:quantityValue ?quantity_value;
             core:hasPropertyName ?name.
  ?quantity_value rdf:type qudt:QuantityValue;
                    qudt:numericValue ?value.
  ?output_structure structure:hasComposition ?composition.
  ?composition structure:hasDescriptiveFormula ?descriptive_formula.
  FILTER (?value >5 && ?name="band_gap")
}
```

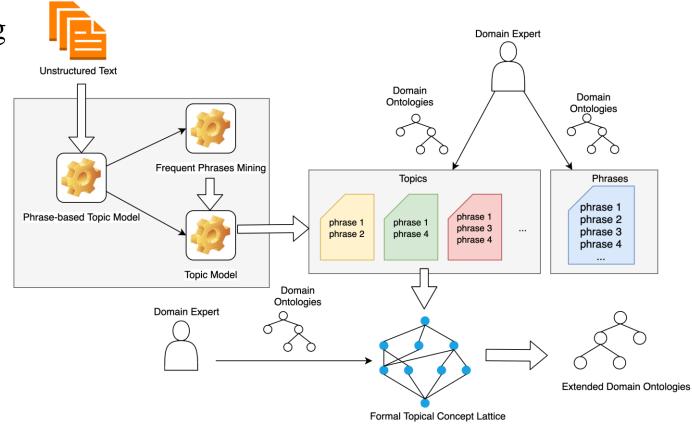
$\begin{array}{c c} descriptive formula \ value \\ \hline Cs_2Rb_1In_1F_6 & 5.3759 \\ \hline Cs_2Rb_1Ga_1F_6 & 5.9392 \\ \hline Cs_2K_1In_1F_6 & 5.4629 \\ \hline Rb_2Na_1In_1F_6 & 5.2687 \\ \hline Cs_2Rb_1Ga_1F_6 & 5.5428 \\ \hline Rb_2Na_1Ga_1F_6 & 5.9026 \\ \hline Cs_2K_1Ga_1F_6 & 6.0426 \\ \hline \end{array}$		
$\begin{array}{c c} Cs_2Rb_1Ga_1F_6 & 5.9392 \\ \hline Cs_2K_1In_1F_6 & 5.4629 \\ \hline Rb_2Na_1In_1F_6 & 5.2687 \\ \hline Cs_2Rb_1Ga_1F_6 & 5.5428 \\ \hline Rb_2Na_1Ga_1F_6 & 5.9026 \\ \end{array}$	descriptive formula	
$\begin{array}{c cccc} \hline Cs_2K_1In_1F_6 & 5.4629 \\ \hline Rb_2Na_1In_1F_6 & 5.2687 \\ \hline Cs_2Rb_1Ga_1F_6 & 5.5428 \\ \hline Rb_2Na_1Ga_1F_6 & 5.9026 \\ \hline \end{array}$	$Cs_2Rb_1In_1F_6$	5.3759
$\begin{array}{c cccc} Rb_2Na_1In_1F_6 & 5.2687 \\ \hline Rb_2Rb_1Ga_1F_6 & 5.5428 \\ \hline Rb_2Na_1Ga_1F_6 & 5.9026 \\ \end{array}$	$\mathrm{Cs_2Rb_1Ga_1F_6}$	5.9392
