
Literature-based alignment of ontologies

Patrick Lambrix and He Tan and Wei Xu

Department of Computer and Information Science
Linköpings universitet, Sweden

Abstract. In recent years many ontologies have been developed and
many of these ontologies contain overlapping information. To be able
to use multiple ontologies they have to be aligned. Recently, there is a
growing interest to use instance-based methods for ontology alignment
and some of these approaches use literature. In this paper we propose
and evaluate new strategies for aligning ontologies based on text cate-
gorization of literature using support vector machines-based text clas-
sifiers, and compare them with existing literature-based strategies. We
also compare and combine these strategies with linguistic strategies.

A shorter version of this paper appears in the proceedings of the

Third International Workshop on Ontology Matching, 2008.

1 Introduction

In recent years many ontologies have been developed. The benefits of using on-
tologies include reuse, sharing and portability of knowledge across platforms, and
improved documentation, maintenance, and reliability (e.g. [5]). Ontologies lead
to a better understanding of a field and to more effective and efficient handling
of information in that field. Many of the currently developed ontologies con-
tain overlapping information. For instance, Open Biomedical Ontologies (OBO,
http://www.obofoundry.org/) lists 26 different anatomy ontologies (May 2008).
Often we would want to be able to use multiple ontologies. For instance, com-
panies may want to use community standard ontologies and use them together
with company-specific ontologies. Applications may need to use ontologies from
different areas or from different views on one area. Ontology builders may want
to use already existing ontologies as the basis for the creation of new ontologies
by extending the existing ontologies or by combining knowledge from different
smaller ontologies. In each of these cases it is important to know the relationships
between the terms in the different ontologies. Further, the data in different data
sources in the same domain may have been annotated with different but similar
ontologies. Knowledge of the inter-ontology relationships would in this case lead
to improvements in search, integration and analysis of data. It has been realized
that this is a major issue and some organizations have started to deal with it.

In the remainder of this paper we say that we align two ontologies when we de-
fine the relationships between terms in the different ontologies. Currently, there



exist a number of ontology alignment systems that support the user to find inter-
ontology relationships. For overviews we refer to, e.g., [2, 8, 15, 9] and the On-
tology Matching website (http://www.ontologymatching.org/). These systems
use different techniques. Recently, there is a growing interest in instance-based
methods for ontology alignment. Some of these approaches use literature as in-
stances.

In this paper we slightly generalize the method for literature-based ontology
alignment that was proposed in [18] (section 2.2). Further, we propose an instan-
tiation of the method based on text categorization. We propose two algorithms
using support vector machines (SVMs) (section 3). We evaluate these algorithms
in terms of the quality of the alignment results for the five test cases used in [18]
(section 4). We discuss the influence of the literature corpus and compare the
two SVM-based algorithms. We also compare these algorithms with the Naive
Bayes text classification approach of [18]. Finally, we compare the algorithms
with a good text-based approach and discuss the advantages and disadvantages
of combining the approaches.

2 Background

2.1 Ontology alignment

Many ontology alignment systems are based on the computation of similarity
values between terms in different ontologies and can be described as instantia-
tions of the general framework defined in [9] (figure 1). An alignment algorithm
receives as input two source ontologies. The algorithm can include several match-
ers. These matchers calculate similarities between the terms from the different
source ontologies and can be based on knowledge about the linguistic elements,
structure, constraints and instances of the ontology. Also auxiliary information
can be used. Alignment suggestions are then determined by combining and fil-
tering the results generated by one or more matchers. The pairs of terms with a
similarity value above a certain threshold are retained as alignment suggestions.
The suggestions are then presented to the user who accepts or rejects them. The
acceptance and rejection of a suggestion may influence further suggestions.

2.2 Document-based Ontology Alignment

A method for creating a matcher that uses scientific literature was proposed
in [18]. The method builds on the intuition that a similarity measure between
concepts in different ontologies can be computed based on relationships between
the documents in which they are used.

