A tool for evaluating strategies for grouping of biological data

Tool Kit for Evaluation of Grouping Algorithms

During the last decade an enormous amount of biological data has been generated and techniques and tools to analyze this data have been developed. Many of these tools use some form of grouping and are used in, for instance, data

integration, data cleaning, prediction of protein functionality, and correlation of genes based on microarray data. Grouping of biological data is not a trivial task:

- a number of aspects influence the quality of the results: the data sources, the grouping attributes and the algorithms implementing the grouping procedure
- a variety of grouping algorithms is available, but it is often not clear which method performs best for which grouping tasks
- · existing grouping algorithms may not be applied straightforward

Environments that support comparison and evaluation of different grouping strategies for different grouping tasks on different data sets are needed to:

- support study of the properties of biological data sources
- select the suitable grouping procedures
- get an insight in how the grouping procedures could be used in the best way
- · lead to recommendations on how to improve the current procedures and develop new procedures

Method for similarity-based grouping

The KitEGA framework

References

Jakoniene V, Lambrix P, `A Tool for Evaluating Strategies for Grouping of Biological Data', Journal of Integrative Bioinformatics, 4(3):83, 2007. Jakoniene V, Rundqvist D, Lambrix P, `A method for similarity-based grouping of biological data', Proceedings of the International Workshop on Data Integration in the Life Sciences - DILS06, LNBI 4075, pp 136-151, 2006.

Contact: P. Lambrix

Department of Computer and Information Science Linköping universitet, Sweden

Example use

- Grouping task. Grouping of proteins with respect to
- 1. biological function
- 2. class of isozymes they belong to Formation of data sources:
- analyzed human proteins involved in
- glycolysis
- retrieved 190 data entries via Entrez used GO Consortium mappings ec2go
- and spkw2go to extend the set of available GO terms

Specification of grouping rules

The	first	pro	totype	inclu	des:
1.214			- 1		

- Library of similarity functions EditDist(v1,v2)
- SeqSim(v1,v2)
- SemSim(v1,v2)
- Other knowledge
- GO ontology
- Classifications. Manual classification according to
 - biological function
- classes of isozymes
- Grouping metohds connected components
- (transitive similarity) • cliques
- (overlapping groups)

ation: 0.8810530832230519

Pairwise grouping

P	siye-rune	-Annec-	mydo + sei	isin(GOcomo)20.95 + ConnectedCom	joneniis + Giycolysii	. by function
1	GroupNr	ClassNr	ID	Definition	GO combine	a 🔺 🔺
	0	4	P60174	Triosephosphate isomerase (TIM) (Triose- phosphate isomerase).	go:0004807	
	0	4	NP_000356	triosephosphate isomerase 1 [Homo sapiens].	go:0016853, go:00048	
	1	2	AAA60068	phosphofructokinase.	go:0003872	Evaluation
	1	2	NP_001002021	liver phosphofructokinase isoform a [Homo sapiens].	go:0003872	
ł	1	2	NP_002617	liver phosphofructokinase isoform b [Homo sapiens].	go:0003872	External quality measures, i.e. with
	1	2	NP_002618	phosphonuctokinase, platelet (riomo	go:0005524, go:00163 go:0000166, go:00167 go:0000287, go:00038	respect to known classes of the
	1	2	NP_000280	phosphoriocrokinase, muscle (riomo	go:0005524, go:00163 go:0000166, go:00167 go:0000287, go:00038	grouped data
1	1	2	P17858	6-phosphofructokinase, liver type (Phosphofructokinase 1) (Phosphohexokinase) (Phosphofructo-1-kinas	go:0003872	Number of entries: 92 Entropy: 1.0 Number of groups: 26 Purity: 1.0
	Sec. 1	× *	100	1 1 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Number of classes: 25 MutualInformation: 0.8810530832230519

