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Abstract. Success in the life sciences depends on access to information in knowl-
edge bases and literature. Finding and extracting the relevant informationdepends
on a user’s domain knowledge and the knowledge of the search technology. In this
paper we present a system that helps users formulate queries and search the sci-
entific literature. The system coordinates ontologies, knowledge representation,
text mining and NLP techniques to generate relevant queries in responseto key-
word input from the user. Queries are presented in natural language,translated to
formal query syntax and issued to a knowledge base of scientific literature, docu-
ments or aligned document segments. We describe the components of thesystem
and exemplify using real-world examples.
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1 Introduction

Indispensable components of knowledge discovery infrastructures are online reposito-
ries of freely available unstructured text from the scientific literature. Information re-
trieval techniques are commonplace for the harvesting of documents while conversion
of document formats to make them amenable to text mining is anongoing irritation.
Text mining techniques are swiftly being deployed in industrial strength platforms al-
beit with the need for domain specific customization. Yet despite the improving profi-
ciency of text mining tools, text extracts are not always readily accessible to end users
without augmentation with semantic metadata.

At the same time existing search paradigms using keyword search over indexes of
text summaries continue to limit end users. Users do not knowhow to use tools that
allow them to formulate more expressive queries e.g. queries involving known relations
between entities. This amounts to a lack of knowledge of available search technology.



Nor do users know the limits of the domain coverage of a given resource that they are
querying, for example does PubMed include documents on wearable electronic devices
for personal health monitoring or is it beyond its scope. It would surely save users time
if they know the extent of the answers they can obtain from a given body of knowledge.
This amounts to a lack of knowledge of the domain.

In addition to the challenges posed by lack of semantic annotation to mined raw
text fragments and poor cognitive support for query composition, system developers are
faced with a lack of reusable domain specific metadata to facilitate semantic annotation.
Semantic annotation of text segments relies on the existence of curated domain-specific
controlled vocabularies and the mapping of semantic types in ontologies to canonical
named entities. Up until recently the use of sophisticated ’domain’ metadata was not
widely adopted for the indexing of text segments derived from scientific documents, in
part due to the dearth of suitably designed ontologies. Using domain ontologies scripted
in W3C standard ontology languages, rich in expressive powerand inference capabil-
ity, to annotate mined text segments makes possible an advanced range of literature
navigation and search capabilities.

In addition to the search of documents based on named entities or predicates using
keywords, relationships or class names as entry points, metadata specific graph mining
can further augment search tools. Moreover customized search applications can be read-
ily developed for a multitude of end user requirements including content recommenda-
tion. In this paper we describe infrastructure for navigating literature that provides to
users, through a natural language interface, (i) ontology driven query, (ii) context of
query terms, (iii) cross domain query which obviates the need for users to have knowl-
edge about query languages and underlying data sources, while providing an overview
of the scientific domain, connections between entities in the domain and a comprehen-
sive understanding of decisions in query strategy. Search results are linked to scientific
documents, text segments and ontology terms. Our contributions in this paper include
the definition of the theoretical foundations for this paradigm as well as a framework
for systems based on this paradigm. Further, we illustrate this paradigm with some ex-
amples.

The remainder of the paper is organized as follows. In section 2 we describe an
example scenario for how our new search paradigm can be used.The theoretical foun-
dations and a framework for systems following the paradigm are developed in sections
3 and 4, respectively. Further, we show an implementation ofthe framework in section
5 and use this implementation to revisit our example scenario (section 6). Related work
is given in section 7.

2 Example scenario

A user performs a keyword search, for example, ’lipid’. In current systems all docu-
ments containing the word ’lipid’ are retrieved. Some systems that implement ontology-
based querying, may also retrieve the documents that contain words representing sub-
concepts of lipid. The user, however, is not interested solely in retrieving these docu-
ments or abstracts, but also wants to investigate relationships between lipids and other
concepts. The problem is that she does not know what relevantquestions can be asked.