We give here a slightly generalized version of the method in [18]. It contains
the following basic steps.
1. Generate corpora. For each ontology that we want to align we generate a
corpus of documents.
2. Generating classifiers. For each ontology one or more document classifiers



s
o
u
r
c
e

o
n
t
o
l
o
g
i
e
s

conflict 
checker

a
l
i
g
n
m
e
n
t
s

user

matcher

domain

thesauri

matcher 

combination

filter

suggestions

alignment algorithm 

accepted
suggestions

instance dictionaries
corpora

general

Fig. 1. A general alignment strategy [9].

are generated. The corpus of documents associated to an ontology is used for
generating its related classifiers.
3. Classification. Documents of one ontology are classified by the document
classifiers of the other ontology and visa versa.
4. Calculate similarities. A similarity measure between concepts in the differ-
ent ontologies is computed based on the results of the classification.

2.3 Document-based Ontology Alignment using Naive Bayes text

classifiers

In [18] a particular instantiation of this method was implemented and evalu-
ated using test cases involving biomedical ontologies. For step 1 a corpus of
PubMed [14] abstracts was generated. PubMed is a service of the National Li-
brary of Medicine that includes over 15 million citations from MEDLINE and
other biomedical journals. The PubMed version of October 23, 2005 was queried
with each concept in the ontologies and the 20, 40, 60, 80 and 100 most recent
abstracts for each concept were retrieved. The retrieval system for PubMed did
not always find at least 100 abstracts for a concept (even not always 20) and in
this case all abstracts were retrieved. There was also no apparent relationship
between the location of a concept in the is-a hierarchy and how many abstracts
were retrieved for that concept.

In step 2 one Naive Bayes classifier per ontology was generated. The classifiers
return for a given document d the concept C in the ontology for which the
posterior probability P (C|d) results in the highest value.

In step 3 the Naive Bayes classifier for one ontology was applied to every
abstract in the abstract corpus of the other ontology and vice versa.



Finally, in step 4 a similarity value between a concept C1 from the first on-
tology and a concept C2 from the second ontology was computed as:

sim(C1, C2) =
nNBC2(C1, C2) + nNBC1(C2, C1)

nD(C1) + nD(C2)

where nD(C) is the number of abstracts originally associated with C, and
nNBCx(Cp, Cq) is the number of abstracts associated with Cp that are also re-
lated to Cq as found by classifier NBCx related to ontology x.

2.4 Text Categorization using Support Vector Machines

In step 2 of the method described in section 2.2 document classifiers are gener-
ated. In [18] one Naive Bayes classifier per ontology was generated which assigns
a document to one concept in the ontology. In general, however, a document
may be assigned to several concepts and thus we may regard the classification of
documents to concepts in an ontology as several binary classification problems,
one for each concept in an ontology.

SVMs [19] is a machine learning method that constructs a separating hy-
perplane in a feature space between two data sets (positive and negative exam-
ples) which maximizes the margin between the two sets. The setting can also
be generalized to learning from positive and unlabeled examples (e.g. [10]). It
has been argued that SVMs are an appropriate learning method for generating
text classifiers [6]. They are universal learners, they can learn independent of
the dimensionality of the feature space, and they allow for automatic parameter
tuning. According to [6] theoretical evidence for the fact that SVMs should per-
form well for text categorization is given by the facts that (i) text has a highly
dimensional feature space (often tf-idf vectors are used) and SVMs have the po-
tential to handle large feature spaces, (ii) text has few irrelevant features and
thus large feature spaces need to be handled, (iii) text has sparse feature vec-
tors and algorithms with similar inductive bias are well suited to problems with
dense concepts and sparse instances, and (iv) most text categorization problems
are linearly separable and SVMs try to find such linear separators. Experimental
results also showed that SVMs achieved good performance and are robust.

3 Alignment algorithms

In this section we present an instantiation of the method in section 2.2 based on
text classification using SVMs.

3.1 Basic algorithm

1. Generate corpora. We used the exact same corpora as in [18].
2. Generating the classifiers. For each concept in each ontology an SVM
text classifier was generated. We used the LPU [10] system. LPU generates text
classifiers based on positive and unlabeled examples. The abstracts retrieved



when querying for a concept were used as positive examples for that concept.
Further, for a given concept we used one abstract of each other concept in the
same ontology as unlabeled examples.

