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Abstract. Understanding the role of a particular player, or set of play-
ers, in a team is an important tool for players, scouts, and managers,
as it can improve training, game adjustments and team construction.
In this paper, we propose a probabilistic method for quantifying player
roles in ice hockey that allows for a player to belong to different roles
with some probability. Using data from the 2021-2022 NHL season, we
analyze and group players into clusters. We show the use of the clusters
by an examination of the relationship between player role and contract,
as well as between role distribution in a team and team success in terms
of reaching the playoffs.

1 Introduction

Ice hockey is a fast-paced team sport that emphasizes both physical prowess and
technical ability [10]. However, the expectations and responsibilities of players
vary, not only based on playing position, but also on the role of the player. The
three traditional groups of positions in ice hockey are goaltenders, defenders, and
forwards [21], where the latter two positions are referred to as skaters. However,
the roles of the players are not always that clear cut. For instance, while defenders
are typically given the highest responsibility for preventing the opposition from
scoring, there are defenders who specialize in offensive contribution [21].

The benefits of categorizing players into roles are multi-fold. For team staff
it will allow the choices and design of rosters and line-ups to be more effective
in-game. Additionally, the construction of team rosters is also constrained from
an economic standpoint. In the National Hockey League (NHL), the salary cap
prevents a team from having salary expenditure above a fixed amount [6]. On
an individual level, if there is a disagreement in expectations of the player’s role
between a player and a team, the development of the player may be hampered
and the likelihood of attaining success is lowered for both parties [14].

Work on player roles has been performed in different sports (e.g. [1, 19]).
Prior work regarding player roles in ice hockey has typically utilized methods
that assign each player into a distinct cluster, e.g., using k-means, and used a
limited set of performance metrics, e.g., points, plus-minus, and penalty minutes,
which may leave some roles or role nuances undiscovered [21, 6]. In comparison,
the aim of this paper is to identify different player roles for skaters in ice hockey
using performance metrics that span more aspects of the game than previous
work, as well as a wider basis for discovering different player roles. Further,
players can be assigned to different roles to different degrees.



The contributions of this paper are as follows. First, we identify player roles
by using a larger set of performance metrics than previous work, allowing us to
discover new roles and/or key components in understanding a role, and by using
fuzzy clustering, allowing each player to belong to a role to some degree, rather
than assigning each player to a distinct role. Further, we show applications to
team constructions in terms of player contract comparison and team composi-
tion for successful and less successful teams. Our findings have value to players,
scouts, and managers.

The remainder of the paper is organized as follows. Sect. 2 describes the
data used for the analysis while Sect. 3 introduces the method including pre-
processing, principal component analysis and fuzzy clustering. Sect. 4 presents
and contextualizes the results. Further, we show two applications. In Sect. 5 we
compare players to players with similar roles with respect to their salaries and in
Sect. 6 we investigate the relationship between team composition based on roles
and reaching the playoffs. Limitations of the study are addressed and concluding
remarks are drawn in Sect. 7.

2 Data

We use data from 2021-2022 NHL regular season obtained from the official web-
site of the NHL1 and their public API, as well as salary data from CapFriendly2.
The data combines play-by-play data with shift data. From this data, a set of
46 variables was derived. Variables regarding goals, assists, and expected goals
are used to evaluate offensive quality and frequency among players. Plus-minus
(+/−), xGF, xGF%, and xGF% Relative serve as proxies for team performance
while the player is on the ice. Giveaways gives some measure of puck control,
while takeaways and blocks represent defensive contributions. Hits, net hits,
penalties, net penalties, penalty minutes, and number of penalties per group all
portray player aggression and physical play. The number of penalties per group
variables are also split into the penalties the player is given as well as the penal-
ties that are drawn, to distinguish between players who are the instigator and
the receiver. Offensive zone starts can depict if a player is more offensively or
defensively orientated. The time on ice variables capture how much ice time the
player has, while the coordinate variable describes where the player typically is
when performing each event. Finally, weight characterizes player physique, which
is used to gauge the physical dimension of players and its impact on player role.
Furthermore, the variables xGF%, and xGF% Relative serve as a proxy for puck
possession, and, as [22] explains, can negate the weaknesses of the traditional
plus-minus metric.