Consulting ontologies for properties can provide this knowledge. For instance, in Lipid
Ontology ’lipid’ is related to a number of other concepts, such as to ’protein’ via the
relation ’interacts with’ and to diseases based on the relation ’implicated in’. The user
would want the system to describe the query ’which proteins interact with lipids that
are implicated in a disease ?’ and make this query available,along with other relevant
lipid related queries, to the user in the form of a natural language query. In addition,
the user would want to be able to access the information and context relevant to one or
more keywords. This context would include connections between the keywords (possi-
bly via other terms) as well as terms that are related to the keywords. Again, ontologies
can provide for a context by investigating the neighborhoods and connections of the
keywords to other terms.

We may even need multiple ontologies, for instance, to find the answer to the query
’Which lipids interact with proteins (from the lipid ontology) that are involved in signal
processing (proteins involved in signal processing - from the signal ontology) and are
implicated in causing a disease (implicatedin from the lipid ontology).

Moreover the ontologies can be instantiated with named entities extracted from sci-
entific documents. This can generate the response that certain oxidized polyunsaturated
fatty acids are involved in phosphorylating p53, which is involved in apoptosis, and im-
plicated in ovarian cancer which is derived from one or more text segments instantiated
to one or more ontologies. Furthermore because of the addition of expressive literature
metadata to the ontologies, querying for provenance information (documents / journals
/ authors in which the information was contained) is made possible. We could ask nat-
ural language queries like ’In which documents have lipids interacting with signaling
proteins, and known to cause disease, been found ?’

3 Theoretical foundations

One of the main foundations of our paradigm is the use of ontologies. Intuitively, on-
tologies (e.g. [12]) can be seen as defining the basic terms and relations of a domain of
interest, as well as the rules for combining these terms and relations. In our approach
ontologies are used to guide the user in asking relevant questions. The intuition is that
the ontologies define the domain knowledge including our knowledge about the connec-
tions between different terms in the domain. Therefore, therelevant queries regarding
a set of terms are the ones for which the terms are connected inthe ontology.1 In this
section we formalize the notion of ’relevant queries’.

3.1 Slices

Many ontologies in the life sciences can be represented by graphs where the concepts
are represented as nodes and the relations (including is-a relations) are represented as

1 If the terms are not connected, then they are not useful for guiding theuser in asking relevant
questions based on the ontology. However, in that case a sub-set of thequery terms may still
be relevant. Also, if a co-occurrence of terms (even without relations)is useful for the user,
then traditional search approaches can be used.



edges2. In this case, given an ontology, a relevant query includinga number of concepts
and relations from the ontology can be seen as a connected sub-graph of the ontology
that includes the nodes representing the given concepts andthe edges representing the
given relations. We define this formally using the notion ofquery graph. Further, the
set of query graphs including a number of concepts and relations from the ontology is
called aslice.3

Definition 1 Given a graph G = (N,E) where N is the set of nodes in G and E the set of
edges, and a set of nodes C⊂ N and a set of edges R⊂ E, aquery graph in G based
on C and R is defined as a connected sub-graph G’ = (N’,E’) of G where C⊂ N’ and
R⊂ E’.

Definition 2 Given a graph G = (N,E) where N is the set of nodes in G and E the set of
edges, and a set of nodes C⊂ N and a set of vertices R⊂ E, a slice in G based on C
and R is defined as the set of query graphs in G based on C and R.

As an example, consider the ontology graph in figure 1 and assume query terms
related to nodes 2 and 6. Then there are several relevant queries i.e. query graphs in this
ontology based on nodes 2 and 6. For instance, the sub-graph containing nodes 2, 1, 3
and 6 and edges e1, e2 and e5 is a query graph based on nodes 2 and6. Another query
graph consists of nodes 2, 1, 4 and 6 and edges e1, e3 and e6. A slice based on nodes 2
and 6 is then the set of all possible query graphs based on nodes 2 and 6.
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Fig. 1. Ontologies and query graphs.

There are a number of special cases of this definition. (i) Whentwo or more con-
cepts, but no relations are given (R =∅), in this case we are looking for relevant queries
containing given concepts only. While most keyword search algorithms would try to

2 We assume undirected edges. An edge represents a relation and its inverse.
3 For instantiated ontologies these definitions can be extended to also handle instances, by al-

lowing nodes to represent instances. In our implementation (see section 5) we do allow queries
to the knowledge base (see section 4) that involve instances.



find documents in which multiple terms co-occur, in this casethere is an extra require-
ment that there are connections, albeit un-specified, between the search terms in the
ontology, thereby augmenting the relevance of the returneddocuments; (ii) Where only
a single concept and no relations are provided, in this case aslice represents all the rel-
evant queries in which the query term features. Instead of just returning all documents
containing the query term, this approach allows a user to browse the ontological envi-
ronment of the term. It also guides the user in asking more specific questions, thereby
removing many of the irrelevant documents.