The SVM text classifier for a concept returns for a given document whether
the document is related to the concept. It also returns a value that is positive if
the document is classified to the concept and negative otherwise.
3. Classification. The SVM text classifier for each concept in one ontology
is applied to every abstract in the abstract corpus of the other ontology and
vice versa. The classification was done by using the text classifiers generated by
LPU within the SVMlight system [7]. Observe that a document can be classified
to zero, one or more than one concept in an ontology. This is in contrast to
the Naive Bayes text classification approach where a document was classified to
exactly one concept.
4. Calculate similarities. As the last step we compute a similarity between
concepts in different ontologies. We define the similarity between a concept C1

from the first ontology and a concept C2 from the second ontology as:

nSV MC−C2
(C1, C2) + nSV MC−C1

(C2, C1)

nD(C1) + nD(C2)

where nD(C) is the number of abstracts originally associated with C, and
nSV MC−Cq

(Cp, Cq) is the number of abstracts associated with Cp that are also
related to Cq as found by classifier SV MC − Cq related to concept Cq.

The pairs of concepts with a similarity measure greater or equal than a
predefined threshold are then presented to the user as candidate alignments.

3.2 Alternative: Single classification

In the Naive Bayes text classification approach a document was classified to
exactly one concept. We wanted to evaluate whether this has a real influence
in the similarity computation. Therefore, we developed an alternative to the
basic SVM algorithm where in step 3 a document can be classified to only one
concept. We assign a document only to the concept for which its SVM classifier
generated the highest positive value for that document. In the case more than
one classifier produces the highest positive value, then one of the associated
concepts is chosen.

4 Evaluation

We evaluate the proposed algorithms with respect to the quality of the sug-
gestions they generate. We also compare them to the best text classification
matcher in [18] as well as to the best text-based matcher implemented in the
SAMBO ontology alignment system [9] with respect to the quality of the sugges-
tions. Further, we investigate the combination of the proposed algorithms and
the text-based SAMBO matcher.



4.1 Set-up

Test cases. We use the same five test cases as in [18]. For the first two cases
we use a part of a GO ontology [3] together with a part of SigO [17]. The first
case, B (behavior), contains 57 terms from GO and 10 terms from SigO. The
second case, ID (immune defense), contains 73 terms from GO and 17 terms
from SigO. The other cases are taken from the anatomy category of Medical
Subject Headings (MeSH, [11]) and the Adult Mouse Anatomy (MA, available
from OBO): nose (containing 15 terms from MeSH and 18 terms from MA), ear

(containing 39 terms from MeSH and 77 terms from MA), and eye (containing
45 terms from MeSH and 112 terms from MA). Golden standards for these cases
were developed by domain experts.
Corpus. We use the same corpus as in [18].
Matchers. In the evaluation we use SVM-based matchers as described in sec-
tions 3.1 and 3.2 based on sets of maximum 20 and maximum 100 documents
per concept. These matchers are denoted as SVM-20-P, SVM-100-P, SVM-20-S,
and SVM-100-S where the number stands for the maximum number of docu-
ments per concept in the corpus, and P and S stand for Plural (a document can
be classified to several concepts) and Single (a document can be classified to
only one concept), respectively. Further, we use the basic (best) matcher from
[18], denoted NB and described in section 2.3. We also use the best text-based
matcher (TermWN) from [9] which combines edit distance, n-grams and linguis-
tic matching and uses WordNet as a thesaurus to augment the matching by
using synonyms and hypernyms.
Double threshold filtering. In one experiment we also use the double thresh-
old filtering technique introduced in [1]. Instead of using one threshold, this
filtering technique uses an upper and a lower threshold. Pairs of terms with a
similarity value equal or higher than the upper threshold are retained as sugges-
tions. Pairs with a similarity value between the lower and the upper threshold
are filtered using information about the structure of the ontologies. The rest is
discarded.

4.2 Evaluation results

The different evaluation results are given in tables 1 and 2. The first columns
in the tables represent the cases and the number of expected alignments for
each case based on the golden standards developed by the domain experts. The
expected alignments are a minimal set of suggestions that matchers are expected
to generate for a perfect recall. This set does not include the inferred suggestions.
Inferred suggestions are counted neither as correct nor as wrong suggestions. An
example of an inferred suggestion is that incus is a kind of ear ossicle. In this
case we know that auditory bone (MA) is equivalent to ear ossicle (MeSH), and
incus is a kind of auditory bone in MA. Then a reasoning system could derive
that incus is a kind of ear ossicle. The second column in the tables represent
threshold values. The cells in the other columns contain quadruplets a/b/c/d
which represent the number of a) suggestions, b) correct suggestions, c) wrong
suggestions and d) inferred suggestions, for a given case, matcher and threshold.