$\begin{array}{c c} \hline Cs_2Rb_1Ga_1F_6 & 5.5428 \\ \hline Rb_2Na_1Ga_1F_6 & 5.9026 \\ \hline \end{array}$	$\mathrm{Cs}_2\mathrm{K}_1\mathrm{In}_1\mathrm{F}_6$	5.4629
$\frac{1}{\text{Rb}_2\text{Na}_1\text{Ga}_1\text{F}_6} = 5.9026$	$Rb_2Na_1In_1F_6$	5.2687
	$\mathrm{Cs}_2\mathrm{Rb}_1\mathrm{Ga}_1\mathrm{F}_6$	
$Cs_2K_1Ga_1F_6$ 6.0426		
	$\mathrm{Cs}_2\mathrm{K}_1\mathrm{Ga}_1\mathrm{F}_6$	6.0426

The availability of MDO

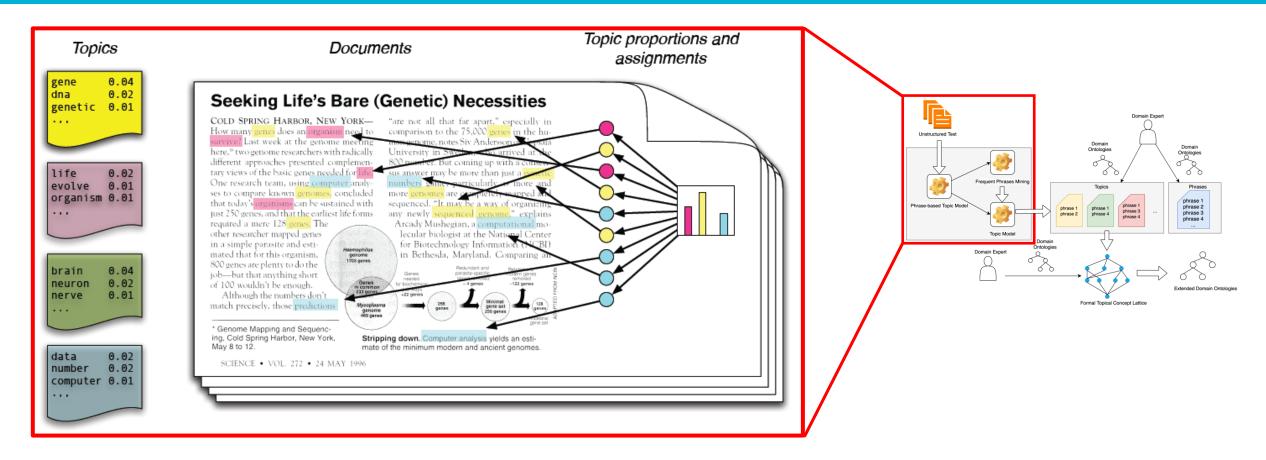
- Open Source and Open Access
 - On Github project: <u>https://github.com/huanyu-li/Materials-Design-Ontology</u>
 - On W3ID: <u>https://w3id.org/mdo/full/1.0/</u>
 - On LOV (Linked Open Vocabularies): <u>https://lov.linkeddata.es/dataset/lov/vocabs/mdo</u>

Summary

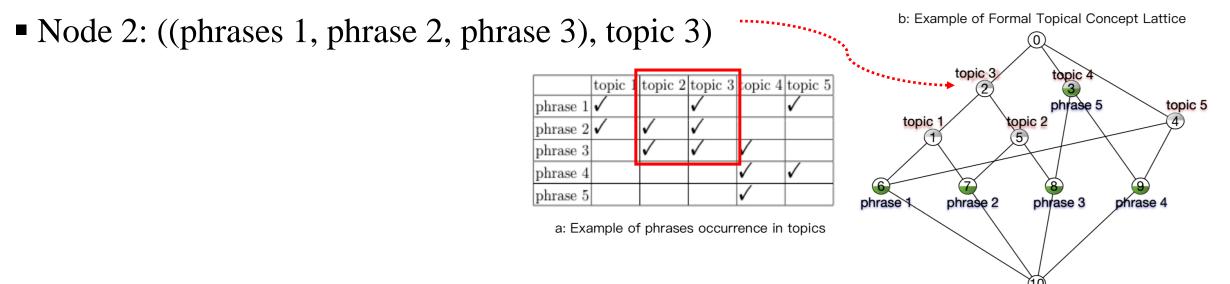
- ✓ MDO is capable to represent basic domain knowledge
- ✓ MDO can be used for mapping different materials databases' schemas
- ✓ MDO can be used for semantically enabling materials database search
- ✓ MDO is publicly accessible via Github, W3ID URL, LOV


Overview

- A topic model and formal concept analysis-based method for extending ontologies
 - A contribution to address the RQ1
 - How can materials domain ontologies be extended by mining unstructured text?