3.2 Aligned ontology slices

In cases where we want to retrieve information that covers different but related domains
or when we want to integrate information from different views on one domain, one
ontology does not suffice. Queries will comprise of terms from different overlapping
ontologies. Therefore an alignment i.e. a set of mappings between terms of overlapping
ontologies, must be available. In the biomedical domain, for instance the Bioportal
(bioportal.bioontology.org, [15]) repository of ontologies stores mappings between dif-
ferent ontologies and this can be used. If an alignment between the used ontologies is
unavailable ontology alignment systems (e.g. overviews in[11, 17, 14, 9], the ontology
matching book [5], and the ontology matching web site at http://www.ontologymatching-
.org/) may be used for finding mappings.

When an alignment between the ontologies is given, we can dealwith a query in-
cluding terms from overlapping ontologies by connecting the part of a query using the
terms in one ontology to the part of the query using the terms in another ontology
through a mapping in the alignment.

In the definitions below, we first define an alignment in terms of a graph and then
define query graphs with parts in two different ontologies.

Definition 3 An alignment between G1 = (N1,E1) and G2 = (N2,E2) is a set of map-
pings between nodes in G1 and nodes in G2. The alignment is represented by a graph
(NA,EA) such that
(i) NA ⊂ N1∪ N2,
(ii) each edge in EA connects a node in N1∩ NA with a node in N2∩ NA,
and (iii) each node in NA is connected to another node in NA through an edge in EA.

The definition states that an alignment (set of mappings) is represented by a graph
such that (i) the alignment graph uses only nodes from the source ontologies, (ii) an
edge in the alignment graph represents a mapping between a node in the first ontology
and a node in the second ontology, and (iii) every node in the alignment graph should
participate in a mapping.

Definition 4 Let G1 = (N1,E1) and G1Q = (NQ1,EQ1) be a query graph in G1 based
on C1 and R1. Let G2 = (N2,E2) and G2Q = (NQ2,EQ2) be a query graph in G2 based
on C2 and R2. Let A= (NA, EA) be an alignment between G1 and G2. An aligned query
graph based on G1Q and G2Q given Ais a connected graph G = (N, E) such that
(i) N ⊂ N1∪ N2, E⊂ E1∪ E2∪ EA,



(ii) NQ1 ⊂ N, EQ1⊂ E, NQ2⊂ N, EQ2⊂ E,
and (iii) ∃ n1 ∈ NQ1, n2 ∈ NQ2, n1a ∈ N1∩ NA∩ N, n2a ∈ N2∩ NA∩ N, ea ∈ EA
such that: there is a path in G∩ G1 from n1 to n1a and a path from n2a to n2 in G ∩

G2, and ea is an edge between n1a and n2a in G∩ A.

The definition states that: (i) the nodes in the aligned querygraph belong to the
source ontologies, and the edges in the aligned query graph belong to the source on-
tologies or to the alignment, (ii) the nodes and edges in the original query graphs are
included in the aligned query graph, and (iii) the original query graphs are connected
by at least one path going through a mapping in the alignment.
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Fig. 2. Aligned ontologies and aligned query graphs.

As an example, consider the ontology graphs and alignment infigure 2. The align-
ment between the two ontologies is given by the mappings 4-E and 7-F. The query
terms are represented by nodes 2, 6, A and D. The sub-graph containing nodes 2, 1,
3, and 6 and edges e11, e12 and e15 is a query graph based on nodes 2 and 6 in the
first ontology. The sub-graph containing nodes A, B and D and edges e21 and e24 is a
query graph based on nodes A and D in the second ontology. We can connect these two
query graphs via the path containing the nodes 6, 4, E and B andthe edges e16, ea1 and
e23. One part of this graph is included in the first ontology, another part in the second
ontology and a third part in the alignment. Therefore, one possible aligned query graph
includes the nodes 2, 1, 3, 6, 4, E, B, A and D and the edges e11, e12, e15, e16, ea1,
e23, e21 and e24. (Another possible aligned query graph may make use of the mapping
7-D.)