Th SVM-20-P SVM-100-P SVM-20-S SVM-100-S NB-20 NB-100

B 0.4 249/4/165/90 387/4/258/125 2/2/0/0 0/0/0/0 3/2/0/1 4/2/1/1
4 0.5 175/4/108/63 306/4/203/99 2/2/0/0 0/0/0/0 2/2/0/0 2/2/0/0

0.6 92/4/54/34 225/4/148/73 2/2/0/0 0/0/0/0 2/2/0/0 2/2/0/0
0.7 52/3/25/24 130/3/79/48 2/2/0/0 0/0/0/0 2/2/0/0 2/2/0/0
0.8 20/2/10/8 36/0/22/14 2/2/0/0 0/0/0/0 2/2/0/0 1/1/0/0

ID 0.4 526/7/482/37 672/8/592/72 4/3/0/1 2/2/0/0 11/4/4/3 9/6/3/0
8 0.5 344/6/314/24 490/8/433/28 3/2/0/1 0/0/0/0 7/4/0/0 5/5/0/0

0.6 215/6/195/14 336/8/300/28 2/1/0/1 0/0/0/0 5/4/0/1 2/2/0/0
0.7 141/5/126/10 222/6/191/25 0/0/0/0 0/0/0/0 2/2/0/0 1/1/0/0
0.8 75/5/63/7 108/5/93/10 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0

nose 0.4 117/7/97/13 155/7/124/24 9/5/4/0 5/5/0/0 7/5/2/0 6/5/1/0
7 0.5 83/7/66/10 120/7/91/22 5/5/0/0 4/4/0/0 6/5/1/0 6/5/1/0

0.6 61/6/50/5 85/7/60/18 5/5/0/0 2/2/0/0 5/5/0/0 5/5/0/0
0.7 47/6/39/2 58/6/45/7 4/4/0/0 0/0/0/0 5/5/0/0 5/5/0/0
0.8 29/6/23/0 34/6/27/1 2/2/0/0 0/0/0/0 4/4/0/0 3/3/0/0

ear 0.4 937/21/828/88 1224/24/1056/144 18/16/2/0 14/12/2/0 20/16/4/0 18/16/2/0
27 0.5 700/21/607/72 957/23/822/112 15/15/0/0 11/10/1/0 18/16/2/0 15/14/1/0

0.6 487/21/411/55 696/22/590/84 11/11/0/0 1/1/0/0 14/14/0/0 12/11/1/0
0.7 320/21/262/37 478/22/392/64 5/5/0/0 0/0/0/0 11/11/0/0 11/10/1/0
0.8 174/20/134/20 278/21/223/34 2/2/0/0 0/0/0/0 5/5/0/0 3/3/0/0

eye 0.4 1588/25/1493/70 2055/25/1926/104 17/16/1/0 7/7/0/0 33/19/13/1 25/18/7/0
27 0.5 1089/25/1009/55 1481/25/1366/90 14/14/0/0 4/4/0/0 20/17/3/0 18/17/1/0

0.6 667/25/601/41 957/25/860/72 9/9/0/0 0/0/0/0 16/16/0/0 14/14/0/0
0.7 441/23/386/32 612/24/539/49 2/2/0/0 0/0/0/0 12/12/0/0 10/10/0/0
0.8 271/23/225/23 344/23/290/31 0/0/0/0 0/0/0/0 5/5/0/0 3/3/0/0

Table 1. SVM plural assignments (SVM-20-P and SVM-100-P), SVM single assign-
ments (SVM-20-S and SVM-100-S), and Naive Bayes (NB-20 and NB-100 from [18]).



Comparison based on different corpus sizes. For SVM with plural as-
signment (table 1 - columns SVM-20-P and SVM-100-P) we see that SVM-20-P
finds at most as many expected alignments as SVM-100-P, sometimes fewer.
However, SVM-100-P does not only find more expected alignments, it also gives
more suggestions in total, more wrong suggestions and more inferred suggestions.

