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Abstract
In this paper we consider the problem of repairing miss-
ing is-a relations in ontologies. We formalize the prob-
lem as a generalized TBox abduction problem (GTAP).
Based on this abduction framework, we present com-
plexity results for the existence, relevance and necessity
decision problems for the GTAP with and without some
specific preference relations for ontologies that can be
represented using a member of the EL family of de-
scription logics. Further, we present an algorithm for
finding solutions, a system as well as experiments.

This is an extended version of (Wei-Kleiner, Dragisic,
and Lambrix 2014). For ease of reading we use EL exam-
ples in the introduction and the description of the abduc-
tion framework, while (Wei-Kleiner, Dragisic, and Lam-
brix 2014) uses EL++ examples.

Introduction
Abduction is a reasoning method to generate explanations
for observed symptoms and manifestations. When the appli-
cation domain is described by a logical theory, it is called
logic-based abduction (Eiter and Gottlob 1995). Logic-
based abduction is widely applied in diagnosis, planning,
and database updates (Kakas and Mancarella 1990), among
others. Provenances in databases (Cheney, Chiticariu, and
Tan 2009), specifically the why provenance, is an abduction
process, in which information about the witnesses to the an-
swer set of a query is provided. Recently, logic-based abduc-
tion has provided the theoretical ground for the application
fields of knowledge base and ontology debugging and re-
pairing, in which inconsistent and incomplete information of
the knowledge base or ontology is discovered and repaired
(Section Related Work).

In this paper, we consider ontologies that are respre-
sented by description logics (DLs), more specifically rep-
resented by TBoxes in the EL family, which consist of
axioms such as Carditis v Fracture, with the intended
meaning that Carditis is a Fracture, where Carditis
and Fracture are concepts and the relationship is an is-
a relation. (For detailed syntax see Section Preliminar-
ies.) A set of such terminological axioms is a TBox.
The EL family of description logics is highly relevant
for the representation of lightweight ontologies. For in-
stance, several of the major ontologies in the biomedical

domain, e.g., SNOMED (http://www.ihtsdo.org/snomed-ct/)
and Gene Ontology (Ashburner et al. 2000), can be repre-
sented in EL or small extensions thereof (Baader, Brandt,
and Lutz 2005).

Defects in ontologies can take different forms (e.g.
(Kalyanpur et al. 2006b)). The more interesting and se-
vere defects are the modeling defects which require domain
knowledge to detect and resolve, and semantic defects such
as unsatisfiable concepts and inconsistent ontologies. In this
paper we tackle a particular kind of modeling defects: de-
fects in the is-a structure in ontologies. In addition to its
importance for the correct modeling of a domain, the struc-
tural information in ontologies is also important in applica-
tions. Missing is-a structure leads to valid conclusions to be
missed and therefore affects the quality of the application
results. For instance, querying a ontology with missing is-
a relations leads to incomplete results (according to the in-
tended model) for the queries (e.g. (Lambrix and Liu 2013)).
Debugging defects in ontologies consists of two phases, de-
tection and repair. In this paper we assume that the detec-
tion phase has been performed and focus on the repairing
phase. There are many approaches to detect missing is-a re-
lations (see Section Related Work as well as Section Experi-
ments). However, in general, these approaches do not detect
all missing is-a relations and in several cases even only few.
Therefore, we assume that we have obtained a set of missing
is-a relations for a given ontology (but not necessarily all).
In the case where our set of missing is-a relations contains
all missing is-a relations, the repairing phase is easy. We just
add all missing is-a relations to the ontology and a reasoner
can compute all logical consequences. However, when the
set of missing is-a relations does not contain all missing is-a
relations - and this is the common case - there are different
ways to repair the ontology. The easiest way is still to just
add the missing is-a relations to the ontology. For instance,
T in Figure 1 represents a small ontology inspired by Galen
ontology (http://www.co-ode.org/galen/), that is relevant for
our discussions. Assume that we have detected that Endo-
carditis v PathologicalPhenomenon and GranulomaProcess
v NonNormalProcess are missing is-a relations (M in Fig-
ure 1). Obviously, adding these relations to the ontology will
repair the missing is-a structure. However, there are other
more interesting possibilities. For instance, adding Carditis
v CardioVascularDisease and GranulomaProcess v Patho-