An aligned slice represents a set of aligned query graphs.

Definition 5 Let S1 be a slice in G1 = (N1,E1) based on C1 and R1 and S2 be a slice
in G2 = (N2,E2) based on C2 and R2. Let A= (NA, EA) be an alignment between G1
and G2. Analigned slice for S1 and S2 given Ais defined as the set of aligned query
graphs based on the query graphs in S1 and S2 given A.



4 Framework

Using the theoretical foundations in section 3 we now proceed to define a framework for
systems supporting our new search paradigm for literature document bases (see figure
3). As input the user gives a number of query terms. A first output is a list of suggestions
for queries in natural language that are relevant with respect to the query terms and the
ontologies. These queries can then be run and results are returned. A result can be in the
form of knowledge extracted from the documents in the literature base or as documents
or document segments.

Knowledge
Base

Literature

Ontologies

Alignments

and

USER

Query Formulator

Knowledge Base
Instantiator

Slice Generator

Slice Aligner

Natural Language
Query generator

Fig. 3.Framework.

External Resources.The first external resource is theliterature document base.
It contains the documents that can be searched. The second external resource is an
ontology and ontology alignment repository. It contains ontologies in which the query
terms can be found as well as established alignments betweenthe ontologies.

Computed Resources.The knowledge basecontains instantiated ontologies. The
instantiation represents two kinds of information. First,knowledge, in the form of
named entities and relations from the literature, is extracted and normalised to canoni-
cal names - from which concept instances and relation instances are generated. This a
form of semantic annotation. Further, the ontology instances are connected to instances
of provenance documents and document segments in which theyoccur.

Process - Knowledge base Instantiation.Theknowledge base instantiatorcreates
the knowledge base with knowledge extracted from the literature and connections of the



ontology terms to documents or document segments. This component relies on different
sub-components such as entity recognizers and text mining modules.

Process - Slice Generation and Alignment.The user drives the generation of slices
by providing one or more query terms. For each of the ontologies in the ontology repos-
itory, theslice generatorcomputes, given the query terms included in the ontology, a
slice representing the relevant queries that are possible using the provided query terms
and the ontology. The resulting slices are given to theslice aligner. This component
generates aligned slices, representing queries involvingterms from different ontologies,
using the slices and the alignments in the repository. (If the query terms only occur in
one ontology, no alignment is needed and this components just returns the slice.)

Translation - Slice to Query.The (aligned) slices represent sets of queries. Thenat-
ural language query generatortranslates these queries to queries in human understand-
able natural language text. This component may have different sub-components such as
generation, aggregation and surface realization / grammarchecking of the query. These
natural language queries are built from the labels of edges and nodes in the slices and
presented to the user. Slices are also translated to the equivalent formal query, in syntax
of the query language suitable for querying the knowledge base.

Query. When the user chooses a natural language query to be run, thequery for-
mulator issues the preformulated query representing the slice and the natural language
query to the knowledge base and results are returned to the user.

5 Implementation

In this section we describe our current implementation of the framework and use the
scenario from section 2 to exemplify the instantiation of the different components.

Literature document base.The literature document base used in our scenario was
generated from a collection of 7498 PubMed abstracts that was identified by manual
curation to be relevant to the subject of Ovarian Cancer (OC). Within this collection we
found 683 papers that had lipid names from which 241 full papers were downloadable.
Retrieved research papers were converted from their original formats to ascii text.

Ontologies.The ontologies that we used for this scenario are lipid ontology [2]
and our version of the signal ontology. An alignment betweenthese ontologies was
generated using the ontology alignment system SAMBO [11].

Knowledge base.As representation language for the knowledge base we used OWL
and adopted the conceptualization developed in our previous work [2] in which a Litera-
ture Specification of document metadata was introduced to the Lipid Conceptualization
making it possible to instantiate simple axioms such as Lipid Occursin Sentence. The
knowledge base instances are generated from full texts provided by the content acquisi-
tion engine using the BioText toolkit (http://datam.i2r.a-star.edu.sg/∼kanagasa/BioText/).