Framework

- Stage 1: Phrase-based Topic Modelling
- Stage 2: Formal Concept Analysis
- Domain Expert Validation


Topic Model

Formal Concept Analysis over the result of a Phrase-based Topic Model

- phrase-topic table
- A formal concept is (P, T) where every phrase in set P is a representative of all topics in set T

Domain Expert Validation

- Interpret all phrases appearing in topics
 - Is a phrase meaningful in the domain? (No(-g))
 - Does a phrase exist in the ontology already? (EXIST(-m))
 - Should a phrase be added into the ontology? (ADD(-m))
- Interpret topics
 - Choose representative phrases for a topic or give a label
 If the label of the topic is too specific (Q)
 - Does a topic exist in the ontology already? (EXIST(-m))
 - Should a topic be added into the ontology? (ADD(-m))

Experiments

- Dataset
 - 627 abstracts of publications from Nanoparticle Information Library (http://nanoparticlelibrary.net)
- Existing Ontologies
 - Nanoparticle ontology
 - eNanoMapper ontology

Result-1

- To interpret phrases
- Examples:
 - 'amorphous silicon' (ADD)
 - 'gold nanoparticle' (EXIST)

ADD(-m): New knowledge for the ontologies EXIST(-m): EXISTING knowledge for the ontologies

	ADD	ADD-m	EXIST	EXIST-m	No-g	No
20, low, Nanoparticle	32	4	26	19	16	9
20, low, eNanoMapper	29	3	24	25	14	12
30, low, Nanoparticle	30	4	26	18	16	9
30, low, eNanoMapper	28	3	24	26	12	11
40, low, Nanoparticle	32	4	26	15	16	10
40, low, eNanoMapper	29	3	24	22	14	12
20, high, Nanoparticle	9	1	14	7	4	0
20, high, eNanoMapper	8	2	12	10	3	0
30, high, Nanoparticle	8	2	14	8	0	1
30, high, eNanoMapper	7	1	12	10	0	1
40, high, Nanoparticle	9	2	14	12	4	4
40, high, eNanoMapper	9	2	12	14	2	4

Result-2

- To interpret topics
- Examples:
 - 'mesoporous silica nanosphere' (ADD)
 - 'chemical vapor deposition' (EXIST)

ADD(-m): New knowledge for the ontologies EXIST(-m): EXISTING knowledge for the ontologies

	ADD	ADD-m	EXIST	EXIST-m	No-g	No	\mathbf{Q}
20, low, both	3(1)	0	2	0	1	0	13
30, low, both	8(2)	0	4	0	1	0	13
40, low, both	16(1)	0	11	1	2	5	10
20, high, both	8(1)	0	3	2	0	0	7
30, high, both	3(2)	0	10	2	0	0	7
40, high, Nanoparticle	10(2)	0	10	3	2	2	3
40, high, eNanoMapper	10(2)	0	9	4	2	$\overline{2}$	3

Comparison to Text2Onto

- Combine text mining algorithms
- Experiments with different number of candidates

# of elements	Algorithm	ADD	ADD-m	EXIST	EXIST-m	No-g	No	precision
100	Entropy	5	0	39	19	4	33	0.67
	C-value/NC-value	5	0	39	19	4	33	0.67
	Relative term frequency	5	0	39	20	4	32	0.68
	TF-IDF	17	0	22	12	6	43	0.57
200	Entropy	7	1	63	43	8	79	0.60
	C-value/NC-value	7	1	63	43	7	79	0.60
	Relative term frequency	7	1	63	42	8	79	0.60
	TF-IDF	24	1	38	19	19	99	0.50