logicalProcess also repairs the missing is-a structure. Fur-
ther, these is-a relations are correct according to the domain
and constitute new is-a relations (e.g. Carditis v CardioVas-
cularDisease) that were not derivable from the ontology and
not originally detected by the detection algorithm.1

We also note that from a logical point of view, adding
Carditis v Fracture and GranulomaProcess v NonNormal-
Process also repairs the missing is-a structure. However,
from the point of view of the domain, this solution is not
correct. Therefore, as for all approaches for debugging mod-
eling defects, a domain expert needs to validate the logical
solutions.

The above example shows that the framework of TBox
abduction defined in (Elsenbroich, Kutz, and Sattler 2006)
catches the basic semantics of repairing is-a relations. Let
T denote the current ontology based on a certain formal-
ism. The set of identified missing is-a relations M (atomic
concept subsumptions) represents the manifestation. To re-
pair the ontology, the ontology should be extended with a
set S of atomic concept subsumptions (repair) such that the
extended ontology is consistent and the missing is-a rela-
tions in M are derivable from the extended ontology. That
is, T ∪ S |= M holds.

However, there are several properties of ontology repair-
ing of missing is-a relations which distinguish themselves
from the classic abduction framework. We summarize them
as P1 and P2, and give the intuition behind them.

P1: Oracle function Or instead of hypothesis H .
In the classic abduction framework there is a hypothesis

H from which the solution S is chosen such that S ⊆ H
holds. The corresponding component is the set of atomic
concept subsumptions that should be correct according to
the domain. In general, this set is not known beforehand.
In the repairing scenario, a domain expert decides whether
an atomic concept subsumption is correct according to the
domain, and can return true or false like an oracle. Con-
sequently, we formulate this function as Or that when given
an atomic concept subsumption, returns true or false. It
is then required that for every atomic concept subsumption
s ∈ S, we have that Or(s) = true.

P2: Informativeness as one of the preference criteria.
Ontology repairing of missing is-a relations follows dif-

ferent preference criteria from the logic-based abduction
framework, in the sense that a more informative solution
is preferred to a less informative one. Note that the infor-
mativeness is a measurement for how much information the
added subsumptions (i.e. solution S) can derive. (See Def-
inition 2 for the precise formulation.) This is in contrast to
the criteria of minimality (e.g. subset minimality, cardinal-
ity minimality) from the abduction framework. In principle
this difference on the preference stems from the original pur-
pose of the two formalisms. The abduction framework is of-
ten used for diagnostic scenarios, thus the essential goal is to
confine the cause of the problem as small as possible. Whilst

1Therefore, the approach in this paper can also be seen as a
detection method that takes already found missing is-a relations as
input.

for ontology repairing, the goal is to add more subsumptions
to enrich the ontology. As long as the added rules are correct,
a more informative repairing means more enrichment to the
ontology. However, there are technical difficulties in finding
the most informative solution as such. A brute-force method
to create a most informative solution is to check for each pair
of atomic concepts A and B, whether Or(A v B) = true
and if so, add A v B to the ontology. In practice, for large
ontologies this is infeasible. Therefore, it is not clear how to
generate such a solution due to the missing hypothesis H .
Further, we might obtain a solution with redundancy.