The instantiation of the knowledge base comprises of three stages: concept in-
stance generation, property instance generation, and population of instances. Concept
instances are generated by first extracting the name entities from the texts and then nor-
malizing to canonical names and grounding them to the ontology concepts. We used a
gazetteer that processes documents and recognizes entities by matching term dictionar-
ies against the tokens of processed text, tagging the terms found [10].



We used the lipid name dictionary described in [2] which was acustom synthesis of
terms from a Lipid Data Warehouse that contains lipid names from LIPIDMAPS, Lipid-
Bank and KEGG, IUPAC names, and optionally broad synonyms and exact synonyms.
The manually curated Protein name list from Swiss-Prot (http://au.expasy.org/sprot/)
was used for the protein name dictionary. A disease name listwas created from the Dis-
ease Ontology of the Centre for Genetic Medicine (http://diseaseontology.sourceforge.net).

To evaluate the performance of our named entity/concept recognition we constructed
a gold standard corpus of 10 full-texts papers related to theapoptosis (which is central to
understanding ovarian cancer). We extracted 119 sentencesand tagged the mentions of
Protein name and Disease name. In these sentences we annotated all valid mentions of
the two concepts and built the corpus. To evaluate performance of named entity/concept
recognition a corpus without the concept annotations was passed to our text mining en-
gine and the concepts recognized. Our system was evaluated in terms of precision and
recall. Precision was defined as the fraction of correct concepts recognized over the
total number of concepts output, and recall was defined as thefraction of concepts
recognized among all correct concepts. The evaluation of entity recognition, in Table 1,
shows that our text mining achieved performance comparableto that of the state-of-the-
art dictionary-based approaches. In our future work, we plan to make use of advanced
entity recognition techniques, e.g. fuzzy term matching and co-reference resolution, and
also train our system on larger corpora, to address these issues.

Named Entities Mentions PrecisionRecall
TargetReturned

Disease 32 37 0.54 0.62
Lipid 58 25 0.96 0.47
Protein 269 181 0.76 0.51
Micro average 0.75 0.51

Table 1.Precision and recall of named entity recognition

Our normalization and grounding strategy is as follows. Protein names were nor-
malized to the canonical names entry in Swiss-Prot. Object property and Datatype prop-
erty instances are generated separately. From the Lipid, Protein and Disease instances,
four types of relation pairs namely Lipid-Protein, Lipid-Disease, Protein-Protein, and
Protein-Disease are extracted. For relation detection, weadopt a constraint-based asso-
ciation mining approach whereby two entities are said to be related if they co-occur in
a sentence and satisfy a set of specified rules. This approachis detailed in [2].

The concept instances are instantiated to the respective ontology classes (as tagged
by the gazetteer), the Object Property instances to the respective Object Properties and
the Datatype property instances to the respective Datatypeproperties. This was auto-
mated using a custom script developed with the OWL programming framework, JENA
API (http://jena.sourceforge.net/ ) for this purpose.

Slices.Given a number of query terms matching ontology terms from one ontology,
the query graphs (slices) based on these terms are generated. For efficiency reasons our



algorithm generates multiple query graphs at the same time,thereby computing slices
immediately. Slices can be represented by graphs as well: a slice can be represented by
Gs=(Ns,Es) where Ns is the set of all nodes in all query graphs in the slice and Es is
the set of all edges in all query graphs in the slice.

We have currently focused on slices based on concepts, i.e. all query terms repre-
sent concepts and not relations. Our algorithm, which is an extension of the algorithm
proposed in [1], starts from the given concepts and traverses the ontology graph in a
depth-first manner to find paths between the given concepts. These paths can be put
together to find the slices.

Slice alignment.Our implemented algorithm computes an important sub-set ofthe
aligned slice as defined in definition 5. As input we use two slices represented as graphs,
the original ontologies as well as an alignment. The algorithm generates the shortest
paths from the concepts in the first ontology on which the firstslice is based, to con-
cepts in the second ontology on which the second slice is based, via concepts in the
alignment. This heuristic implements the intuition that the shorter paths represent closer
relationships between the concepts than longer paths. For instance, in figure 2, possible
shortest paths would be 6 - e16 - 4 - ea1 - E - e23 - B - e21 - A, 6 - e16- 4 - ea1 - E - e23
- B - e24 - D, and 6 - e16 - 4 - e17 - 7 - ea2 - F - e26 - D. The original slices together
with these shortest paths constitute our result.