300	Entropy	12	1	80	52	16	139	0.53
	C-value/NC-value	12	1	80	52	16	139	0.53
	Relative term frequency	13	1	78	52	16	140	0.53
	TF-IDF	28	1	58	36	29	148	0.50
400	Entropy	18	1	98	62	20	199	0.50
	C-value/NC-value	18	1	98	62	20	199	0.50
	Relative term frequency	19	1	100	61	20	199	0.50
	TF-IDF	36	1	70	44	38	211	0.47

	ADD	ADD-m	EXIST	EXIST-m	No-g	No	precision
Text2Onto-100	20	0	51	27	11	71	0.60
Text2Onto-200	29	1	84	55	26	164	0.54
Text2Onto-300	39	1	118	78	44	266	0.51
Text2Onto-400	41	1	120	73	47	313	0.47
Our Method	32	3	25	18	14	22	0.80

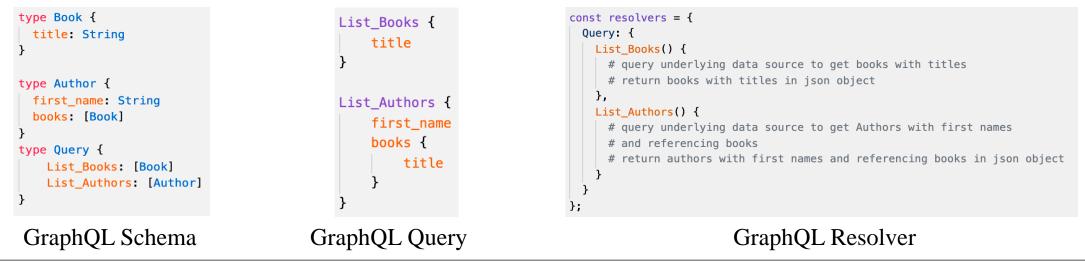
Comparison to Text2Onto

- New Concepts
 - Our Method vs Text2Onto

Concepts	Our method	Text2Onto
growth mechanism	\checkmark	✓
intensity		\checkmark
resolution	\checkmark	
layer by layer growth	\checkmark	
liquid solid	\checkmark	
pressure		\checkmark
MCM 41	\checkmark	
mechanical property	\checkmark	
melting		\checkmark
melt spin	✓	
mesoporous silica nanoparticle	✓	
mesoporous silica nanosphere	\checkmark	
microcrystalline silicon	\checkmark	✓
nano colloid		✓
nano composite		\checkmark
nanocrystal	\checkmark	\checkmark
nano crystalline silicon particle		\checkmark

Summary

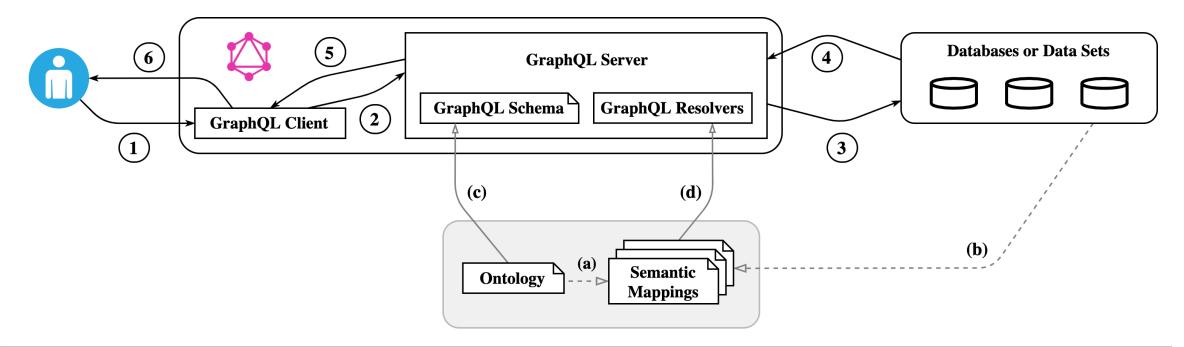
- Phrase-based topic model + Formal concept analysis
- Domain expert interprets in terms of phrases, topics
- Confirmation of ontological concepts
- Addition of new ontological concepts


Overview

- A GraphQL-based framework for data access and integration where an ontology drives the generation of the GraphQL server
- The lack of methods accessing and integrating data over multiple heterogeneous data sources where data is shared via Web APIs (e.g., REST APIs)
- One of the contributions to address the RQ2
 - How can ontology-based techniques be used to access and integrate data from heterogeneous sources?
 - RQ2.1: How can ontologies be leveraged to generate GraphQL APIs for data access and data integration?

GraphQL

- What is GraphQL?
 - GraphQL is a conceptual framework for building Web APIs
 - GraphQL can work with existing APIs of a system
 - A GraphQL server contains GraphQL schema and GraphQL resolver
 - Clients use the GraphQL query language to make requests to a GraphQL server


GraphQL

- Why GraphQL? (In theory / In practice)
 - GraphQL schema can help to provide a unified view of data from multiple sources
 - GraphQL resolver can mediate the accesses to different data sources via APIs (e.g., web data source, SQL database data source)
 - GraphQL has self-documenting specification
 - Users can discover the semantics reflected in API specification when writing GraphQL queries
- Why ontology-driven GraphQL server generation?