For this purpose, we would like to add another minimality
preference, namely subset minimality to the informativeness
preference. That is, we prefer a solution which is both se-
mantically maximal (most informative) and subset minimal.
Combining these two preferences drives us to three distinct
interpretations, depending on what kind of priority we assign
for the single preferences. The first interpretation (maxmin)
implies higher priority for semantic maximality than sub-
set minimality and thus favors semantically maximal so-
lutions with no redundancy. A second interpretation (min-
max) implies a higher priority on subset minimality than the
semantic maximality, and thus favors solutions without re-
dundancy which are the most informative solutions within
these solutions without redundancy. In the third interpreta-
tion (skyline) we treat both preferences equally and the cho-
sen solution is such that there does not exist another solution
which is preferable on both criteria.

In this paper we focus on the formalization of the prob-
lems and conduct complexity analysis on the decision prob-
lems regarding the various preference criteria for EL++ on-
tologies. We prove the complexity results on all the deci-
sion problems (see Table 2) and obtain interesting findings.
While it is not surprising that with either of the single pref-
erences of subset minimality and semantic maximality, the
complexity remains the same as the case without any pref-
erence (NP-complete), it is interesting to observe that com-
bining the two preferences yields different complexity re-
sults. The combinations maxmin and skyline do not increase
the complexity, while for minmax the complexity is higher
which is at the second level of polynomial hierarchy. The
intuition behind that can be explained informally as follows:
for maxmin and skyline, the checking of both preference cri-
teria can be conducted sequentially, while for minmax it is
not possible. The complexity results provide a guideline on
the choosing of suitable preference criteria for designing re-
pairing algorithms in practice. As a result, the final part of
the paper is dedicated to a concrete algorithm for finding
one skyline optimal solution, together with a system based
on the algorithm as well as experiments.

The contributions of this paper are the following.
- We formalize the repairing of the missing is-a structure in
an ontology as a generalized version of the TBox abduction
problem (GTAP).
- We present complexity results for the existence, relevance
and necessity decision problems for GTAP in EL++ with
and without the preference relations subset minimality and
semantic maximality as well as three ways of combining
these (maxmin, minmax, skyline). Subset minimality is a



C = { GranulomaProcess, CardioVascularDisease, PathologicalPhenomenon, Fracture, Endocarditis, Carditis, InflammationProcess,
PathologicalProcess, NonNormalProcess}

T = { CardioVascularDisease v PathologicalPhenomenon, Fracture v PathologicalPhenomenon,
∃hasAssociatedProcess.PathologicalProcess v PathologicalPhenomenon, Endocarditis v Carditis,
Endocarditis v ∃hasAssociatedProcess.InflammationProcess, PathologicalProcess v NonNormalProcess }

M = { Endocarditis v PathologicalPhenomenon, GranulomaProcess v NonNormalProcess }

The following is-a relations are correct according to the domain, i.e., Or returns true for:
GranulomaProcess v InflammationProcess, GranulomaProcess v PathologicalProcess, GranulomaProcess v NonNormalProcess,
CardioVascularDisease v PathologicalPhenomenon, Fracture v PathologicalPhenomenon, Endocarditis v PathologicalPhenomenon,
Endocarditis v Carditis, Endocarditis v CardioVascularDisease, Carditis v PathologicalPhenomenon, Carditis v CardioVascularDisease,
InflammationProcess v PathologicalProcess, InflammationProcess v NonNormalProcess, PathologicalProcess v NonNormalProcess.

Let P = GTAP(T , C, Or, M ).

Figure 1: Small EL example.

preference criterion that is often used in abductive reason-
ing problems. Semantic maximality is a new criterion that is
important for GTAP.
- We provide algorithms for finding a skyline optimal solu-
tion to GTAP in EL and EL++. Although in theory, maxmin
optimal solutions are normally preferred, in practice, they
cannot be guaranteed and skyline optimal solutions are the
best we can do.
- We provide a system and show its usefulness through ex-
periments.

Preliminaries
Proposition logic and Horn theory
We assume a finite propositional language built from a set
V = {v1, . . . , vn} of atoms and the usual Boolean con-
nectives. A clause is a disjunction λ =

∨
vi∈Pos(λ) vi ∨∨

vi∈Neg(λ) ¬vi where Pos(λ) and Neg(λ) are the sets
of atoms which appear positively and negatively in λ and
Pos(λ) ∩ Neg(λ) = ∅. We say that a clause λ is Horn if
|Pos(λ)| ≤ 1. A Horn theory is a set of Horn clauses.