For SVM with single assignment (table 1 - columns SVM-20-S and SVM-100-
S) we observe that SVM-100-S does not find suggestions for high thresholds and
for case B also not even for threshold 0.4. It does have almost perfect precision1.
SVM-20-S gives some more suggestions than SVM-100-S. It gives a few wrong
suggestions at threshold 0.4, but no wrong suggestions at higher thresholds.
SVM-20-S outperforms SVM-100-S in recall with almost as good precision.

In [18] no relationship was found between the number of abstracts in the
corpus and the quality of the suggestions for NB (table 1 - columns NB-20 and
NB-100). However, as is the case here, it was observed that the corpus has a
large influence on the quality of the suggestions.

Comparison of single and plural assignment. Both for the SVM-100 and
the SVM-20 versions the recall for the plural assignment is higher to much higher
than the recall for the single assignment. This comes, however, at a cost. The
precision for the single assignment algorithms is much higher than for their plural
assignment counterparts. We see a real trade-off here: find many expected align-
ments, but also get many wrong suggestions, or, find few expected alignments,
but receive almost no wrong suggestions.

Comparison of NB and SVM. NB is a single assignment algorithm and
we therefore compare it with the single assignment versions of SVM. All single
assignment algorithms give relatively few suggestions but have high precision.
However, NB gives always more suggestions than SVM for the same document
corpus and the same threshold. NB also always gives suggestions, except for case
ID and threshold 0.8, while this is not the case for the SVM algorithms. SVM-20
does not give suggestions for ID - 0.7 and higher, and eye - 0.8. In addition to
these, SVM-100 does not give suggestions for ID - 0.5 and higher, nose - 0.7
and higher, ear - 0.7 and higher, eye - 0.6 and higher, and B with threshold 0.4
and higher. It is clear that the SVM algorithms with single assignment do not
perform well with high thresholds.

In general, the NB algorithms have slightly better recall than the SVM al-
gorithms, while the SVM algorithms have slightly higher precision than the NB
algorithms. However, even if the recall for NB is better, it is not always the case
that the alignments that were found by SVM algorithms were also found by NB.

1 Precision is used as it is usually defined in information retrieval, i.e. the number of
correct suggestions divided by the number of suggestions. As noted before, inferred
suggestions are counted neither correct nor wrong. Similarly, recall is defined as the
number of correct suggestions divided by the total number of correct suggestions, in
this case the expected suggestions.



Th TermWN TermWN+ TermWN+ TermWN+
SVM-100-S SVM-100-P SVM-100-P

+ Double
Threshold

B 0.4 58/4/22/32 4/4/0/0 156/4/84/68 69/4/26/39
4 0.5 35/4/13/18 4/4/0/0 52/4/19/29 26/4/4/18

0.6 13/4/4/5 0/0/0/0 21/4/7/10 13/4/2/7
0.7 6/4/0/2 0/0/0/0 7/4/1/2 6/4/1/1
0.8 4/4/0/0 0/0/0/0 4/4/0/0 4/4/0/0

ID 0.4 96/7/66/23 8/6/2/0 302/8/262/32 177/7/165/5
8 0.5 49/7/25/17 6/6/0/0 155/7/127/21 86/7/74/5

0.6 16/5/5/6 2/2/0/0 71/7/48/16 40/7/28/5
0.7 7/5/2/0 1/1/0/0 19/7/7/5 12/7/5/0
0.8 6/4/0/2 0/0/0/0 7/5/2/0 7/5/2/0

nose 0.4 48/7/37/4 9/7/2/0 80/7/66/7 26/7/19/0
7 0.5 28/7/18/3 7/7/0/0 58/7/47/4 21/7/14/0

0.6 8/6/2/0 6/6/0/0 31/7/47/4 12/7/5/0
0.7 6/6/0/0 4/4/0/0 11/7/4/0 9/7/2/0
0.8 6/6/0/0 1/1/0/0 6/6/0/0 6/6/0/0

ear 0.4 155/26/110/19 34/25/8/1 585/27/481/77 144/27/103/14
27 0.5 99/26/65/8 27/23/4/0 203/26/146/31 64/26/32/6

0.6 47/26/19/2 17/17/0/0 96/24/64/8 42/24/16/2
0.7 34/26/8/0 12/12/0/0 55/23/28/4 36/23/11/2
0.8 28/25/3/0 1/1/0/0 29/21/6/2 29/21/6/2

eye 0.4 135/26/100/9 28/23/5/0 643/25/568/50 260/23/223/14
27 0.5 74/23/44/7 21/20/1/0 272/25/221/26 144/23/115/6

0.6 33/22/10/1 16/16/0/0 138/24/101/13 74/22/48/4
0.7 24/21/3/0 7/7/0/0 54/21/27/6 35/20/11/4
0.8 22/20/2/0 0/0/0/0 25/21/4/0 25/21/4/0

Table 2. TermWN (from [9]), combination of TermWN and SVM-100-S, combination
of TermWN and SVM-100-P, combination of TermWN and SVM-100-P with double
threshold filtering.