 - Ontology can provide the conceptual model over multiple data sources
 - To avoid manually create GraphQL schema and GraphQL resolver from scratch

Framework

- Stage 1: Ontology and semantic mappings constructions, arrows (a) and (b)
- Stage 2: GraphQL server generation, arrows (c) and (d)
- Stage 3: Query answering process, arrows (1) to (6)

Stage 2: Ontology-based GraphQL Schema Generation

Input: General concept inclusions from an interface Structure{ interface CalculatedProperty implements Property{ ontology iri: String! iri: String! PropertyName: String! type Structure_obj implements Structure{ relatesToStructure: [Structure!] iri: String! Output: a GraphQL schema type CalculatedProperty_obj implements CalculatedProperty & Property{ interface Property{ iri: String! iri: String! PropertyName: String! PropertyName: String! relatesToStructure: [Structure!] relatesToStructure: [Structure!] interface PhysicalProperty implements Property{ $CalculatedProperty \square Property$ type Property_obj implements Property{ iri: String! iri: String! $PhysicalProperty \sqsubset Property$ PropertyName: String! PropertyName: String! $Property \sqsubset = 1 \ PropertyName.xsd:string$ relatesToStructure: [Structure!] relatesToStructure: [Structure!] $Property \sqsubseteq \forall relates To Structure. Structure$ type PhysicalProperty_obj implements PhysicalProperty & Property{ interface Calculation{ $Calculation \Box \forall hasInputStructure.Structure \sqcap \forall hasOutputStructure.Structure$ iri: String! iri: String! PropertyName: String! ID: String! Calculation $\Box \forall$ hasInputProperty.Property relatesToStructure: [Structure!] hasInputStructure: [Structure!] $\sqcap \forall hasOutputCalculatedProperty.CalculatedProperty$ hasOutputStructure: [Structure!] Calculation $\Box = 1$ ID.xsd:string hasInputProperty: [Property!] type Query{ CalculationList(IDs: [String!]): [Calculation!]! hasOutputProperty: [CalculatedProperty!] $Property \Box \forall quantity Value. Quantity Value$ StructureList(): [Structure!]! $Quantity Value \Box \forall numeric Value.xsd: float$ type Calculation_obj implements Calculation{ PropertyList(PropertyNames: [String!]): [Property!]! iri: String! PhysicalPropertyList(PropertyNames: [String!]): ID: String! [PhysicalProperty!]! hasInputStructure: [Structure!] CalculatedPropertyList(PropertyNames: [String!]): hasOutputStructure: [Structure!] [CalculatedProperty!]! MDO logic axioms hasInputProperty: [Property!] hasOutputProperty: [CalculatedProperty!]

GraphQL schema

Stage 2: GraphQL Resolver Generation

- Semantic mappings Processing
 - Data from databases can be mapped as instances of ontologies
- Duplicates Detection and Data Fusion
 - Detect records from data which represent the same real-world object
 - Handle data conflicts in terms of contradiction and uncertainty

Conclusion and Future Work

Ontology-Based Technologies for Data Access and Integration in the Materials Design Domain

Conclusion

- We conducted an overview study of state of the art in terms of the usage of materials data and current efforts related to semantic technologies
- We proposed a method for extending ontologies based on topic modelling, formal concept analysis and domain expert validation
- We proposed a domain ontology (MDO) aiming to alleviate problems arisen when accessing and integrating data from heterogeneous materials databases
- We currently focus on introducing GraphQL for data access and integration for materials design domain;
 - We focus on generating GraphQL server based on ontologies, and merging data in the context of GraphQL

Ontology-Based Technologies for Data Access and Integration in the Materials Design Domain

Future Work

- [1] Lambrix P, Armiento R, Delin A, Li H, <u>Big Semantic Data Processing in the Materials Design Domain</u>, Encyclopedia of Big Data Technologies, Springer, 2018.
 - [*] Update version: Lambrix P, Armiento R, Delin A, Li H, FAIR Big Data in the Materials Design Domain
- [2] Li H, Armiento R, Lambrix P, <u>An Ontology for the Materials Design Domain</u>, The 19th International Semantic Web Conference, Athens Greece (Virtual Conference), 2020.
- [3] Li H, Armiento R, Lambrix P, <u>A Method for Extending Ontologies with Application to the Materials Science</u> <u>Domain</u>, Data Science Journal, 2019.
- [4] Li H, Hartig O, Armiento R, Lambrix P, <u>Ontology-Driven GraphQL Server Generation for Data Access and</u> <u>Integration</u> (Ongoing).

Extending the Materials Design Ontology [2] with the method presented in [3]

To develop a system with the implementation of the framework in [4] for the materials design domain

Ontology-Based Technologies for Data Access and Integration in the Materials Design Domain

Conclusion

- We conducted an overview study of state of the art in terms of the usage of materials data and current efforts related to semantic technologies
- We proposed a method for extending ontologies based on topic modelling, formal concept analysis and domain expert validation
- We proposed a domain ontology (MDO) aiming to alleviate problems arisen when accessing and integrating data from heterogeneous materials databases
- We currently focus on introducing GraphQL for data access and integration for materials design domain;
 - We focus on generating GraphQL server based on ontologies, and merging data in the context of GraphQL