3 Method

The analysis consisted of preprocessing, dimensionality reduction and clustering.

1 https://www.NHL.com
2 https://www.capfriendly.com



In the Preprocessing step, a threshold was used of 200 minutes for mini-
mum number of minutes played during the season to exclude players who had
insufficient playing time. The number of defenders satisfying this requirement
was 263 (out of 345), and the number of forwards 485 (out of 659). We then
split the data into two subsets, one for defenders and one for forwards, to take
positional variations into consideration. Further, all3 performance-related vari-
ables with counts, i.e., not variables with percentages, were then standardized by
dividing by total time on the ice (TOI) and multiplied by 60 (number of minutes
in a game in regulation time). The variables were also normalized by subtracting
the variable’s mean and dividing by its corresponding standard deviation.

Next, principal component analysis (PCA) was utilized to perform dimen-
sionality reduction on the data, as clustering in high dimensions tends to
become ineffective [2]. The selection of the number of principal components was
primarily based on parallel analysis [13, 12] to reduce the probability that too
many components are kept. This selection method was shown to be among the
best performing in [17]. Based on experiments regarding the robustness for the
method [12] we ran 100,000 iterations using the 95th percentile as the basis for
selecting the number of components.

As we wanted to model that players can take on different roles to certain
degrees and that roles tend to have overlapping elements, we opted to use a
fuzzy clustering algorithm rather than the crisp clustering algorithms used
in previous work. In fuzzy clustering, the objects are assigned a probability of
belonging to a given cluster, where the probabilities of cluster membership of
an object sum to one. In this paper, we used the fuzzy c-means algorithm [9, 3].
The objective in fuzzy c-means algorithm is to create k fuzzy partitions among
a set of n objects from a data vector x by solving (1) until convergence.

min
U,C

Jm =

n∑
i=1

k∑
j=1

um
ijd

2(xi, cj) s.t. uij ∈ [0, 1],

k∑
j=1

uij = 1 (1)

In (1), d denotes the distance between object i and the j:th cluster centroid
cj . Moreover, uij is the degree of membership for object i to cluster j. The
hyperparameter m controls the degree of fuzziness, where a higher m leads to
a fuzzier solution [4]. It can also be shown that the fuzzy solution converges to
the crisp solution as m → 1 [15] and as m → ∞ then uij → 1

k .
There is no optimal m that suits all cases [4]. However, m ∈ [1.5, 3.0] tends

to give satisfactory results in general [4] or are typical values [24], m = 2 results
in compact and well separated clusters [9], but can also negatively affect the
clustering [8, 20]. The formula that we use for deciding m was proposed in [20].

f(n, p) = 1 +

(
1418

n
+ 22.05

)
d−2

(
12.33

n
+ 0.243

)
d−0.0406 log(n)−0.1134, (2)

which only depends on the number of objects n and the dimensions p.

3 Except xGF, which used 5 on 5 TOI



Similar to its crisp clustering counterpart, k-means, the fuzzy c-means al-
gorithm also requires that the number of clusters k are specified in advance. A
popular method for deciding how many clusters should be formed is to compare a
set of candidate k by considering one or more cluster validity indices [16]. In [23]
a large set of different fuzzy cluster validity indices are compared. Although no
singular validity index is optimal for all data, the modified partition coefficient
(MPC) was one of the indices that partitioned many of the investigated data
sets into the best number of clusters. The MPC is an extension of the partition
coefficient (PC) [3]: VPC = 1

n

∑n
i=1

∑k
j=1 u

2
ij ∈

[
1
k , 1

]
, PC exhibits a monotonic

evolution as k increases. As a result, [7] proposed the MPC, which is defined as:

VMPC = 1− k

k − 1
(1− VPC) ∈ [0, 1]. (3)

Similarly to the PC, MPC quantifies the extent of sharing between fuzzy subsets.
For both indices, the optimal number of clusters is given by the k that maximizes
the index [23].