The description logics EL++ and EL
Concept descriptions are constructed inductively from a set
NC of atomic concepts and a set NR of atomic roles and
(possibly) a set NI of individual names. The concept con-
structors are the top concept>, bottom concept⊥, nominals,
conjunction, and existential restriction, and a restricted form
of concrete domains. In this paper, we consider the version
of EL++ without concrete domains. Note that this simplifi-
cation does not affect the complexity results presented later
on. For the syntax of the different constructors see Table
1. An interpretation I consists of a non-empty set ∆I and
an interpretation function ·I which assigns to each atomic
concept A ∈ NC a subset AI ⊆ ∆I , to each atomic role
r ∈ NR a relation rI ⊆ ∆I × ∆I , and to each individual
name a ∈ NI an individual aI ∈ ∆I . The interpretation
function is straightforwardly extended to complex concepts.
An EL++ TBox (named CBox in (Baader, Brandt, and Lutz
2005)) is a finite set of general concept inclusions (GCIs)

Name Syntax Semantics
top > ∆I

bottom ⊥ ∅
nominal {a} {aI}

conjunction C uD CI ∩DI

existential ∃r.C {x ∈ ∆I |∃y ∈ ∆I :
restriction (x, y) ∈ rI ∧ y ∈ CI}

GCI CvD CI ⊆ DI

RI r1 ◦ . . . ◦ rkvr rI1 ◦ . . . ◦ rIk ⊆ rI

Table 1: EL++ Syntax and Semantics

and role inclusions (RIs) whose syntax can be found in the
lower part of Table 1. Note that a finite set of GCIs is called
a general TBox. An interpretation I is a model of a TBox T
if for each GCI and RI in T , the conditions given in the third
column of Table 1 are satisfied. EL has the restricted form
of EL++ which allows for concept constructors of top con-
cept >, conjunction and existential restriction. An EL TBox
contains only GCIs. The main reasoning task for description
logics is subsumption in which the problem is to decide for
a TBox T and concepts C and D whether T |= CvD. Sub-
sumption in EL++ is polynomial even w.r.t. general TBoxes
(Baader, Brandt, and Lutz 2005).

We note that every Horn theory can be represented by a
general EL++ TBox (Bienvenu 2008).

Computational Complexity
We recall some basic definitions from computational com-
plexity (cf. (Papadimitriou 1994)). The class P comprises all
problems which can be decided in polynomial time by a de-
terministic Turing machine. The class NP contains all prob-
lems which can be decided in polynomial time by a non-
deterministic Turing machine. The class co-NP is defined to
be the set of all problems whose complement belongs to NP.
The class ΣP

2 = NPNP consists of those problems which can
be decided in polynomial time by a non-deterministic Tur-



ing machine which can query an NP oracle. The class ΠP
2

comprises all problems whose complement is in ΣP
2 .

A quantified Boolean formula (QBF) is a sentence of the
form Q1x1 . . . QnxnE,n ≥ 0, where E is a propositional
formula whose variables are from x1, . . . , xn and where
each Qi, 1 ≤ i ≤ n, is one of the quantifiers ∀, ∃ ranging
over {true, false}. Such a formula is said to have a quan-
tifier alternation for Q1 and for each Qi, i > 1, such that
Qi 6= Qi−1. The set of valid QBFs with k quantifier alterna-
tions and Q1 = ∃ (resp. Q1 = ∀) is denoted by QBFk,∃
(resp. QBFk,∀). It is well-known that deciding whether a
QBF Φ satisfies Φ ∈ QBFk,∃ (resp. Φ ∈ QBFk,∀) is ΣP

k -
complete (resp. ΠP

k -complete).