Analysis. Distribution of data entries in a test case vcolysis: by function

	10		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				11	1		1	1	
	0(5)	1(2)	2(14)	3(7)	4(2)	5(4)	6(4)	7(4)	8(4)	9(12)	10(5)	11(
0(2)					2/0/0							
1(14)			14/0/0									
2(12)										12/0/0		
3(7)				7/0/0								
4(8)												8/0
5(1)											1/0/4	
6(2)		2/0/0										
7(1)												
8(4)							4/0/0					
9(6)						/						
10(1)			true p	positiv	es 🖌	\sim						
11(4)			false	positiv	/es 🖌	\sim					4/0/1	
12(5)	5/0/0			negat							-	
13(1)			10100	negui					na	IVS	IS.	
14(1)										lys up		_
4	1.0		2	1.00	7.1			G	ro	up	VS	С

Group vs class data entries

group: 11(4) + class:10(5) + 4/0/1

GroupNr	ClassNr	ID	Definition	GO combined
11	10		Pyruvate dehydrogenase E1 component alpha subunit, somatic form, mitochondrial precursor (PDHE1-A ty	go:0004739
11	10	NP_000275	pyruvate dehydrogenase (lipoamide) alpha 1 [Homo sapiens].	go:0016491, go:0004739, go:0016624
11	10		Pyruvate dehydrogenase E1 component beta subunit, mitochondrial precursor (PDHE1-B).	go:0004739
11	10		Pyruvate dehydrogenase E1 component alpha subunit, testis- specific form, mitochondrial precursor (PD	go:0004739
5	10	P10515	Dihydrolipoyllysine-residue acetyltransferase component of	en:0004742

Analysis. All test cases

ID	DataSource	Rule	GrMethod	Classif	# of entries	# of groups	# of classes	Entropy	Purity	MutualInformation	FMeasure
	Olyc-Funct- Ann-onlyGO	Sem5im (GOann) >0.95	ConnectedComponents	Olycolysis: by function	67	28	23	1.0	1.0	0.9117709729626631	0.974650556740109
2		Sem5im (GOcomb) >0.95		Olycolysis: by function	75	23	24	0.8652654637823463	0.8	0.7942395602417653	0.791789514189514
3	Glye-Funct- AnnEc- enlyGO	Sem5im (GOcomb) >0.95	ConnectedComponents	Olycolysis: by function	92	28	25	1.0	1.0	0.8810530832230523	0.993961352657004
4	Glye-Funct- AnnEc- enlyGO	Sem5im (GOcomb) >0.85	ConnectedComponents	Glycolysis: by function	92	21	25	0.777556968313313	0.6956521739130435	0.6824607500357851	0.707432297465563
5	Glyc-Funct- AnnEc- enlyOO	SenSim (GOcemb) >0.95	Cliques	Glycolysis: by function	92	29	25	1.0	1.0	0.8839495868521302	0.839242446719082
6	Glyc-Funct- AnnEc- enlyOO	SeqSim(seq) >0.85	ConnectedComponents	Glycolysis: by function	92	41	25	1.0	1.0	0.8231661542255041	0.804625694671461
7	Glyc-Funct- AnnEc- enlyOO	SenSim (GOcemb) >0.95		Glycolysis: isozymes	92	26	47	0.7921820789964245	0.5869565217391305	0.7969682196233567	0.648470443235889
8	Glyc-Funct- AnnEc- enlyGO	SeqSim(seq) >0.85		Glycolysis: isozymes	92	41	47	0.9256079005200991	0.8478260869565217	0.8848110696286725	0.83808739569609

Studied aspects, e.g. use of different data sources, grouping algorithms, and classifications, grouping on different attributes, impact of threshold.

Conclusions for test cases obtained by using KitEGA:

- best suited grouping approaches for data source Glyc-Funct-AnnEc-onlyGO SemSim(GOcomb) for grouping on biological function
 - SeqSim(Sequence) for grouping on classes of isozymes
- for the used grouping tasks spkw2go too general, ec2go specific enough