Comparison with and combination with other matchers. In table 2 we
show the quality of the suggestions of TermWN (from [9]), the combinations of
TermWN with SVM-100-P and SVM-100-S, as well as the results of the combi-
nation of TermWN with SVM-100-P with the double threshold filtering method
of [1]. The suggestions for the combinations are determined based on the combi-
nation of the similarity values measured by individual matchers using weights,
sim(C1, C2) = (

∑n

k=1
wk ∗ simk(C1, C2))/

∑n

k=1
wk, where simk and wk repre-

sent the similarity values and weights, respectively, for the different matchers.
In the experiment we used 1 as the weight for each matcher.

When we compare TermWN with the text categorization approaches, we note
that TermWN has higher recall than the single assignment approaches. It also
has better recall than the plural assignment approaches for the case ear, but
for the other cases the recall is similar. TermWN has better precision than the
plural assignment algorithms, but worse than the single assignment algorithms.

We also note that all expected alignments, except for 3 alignments for case
ear2, were found by at least one SVM or NB matcher and threshold at least 0.4.
TermWN with threshold 0.4 missed 1 expected alignment for ID, 1 for ear and
1 for eye.

The combination of TermWN and SVM-100-S gave perfect results for B and
thresholds 0.4 and 0.5. Otherwise, when it gave suggestions, the precision was
high. For thresholds 0.4 and 0.5, SVM-100-S worked as a filter on TermWN by
removing many wrong suggestions at the cost of no or few correct suggestions.
For higher thresholds too many correct suggestions were removed.

For most cases and thresholds the combination of TermWN and SVM-100-P
gave better recall than TermWN and better than SVM-100-P. The precision of
the combination was higher than the precision for SVM-100-P, but lower than
the precision for TermWN. The precision for the combination could be improved
to even better precision than TermWN by using the double threshold filtering
technique while keeping the recall at the same level for all cases except for ID
with threshold 0.4 and the eye case.

5 Related work

Recently, there is a growing interest in instance-based methods for ontology
alignment (see, for instance, the publication list on www.ontologymatching.org).
Some of these approaches use literature as instances.

Our work can be seen as a continuation of [18] by slightly extending the
method and proposing, evaluating and comparing other strategies for different
steps in the method.

In [4] the effect of the choice of co-occurrence measures on the performance
of instance-based alignment approaches is studied. The study is based on a use
case with two ontologies that have been used to annotate publications in the

2 These alignments are: maleus - malleu, vestibular apparatus - vestibule, and perilym-

phatic channel - cochlear aqueduct. They were, however, found when combining with
TermWN.



National Library of the Netherlands. An important assumption in the study is
that doubly annotated instances exist. The similarity measures for concepts that
are evaluated are Jaccard, corrected Jaccard, pointwise mutual information, log-
likelihood and information gain. Jaccard and corrected Jaccard led to the best
results in their case.

One method to compute the similarity between concepts in ArtGen [12] is
to use the concept names and compute a similarity between the contexts (1000-
character neighborhoods) of all occurrences of the words in a set of domain-
specific Web pages.

In FCA-Merge [16] ontologies are merged using a concept lattice which is
derived using formal concept analysis based on how documents from a given
domain-specific corpus are classified to the concepts in the ontologies using nat-
ural language processing techniques.

OntoMapper [13] assigns to each concept a set of abstracts of technical papers
taken from ACM’s digital library and Citeseer and generates similarity scores
matrices for the ontologies that are computed by the Rainbow text classifier. The
similarity between the concepts is then calculated based on these two matrices
using the Bayesian method.