Although some cluster validity indices are typically only considered for fuzzy
clustering, extensions of crisp clustering validity indices have also been proposed,
an example being a fuzzy extension of the silhouette width criterion, which is
frequently used in crisp clustering [5]. The silhouette of an object i is computed
by si = ai−bi

max{ai,bi} ∈ [−1, 1], where ai describes the average dissimilarity for

object i to all other objects belonging to the same crisp cluster, while bi is the
minimum average dissimilarity to the clusters where object i is not assigned [18].
Moreover, the crisp silhouette is defined as the average of the silhouette over all
objects. However, in the context of fuzzy clustering, the crisp silhouette does
not account for information regarding the degree of cluster overlap between two
clusters. To generalize this criterion to fuzzy clustering, the fuzzy silhouette (FS)
is defined by:

VFS =

∑n
i=1(uig − uig′)αsi∑n
i=1(uig − uig′)α

, (4)

where uig and uig′ represent the two largest elements from Ui [5] while α ≥ 0 is
a weighting coefficient that is commonly set to 1 [11]. One distinction between
the crisp and fuzzy silhouette is that the latter computes the weight for each
term, based on the two fuzzy clusters that are found to be the best match. The
optimal number of k is obtained by maximizing the index [5].

4 Results

Principal component analysis. Figure 1 shows the proportion of variance
explained by each component generated by the PCA for defenders and forwards,
respectively. The first six components are responsible for the majority of the
variance in the data, by providing an explanation of at least 50% of the variance.
However, the proportion of explained variance decreases rapidly, and in order to
explain, e.g., 90% of the variance, at least 26 and 27 components are required for
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Fig. 1: Proportion of variance explained for defenders and forwards

defenders and forwards, respectively. We used parallel analysis to determine the
set of components, which resulted in the selection of the first eight for defenders
and nine components for forwards. These choices explain approximately 55-57%
of the variance for each respective position group.

Fuzzy clustering. For obtaining values for m in fuzzy c-means we used Eq.
2 which resulted in 2.407 for defenders and 2.179 for forwards. For k we used Eqs.
3 and 4 to evaluate cluster cohesion. k = 2 produced the most distinct clusters
for defenders and forwards and less cohesive clusters were observed for values
larger than k = 3 (defenders) and k = 4 (forwards). In addition to these metrics,
the cluster assignment of players was also compared to domain knowledge to
guide the final choice. More specifically, the players who belong to the same
cluster should share the same style of play, regardless of if other possible roles,
i.e., clusters, have some overlap. As a result, k = 3 and k = 4 were chosen
for defenders and forwards, respectively, as they provide more cohesive clusters
while also allowing the number of roles to be as descriptive as possible.

Figure 2 shows the distribution of the probabilities representing cluster mem-
bership. We note that the densities of probabilities for defenders are more similar
than forwards, where cluster F4 has a high peak close to zero. Furthermore, clus-
ters D1 and D3 among defenders have similar distributions while cluster D2 is
more centered. For forwards, both clusters F1 and F3 appear to span the entire
range of possible values between zero and one, while clusters F2 and F4 have a
somewhat smaller range. Except for cluster D2 among defenders, the densities
reach a peak between 0 and 0.25.

To explore the variables characterizing each cluster, we retrieve the cluster
centroids, which are expressed in terms of principal components. We then obtain
approximate centroids corresponding to the original variables by computing an
inverse transform of the centroids and the selected principal components. More-
over, since the data was standardized to have unit variance prior to conducting
PCA we also invert this procedure by multiplying by the standard deviation and
adding the mean for each variable. Using this method, we then obtain approxi-
mate centroids on the original variable scales, expressed in per 60 minutes of ice
time (Table 1).