Natural language query generation.The aligned slice is then translated into natu-
ral language (see [1] for details). For each query graph contained in the aligned slice
we generate a natural language query for consumption by domain experts. The input
to the natural language query generation (NLQG) sub-systemare aligned slices which
are represented by as set of triples. Each triple representsan edge and its end-nodes
in the aligned slice:<ARG1, PREDICATE, ARG2> represents the concepts ARG1
and ARG2 that are related to each other by the relation PREDICATE. To translate a
triple into natural language, we primarily use a template-based NLQG methodology.
In this approach, the domain-specific knowledge and language-specific knowledge re-
quired for NLG are encoded as rule templates. The rule templates were generated using
a rule learning algorithm. Given a triple, a content determination module recognizes the
domain entities in the triples and extracts them for use as content terms. Upper level
entities such as concepts and relations are identified and extracted directly via a rule
template. For extracting the lower level entities, e.g. theverb and noun in an object
property, we employ the BioText toolkit to perform part of speech tagging and term
extraction. This is done as a preprocessing of the triples and the results are passed to
a rule matching engine. The rule matching engine applies thebest matching rule and
retrieves a corresponding template to generate the naturallanguage query. When two or
more text components are generated they are aggregated to generate a compact query.
We employ a set of aggregation patterns that are applied recursively to combine two
or more queries sharing the same entity as a conjunction, as well as a generalized ag-
gregation pattern that employs property hierarchy for combination. In the final step the
query statement is checked after after sentence aggregation for grammar and generates
a human understandable query. We employ an open source grammar checker, called
LanguageTool (http://www.languagetool.org/), which is part of the OpenOffice suite.
We added several rules to enrich the grammar verification checker.



Query result.After (aligned) slices are generated, in addition to being translated
into natural language for consumption by end users, their graph triples are formulated
into the corresponding syntax of the A-box query language (nRQL) of the reasoning
engine RACER [7]. (For details we refer to [1].) nRQL is an A-box query language
for the description logicALCQHIR+(D−). All queries written in natural language
have a corresponding syntactic version that is issued to theknowledge base. A range of
queries can be formulated based on the slices generated by user input. Complex queries
are formulated based on multiple triples found in a graph andtheir connection is based
on whether each set of domain and range in different predicates has similar properties.
At least one triple and an optional set of domain and range in arole assertion query
are necessary. In addition the specification of joins between multiple triples, represent-
ing conjunction of predicates, unknowns (variables) and constraints is necessary. For
instance, the query graph in figure 4 represents the natural language query ’Which pro-
teins interact with lipids that are implicated in a disease?’. The nRQL format of the
query is:

(RETRIEVE (?X ?Y ?Z)
(AND (?X Protein) (?Y Lipid) (?Z Disease)

(?X ?Y Interacts_with)
(?Y ?Z Implicated_in)))

Interacts_with Implicated_in

DiseaseProtein Lipid

Fig. 4. Query graph example.

Our implemented system also allows queries to the knowledgebase that involve
instances. For instance, if we replace variable ?Z in the query above with the instance
Ovarian Cancer, then this constrains the retrieval of all the instances of Protein to those
that interact with a Lipid instance that is implicated in Ovarian Cancer.

6 Example scenario revisited

Given the Lipid ontology and our version of signal ontology,and the literature base as
described in section 5, our system has instantiated a knowledge base. Upon a keyword
query by the user for ’lipid’, aligned slices are generated involving the lipid concept.
The aligned query graphs in the slices are translated to natural language as well as to
formal queries. The system then presents relevant queries involving lipid to the user. Ex-
amples of such queries are shown in figure 5. The user may learnabout the ontological
environment of lipid through the generated queries.



Fig. 5.Generated queries.



Fig. 6. Query and answer.



The user may be interested in the query ’Which lipid is implicated in a disease and
interacts with proteins involved in signal pathways?’ Running this query will result in a
nRQL query to the knowledge base and an answer is returned: the lipid unsaturated fatty
acids interacts with the protein p53, which is involved in apoptosis, and is implicated in
Ovarian Cancer (see figure 6).

7 Related Work

We are not aware of any other work that fully deals with the problems of lack of knowl-
edge of the domain and lack of knowledge of search technology. There are a number of
systems that do tackle parts of these problems.