6 Conclusion

In this paper we have proposed algorithms for aligning ontologies using liter-
ature. The methods are based on text categorization using SVMs. We have
shown that the corpus has a large influence on the results. Further, there is
an important trade-off between the single and plural assignment methods. The
plural assignment methods promote recall while the single assignment methods
promote precision. Compared to another single assignment text categorization-
based method, SVM-based algorithms have slightly higher precision and sightly
lower recall. Finally, we compared the SVM-100 approaches with a text-based
matcher, TermWN and showed that a combination of TermWN with SVM-based
approaches leads to a large gain in precision compared to TermWN and SVM-
100-P, while maintaining a high recall.

We are interested in further investigating other combinations of the algo-
rithms. For instance, our results indicate that giving higher weights to single
assignment approaches may improve the results for the combinations. Further,
domain knowledge and other auxiliary knowledge could be used in different ways
to enhance the matchers. We are also interested in looking at other classification
algorithms and evaluating the algorithms on other test data.

References

1. Chen B, Tan H and Lambrix P. 2006. Structure-based filtering for ontology align-
ment. Proceedings of the IEEE WETICE Workshop on Semantic Technologies in

Collaborative Applications, pp 364-369.
2. Euzenat J and Shvaiko P. 2007. Ontology Matching. Springer.



3. The Gene Ontology Consortium. 2000. Gene Ontology: tool for the unification of
biology. Nature Genetics, 25(1):25-29. http://www.geneontology.org/.

4. Isaac A, van der Meij L, Schlobach S, and Wang S. 2007. An Empirical Study of
Instance-Based Ontology Matching. Proceedings of the 6th International Semantic

Web Conference, LNCS 4825, 253-266.
5. Jasper R and Uschold M. 1999. A Framework for Understanding and Classifying

Ontology Applications. Proceedings of the 12th Workshop on Knowledge Acquisition,

Modeling and Management.
6. Joachims T. 1998. Text Categorization with Support Vector Machines: Learning

with Many Relevant Features. Proceedings of the European Conference on Machine

Learning, LNCS 1398, 137-142.
7. Joachims T. 1999. Making large-Scale SVM Learning Practical. Advances in Kernel

Methods - Support Vector Learning, B Schölkopf and C Burges and A Smola (eds),
MIT-Press. http://svmlight.joachims.org/

8. Kalfoglou Y and Schorlemmer M. 2003. Ontology mapping: the state of the art. The

Knowledge Engineering Review, 18(1):1-31.
9. Lambrix P and Tan H. 2006. SAMBO - A System for Aligning and Merging Biomed-

ical Ontologies. Journal of Web Semantics, Special issue on Semantic Web for the

Life Sciences, 4(3):196-206.
10. Liu B, Dai Y, Li X, Lee WS and Yu Ph. 2003. Building Text Classifiers Using

Positive and Unlabeled Examples. Proceedings of the Third IEEE International

Conference on Data Mining, 179-188. http://www.cs.uic.edu/∼liub/LPU/LPU-
download.html

11. MeSH, Medical Subject Headings, http://www.nlm.nih.gov/mesh/
12. Mitra P and Wiederhold G. 2002. Resolving terminological heterogeneity in on-

tologies. Proceedings of the ECAI Workshop on Ontologies and Semantic Interop-

erability.
13. Prasad S, Peng Y and Finin T. 2002. Using Explicit Information To Map Between

Two Ontologies. Proceedings of the AAMAS Workshop on Ontologies in Agent Sys-

tems.
14. PubMed, http://www.ncbi.nlm.nih.gov/pubmed/
15. Shvaiko P and Euzenat J. 2005. A Survey of Schema-based Matching Approaches.

Journal on Data Semantics, IV:146-171.
16. Stumme G and Mädche A. 2001. FCA-Merge: Bottom-up merging of ontologies.

Proceedings of the 17th International Joint Conference on Artificial Intelligence,
225-230.

17. Takai-Igarashi T, Nadaoka Y and Kaminuma T. 1998. A Database for Cell Signal-
ing Networks. Journal of Computational Biology 5(4):747-754.

18. Tan H, Jakoniene V, Lambrix P, Aberg J and Shahmehri N. 2006. Alignment of
Biomedical Ontologies using Life Science Literature. Proceedings of the International

Workshop on Knowledge Discovery in Life Science Literature, LNBI 3886, 1-17.
19. Vapnik V. 1995. The Nature of Statistical Learning Theory. Springer.