Among defenders, a higher probability to belong to cluster D1 is connected to
the most offensively skilled defenders, who assist their team’s attacking presence
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Fig. 2: Cluster membership degrees for defenders (left) and forwards (right).

by contributing more goals, assists, xG, and takeaways while also playing closer
to the opposition’s net. They also start in the offensive zone and in powerplay
situations, more often than defenders in the other clusters. In cluster D3 we find
the most physical defenders, as the number of fights, hits, and penalties are the
highest, alongside the largest average weight. Their offensive contribution, with
respect to xG, assist, and OZS% rank is lowest. They also garner the highest
share of time played while shorthanded, but lowest in overtime and while short-
handed. Finally, the third cluster, D2, contains the defensive specialists, where
goals, penalty minutes, and hits are at their lowest, in combination with playing
closer to their own net. They are also the shortest and lightest.

Regarding forwards, the players in cluster F4 can be described as physi-
cal players, with the highest weight in combination with most fights, hits, and
penalty minutes. The offensive production is second lowest, and they tend to
be preferred in defensive situations. The offensive specialists can be found in
cluster F3, where goals, assists, and xG are at their highest, which also can be
seen in their play closer to the opposition’s goal. Moreover, players in F3 also
draw the most non-physical penalties. These players also block the most shots. A
lower, but still second highest, offensive proficiency characterizes the players in
F2, alongside positive xGF% values. Finally, the two-way forwards reside in F1,
with skating that covers the entirety of the rink. Additionally, the lowest xG and
goals are created by these players, alongside the lowest +/− and xGF On. How-
ever, they rank the highest for time played while shorthanded and percentage of
starts in the defensive zone.



Table 1: Approximate cluster centroids of the original variables per 60 minutes.

Variable F1a F2b F3c F4d D1e D2f D3g

Goals 0.536 0.784 1.189 0.596 0.304 0.172 0.165
Assists 0.782 1.057 1.535 0.663 1.032 0.701 0.592
xG 0.649 0.823 1.023 0.711 0.271 0.187 0.174
xG difference -0.113 -0.039 0.166 -0.116 0.033 -0.015 -0.010
S% 0.090 0.108 0.143 0.093 0.059 0.041 0.040
+/− -0.532 -0.221 0.274 -0.370 0.164 -0.180 -0.097
xGF% 0.469 0.497 0.525 0.471 0.510 0.487 0.486
xGF%Rel -0.024 -0.001 0.024 -0.025 0.010 -0.008 -0.014
Giveaways 1.270 1.513 1.918 1.463 1.872 1.740 1.793
Takeaways 1.512 1.618 1.848 1.277 1.125 0.846 0.818
Blocks 2.137 1.747 1.441 2.220 3.737 4.214 4.672
Hits 6.122 4.668 3.023 12.749 3.427 4.229 6.279
Net hits 1.006 -0.202 -0.976 6.655 -0.874 -1.008 0.822
Fights 0.058 0.024 0.019 0.460 0.020 0.027 0.107
Penalties 0.691 0.661 0.642 2.007 0.629 0.573 0.929
Net penalties -0.029 -0.080 -0.207 0.456 0.207 0.187 0.398
Penalty minutes 3.591 3.299 3.368 11.621 2.310 2.145 3.796
Physical penalties drawn 0.145 0.120 0.127 0.833 0.094 0.101 0.228
Physical penalties on 0.148 0.117 0.119 0.921 0.091 0.093 0.244
Restraining penalties drawn 0.395 0.425 0.488 0.459 0.208 0.176 0.170
Restraining penalties on 0.330 0.333 0.309 0.529 0.340 0.321 0.440
Stick penalties drawn 0.162 0.182 0.217 0.189 0.113 0.102 0.119
Stick penalties on 0.151 0.157 0.159 0.318 0.148 0.117 0.180
OZS% 0.502 0.501 0.500 0.499 0.500 0.500 0.498
PP% 0.161 0.303 0.522 0.087 0.340 0.149 0.060
SH% 0.205 0.144 0.140 0.124 0.287 0.281 0.359
OT% 0.121 0.225 0.464 0.035 0.423 0.192 0.120
Median X Blocker -61.418 -61.600 -62.203 -60.421 -71.531 -71.816 -72.058
Median X Giveaway -9.247 7.064 22.694 -12.545 -54.876 -62.295 -64.705
Median X Hit taken 46.848 52.974 56.480 42.968 -79.173 -82.887 -83.735
Median X Hitter 50.035 53.585 45.437 63.619 -74.427 -75.385 -72.842
Median X Penalty drawn 38.681 48.730 55.660 29.017 -44.261 -51.050 -52.665
Median X Penalty -1.786 7.576 2.976 16.351 -66.892 -67.643 -68.462
Median X Shooter 69.933 70.348 69.813 70.270 51.044 49.973 48.561
Median X Takeaway 4.481 12.296 8.304 7.197 -43.224 -49.087 -48.726
Median Y Blocker 3.240 3.550 3.366 4.741 2.374 2.665 2.824
Median Y Giveaway 13.743 11.202 8.965 15.791 11.802 12.917 14.816
Median Y Hit taken 14.749 13.006 11.718 17.486 19.306 19.300 21.594
Median Y Hitter 12.296 12.299 12.062 11.374 19.586 20.391 23.384
Median Y Penalty drawn 10.509 8.171 4.680 6.694 11.419 12.341 10.447
Median Y Penalty 10.644 9.845 7.487 6.765 6.644 9.580 7.123
Median Y Shooter 1.855 1.680 1.872 1.931 8.742 11.059 13.364
Median Y Takeaway 8.543 7.226 5.514 11.394 14.730 16.196 16.270
Height (inches) 72.832 72.776 72.648 74.357 73.291 73.318 74.797
Weight (pounds) 196.294 195.941 195.925 211.659 199.538 198.207 208.955
a Examples: Nick Bonino, Colton Sissons, Barclay Goodrow
b Examples: Anze Kopitar, Jamie Benn, Tyler Seguin
c Examples: Sidney Crosby, Auston Matthews, Connor McDavid
d Examples: Tanner Jeannot, Ryan Reaves, Pat Maroon
e Examples: Adam Larsson, Rasmus Ristolainen, Radko Gudas
f Examples: Roman Josi, Victor Hedman, Cale Makar
g Examples: Ivan Provorov, Christopher Tanev, Brian Dumoulin