There exist very few systems that allow natural language querying. An example is
askMEDLINE [6] that allows a user to pose a query in natural language and essentially
uses the MeSH terms and other eligible terms in the natural language query to query
PubMed using PubMed Entrez’ E-Utilities. Although this helps the user with the lack
of knowledge of available search technology, it does not alleviate the problem of lack
of knowledge of the domain.

To aid the user in query formulation, [2] designed and deployed an interactive graph-
ical query tool, Knowlegator, for the construction of queries using axioms provided in
the ontology. Manipulation of these ’query atoms’ from the OWL-DL ontology invokes
A-box queries to a reasoner and subsequent ontology interrogation. The benefits of this
paradigm include the ease of use and extensibility of query complexity far beyond the
typical keyword searches and to a degree of query complexitysuitable for domain ex-
perts who ask complex questions but who have limited agilitywith query syntax of
various query languages. [10] extended this approach by taking advantage of transitive
properties in populated ontologies to rebuild apoptosis pathways using protein entities
mined from texts about apoptosis. A graph mining algorithm with graphical support for,
(i) the selection of two pathway endpoints and (ii) rendering of pathways, was devel-
oped on top of the existing query tool, Knowlegator. It was also further customized to
support bulk queries and rendering for all lipid-protein interactions relevant to a chosen
pathway.

There are a number of systems that use ontologies to organizesearch results and
allow a user to browse the literature via the ontology terms.For instance, GoPubMed [4]
uses ontologies to index PubMed abstracts. Upon a keyword query, for each ontology
term the number of PubMed abstracts containing the term or one of its descendants is
computed. The results can then be browsed using the ontology. These systems alleviate
the lack of knowledge of the domain problem, as the user can browse the results based
on co-occurrence of the query term with ontology terms. However, it is still up to the
user to decide whether this co-occurence is relevant or accidental. Also, these systems
usually do not deal with multiple ontologies and their overlap.

There are a number of systems that use text mining and extractknowledge from
documents based on ontologies. For instance, upon a keywordquery, EBIMed [16]
retrieves abstracts from Medline and finds sentences that contain biomedical terminol-
ogy in the result. The terminology comes from public resources. The sentences and
terminology are used to create overview tables representing associations between the



different terms. Textpresso [13] splits literature documents into sentences and words
and labels them using ontology terms. The allowed queries are and/or combinations of
keywords and labels.

Natural language generation technology is a mature technology dating back 10 years
and is now being deployed in commercial settings, such as forproviding query options
to electronic health records [8]. Recently there have been initiatives aiming to produce
textual summaries from Semantic Web ontologies. In the mainthey address how exist-
ing NLG tools can be adapted to take Semantic Web ontologies as their input. In their
chapter [3] Bontcheva and Davis describe limitations of three such systems and high-
light that quality of the generated text is highly dependenton the ontological constructs
in the ontology and how their semantics is interpreted and rendered by the NLG sys-
tem. Moreover before addressing knowledge transfer and NLGissues a re-assessment
of appropriate metrics for evaluation may be required.

8 Conclusion

In this paper we have tackled the problems of lack of knowledge of available search
technology and lack of knowledge of domain that users experience when they search for
literature relevant to their task. We have proposed a framework that supports a search
paradigm that uses (multiple) ontologies to generate relevant queries based on some
keywords, translates these into natural language and allows a user via these natural
language queries to query an instantiated knowledge base generated from the literature
and the ontologies. We have defined the technical foundations and have described an
implementation of the framework and its use.

There are still a number of issues that need further investigation. As our imple-
mented algorithms do not compute the full slices or aligned slices, but use heuristics
(e.g. shortest path for aligned slices), we want to investigate the influence of these as
well as other heuristics. There is a trade-off between completeness (generating all pos-
sible queries) and information overload (showing all possible queries may not be in-
structive or may even be confusing for the user). Another interesting issue is whether it
is possible to define a useful relevance measure for the generated queries, which could
be used to rank the queries before showing them to the user. Further, as there is a con-
nection between a slice generated from a set of keywords and aslice generated by a
sub-set of this set of keywords, this connection could be used to optimize the process or
to suggest the user possible interesting generalizations or specializations of the topic.
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