5 Comparing player salary

One use of the clusters is to compare similar players regarding their roles with re-
spect to salary. We compared each player’s cap hit to their ten nearest neighbors
to determine how the player’s cap hit compares to their peers. The definition
of neighbor in this context is based on selecting ten players with whom a given
player has the lowest Euclidean distance, where the distance is measured by con-
sidering the fuzzy cluster membership probabilities. Due to the very right-skewed
distributions of cap hit a logarithmic transformation was used. After comput-
ing the difference in cap hit and distance for a pair of players, the difference is
then divided by the player’s own cap hit and then considered as the basis for
determining if a player is underpaid or overpaid when considering the cap hit of
their neighbors. A summary of the fifteen most underpaid and overpaid players,
relative to their neighbors, per position can be seen in Table 2. In general, a
negative value of average difference indicates that a player is earning less than
similarly performing players, while a positive value suggests the opposite. The
value should not be interpreted objectively to determine whether a player has a
good or bad contract, but rather how their contract stands in relation to players
whose role was similar during the 2021-2022 season.

The results indicate that the most overpaid players, relative to their role,
are Oliver Ekman-Larsson, Sean Monahan, and Milan Lucic, while the players
who are deemed to be most underpaid are Oliver Kylington, Trevor Zegras, and
Mason Marchment. A shared attribute among many underpaid players is that
they are still on their entry-level contract, which is the first contract they sign
when entering the league. As such, their true value may not (yet) be seen in their
contract. However, some of the players that are suggested to be underpaid have
after the season signed more lucrative contracts, including e.g., Jason Robert-
son, Mason Marchment, Jack Hughes, and Adam Fox4. Moreover, some of the
overpaid players have since signed smaller contracts (Anton Str̊alman), retired
(Duncan Keith and P.K. Subban), or are no longer in the league (Alexander
Radulov and Danny DeKeyser). Interestingly, players who had a more unique
distribution of cluster membership degrees, such as Brady Tkachuk, were more
difficult to evaluate, as they can be quite distant to their nearest neighbors.
Consequently, they may be overrated by the model while in reality the contract
is not as bad as the model describes.

6 Team composition

Team composition can have a substantial impact on team performance [6]. There-
fore, we also investigate if there are any patterns between player roles and team
success for the given season. We first compute the minutes played for all players
per team and retain the 18 players with the highest playing time. The choice of
18 players is based on the roster size in the NHL, where 20 players, of whom
18 are skaters and 2 goaltenders, are allowed to be used in any given game.

4 https://www.capfriendly.com/transactions



Table 2: Most underpaid and overpaid players, relative to players with similar
cluster membership probabilities for each position.

(a) Underpaid defenders.

Rank Player Avg. Rel. Diff.
1 Oliver Kylington -1.060
2 Evan Bouchard -0.812
3 Adam Fox -0.750
4 Adam Boqvist -0.726
5 Erik Gustafsson -0.688
6 Anthony DeAngelo -0.663
7 Moritz Seider -0.654
8 Bowen Byram -0.636
9 Noah Dobson -0.636
10 Alexandre Carrier -0.584
11 Rasmus Sandin -0.565
12 Kale Clague -0.551
13 Calle Rosen -0.548
14 Gabriel Carlsson -0.541
15 Jaycob Megna -0.536

(b) Overpaid defenders.

Rank Player Avg. Rel. Diff.
1 Oliver Ekman-Larsson 0.484
2 Esa Lindell 0.416
3 Ryan McDonagh 0.410
4 Marc-Edouard Vlasic 0.402
5 Jeff Petry 0.382
6 Anton Str̊alman 0.380
7 Nick Leddy 0.375
8 T.J. Brodie 0.374
9 Darnell Nurse 0.367
10 Danny DeKeyser 0.357
11 P.K. Subban 0.352
12 Duncan Keith 0.352
13 Tyler Myers 0.348
14 Rasmus Ristolainen 0.348
15 Ryan Pulock 0.345

(c) Underpaid forwards.

Rank Player Avg. Rel. Diff.
1 Trevor Zegras -0.927
2 Mason Marchment -0.889
3 Jason Robertson -0.869
4 Joshua Norris -0.837
5 Jack Hughes -0.800
6 Matthew Boldy -0.795
7 Anton Lundell -0.779
8 Martin Necas -0.759
9 Tim Stützle -0.744
10 Michael Bunting -0.717
11 Carter Verhaeghe -0.715
12 Nathan Walker -0.703
13 Nick Suzuki -0.673
14 Cole Caufield -0.672
15 Lucas Raymond -0.655

(d) Overpaid forwards.

Rank Player Avg. Rel. Diff.
1 Sean Monahan 0.483
2 Milan Lucic 0.438
3 Brady Tkachuk 0.418
4 Jonathan Drouin 0.418
5 Antohy Beauvillier 0.397
6 Tyler Johnson 0.394
7 Jamie Benn 0.392
8 Kevin Hayes 0.387
9 Andrew Ladd 0.385
10 Alexander Radulov 0.374
11 Dustin Brown 0.373
12 Colton Sissons 0.371
13 Christian Dvorak 0.356
14 Nick Foligno 0.356
15 Niklas Bäckstrom 0.353

Thus, these 18 players can then represent a possible composition of players for
any given team and game. Except for the San Jose Sharks (8D / 10F) and the
Florida Panthers (5D / 13F), the team compositions either consisted of 7 de-
fenders and 11 forwards or 6 defenders and 12 forwards. Next, for a given team
we then sum the cluster probabilities among all players in each position group
(defenders and forwards) to obtain an estimate of how many players they have
in each role, which is then divided by the total number of players for the given
position to find the proportion of roles each team has. Thus, the sum of all for-
ward clusters sums to one and likewise for defenders. This is illustrated in Fig.
3, where a hierarchical clustering using Ward’s linkage method and Euclidean
distance groups the playoff and non-playoff teams by team composition.

An observation from the clustering is that a distinction between playoff and
non-playoff teams is apparent, as 14 out of 16 playoff teams were grouped to-
gether with the two exceptions being the New York Rangers and the Dallas Stars.
Similarly, the Anaheim Ducks and Vegas Golden Knights, who both missed the
playoffs, were clustered with the other playoff teams. In general, the playoff team



F1 F2 F3 F4 D1 D2 D3

Los Angeles Kings (99) 
Buffalo Sabres (75) 
Detroit Red Wings (74) 
Columbus Blue Jackets (81) 
Seattle Kraken (60) 
Arizona Coyotes (57) 
Dallas Stars (98) 
Winnipeg Jets (89) 
New Jersey Devils (63) 
Vancouver Canucks (92) 
Philadelphia Flyers (61) 
New York Islanders (84) 
New York Rangers (110) 
Ottawa Senators (73) 
Montréal Canadiens (55) 
Chicago Blackhawks (68) 
San Jose Sharks (77) 
Tampa Bay Lightning (110) 
Boston Bruins (107) 
Vegas Golden Knights (94) 
Calgary Flames (111) 
Anaheim Ducks (76) 
Nashville Predators (97) 
Edmonton Oilers (104) 
Washington Capitals (100) 
Minnesota Wild (113) 
Colorado Avalanche (119) 
Pittsburgh Penguins (103) 
Toronto Maple Leafs (115) 
St. Louis Blues (109) 
Carolina Hurricanes (116) 
Florida Panthers (122) 
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Fig. 3: Team composition and playoffs.

cluster had a higher proportion of forwards from role F3, while the proportions
of F1 and F2 were lower than the corresponding roles for the non-playoff cluster.
There did not seem to be any noticeable differences between the two hierarchical
clusters with respect to F4, as most teams had few players in this role. Among
defenders, the playoff teams tended to have higher proportions of role D1 and
fewer players of role D2 and D3. Conversely, D2 and D3 were more common
among the non-playoff teams, which consequently implies a lower proportion of
D1. For the incorrectly clustered teams some additional information may shed
light on how they were clustered. In particular, by contrasting the Dallas Stars
and Vegas Golden Knights we note a point differential of 4 in favor of Dallas,
while Dallas scored 29 fewer goals than Vegas. This could indicate that Vegas
was more offensively capable but less consistent. Both teams concede the same
number of goals. For the New York Rangers the offensive capabilities were league
average, as their goals scored ranked 16th out of 32 teams but they had 2nd fewest
goals conceded, which can be attributed to their goaltender Igor Shesterkin who
was voted the top goalie during the season. Finally, the Anaheim Ducks had an
even distribution of roles and thus may be closer in distance to many teams.

7 Conclusion

In this paper we have proposed a novel method for quantifying player roles in ice
hockey from a large set of performance indicators and player data using fuzzy c-
means. We also investigated the application of comparative contract evaluation
for the comparison of salary and player role, which can be used as a component in
decision-making regarding contract negotiation and player acquisition. Moreover,
an investigation of the relation between player roles and team success gave insight
into what roles may provide additional success for a team.

Some limitations are worth mentioning. The data upon which this study is
based is not bias-free and does not cover all events that occur in an ice hockey



game. This is particularly evident for evaluating the defensive contribution of
players. In regard to the contract evaluation, it is dependent on the chosen dis-
tance metric and number of neighbors. For instance, by choosing the maximum
number of neighbors the league’s highest paid players are deemed the most over-
rated. In addition, the highest paid players in the league cannot be underpaid, as
there is nobody or very few paid more than them. Lastly, there is the possibility
that the team that a player plays for may be a latent factor unaccounted for in
this analysis, since a player’s style of play may differ between teams and their
performance may also be affected.

An extension of this work could be to include variables not available in the
data used here that can further distinguish between player roles, e.g., passes and
zone entries. Our method could easily be extended to capture these new vari-
ables. Additionally, by analyzing multiple seasons the results would also highlight
changes in performance and role over a player’s career. This method can also be
generalized and applied to other leagues around the world, as the style of play
may differ between leagues.
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