Abduction Framework
In the following we explain how the problem of finding pos-
sible ways to repair the missing is-a structure in a ontology
is formalized as a generalized version of the TBox abduction
problem as defined in (Elsenbroich, Kutz, and Sattler 2006).
We assume that our ontology is represented using a TBox
T in EL++. The identified missing is-a relations are then
represented by a set M of atomic concept subsumptions. To
repair the ontology, the ontology should be extended with a
set S of atomic concept subsumptions (repair) such that the
extended ontology is consistent and the missing is-a rela-
tions are derivable from the extended ontology. However, the
added atomic concept subsumptions should be correct ac-
cording to the domain. In general, the set of all atomic con-
cept subsumptions that are correct according to the domain
are not known beforehand. Indeed, if this set were given then
we would only have to add this to the ontology. The common
case, however, is that we do not have this set, but instead can
rely on a domain expert that can decide whether an atomic
concept subsumption is correct according to the domain. In
our formalization the domain expert is represented by an or-
acle Or that when given an atomic concept subsumption,
returns true or false. It is then required that for every atomic
concept subsumption s ∈ S, we have that Or(s) = true.
The following definition formalizes this.
Definition 1 (GENERALIZED TBOX ABDUCTION) Let T
be a TBox in EL++ and C be the set of all atomic concepts
in T . Let M = {Ai v Bi | Ai, Bi ∈ C} be a finite set
of TBox assertions. Let Or : {Ci v Di | Ci, Di ∈ C} →
{true, false}. A solution to the generalized TBox abduc-
tion problem (GTAP) (T,C,Or,M) is any finite set S =
{Ei v Fi | Ei, Fi ∈ C ∧ Or(Ei v Fi) = true} of TBox
assertions, such that T ∪ S is consistent and T ∪ S |= M .
The set of all such solutions is denoted as S(T,C,Or,M).

As noted before, in the classic abduction problem there is
usually no oracle Or, but a set of abduciles H (e.g. (Eiter
and Gottlob 1995)) that restricts the solution space. A major
difference is that H is usually given, and finding solutions
can therefore start from H . In GTAP on the other hand this
is not possible, but (partial) solutions are validated usingOr.

As an example, consider GTAP P as defined in Figure
1. Then {Carditis v CardioVascularDisease, Inflammation-
Process v PathologicalProcess, GranulomaProcess v In-
flammationProcess} is a solution for P . Another solution

is {CarditisvCardioVascularDisease, GranulomaProcessv
PathologicalProcess} as shown in Section Introduction.

There can be many solutions for a GTAP and, as explained
in Section Introduction, not all solutions are equally inter-
esting. Therefore, we propose two preference criteria on the
solutions as well as different ways to combine them. The
first criterion is a criterion that is not used in other abduc-
tion problems, but that is particularly important for GTAP.
In GTAP it is important to find solutions that add to the on-
tology as much information as possible that is correct ac-
cording to the domain. Therefore, the first criterion prefers
solutions that imply more information.

Definition 2 (MORE INFORMATIVE) Let S and S′ be two
solutions to the GTAP (T,C,Or,M). S is said to be more
informative than S′ iff T ∪ S |= S′ and T ∪ S′ 6|= S.

Further, we say that S is equally informative as S′ iff T ∪
S |= S′ and T ∪ S′ |= S.

Consider two solutions to P , S1 = {InflammationProcess
v PathologicalProcess, GranulomaProcessv Inflammation-
Process}2 and S2 = {InflammationProcess v Pathological-
Process, GranulomaProcess v PathologicalProcess}. In this
case solution S1 is more informative than S2.

Definition 3 (SEMANTIC MAXIMALITY) A solution S to
the GTAP (T,C,Or,M) is said to be semantically maximal
iff there is no solution S′ which is more informative than S.
The set of all semantically maximal solutions is denoted as
Smax(T,C,Or,M).

An example of a semantically maximal solution to P
is {InflammationProcess v PathologicalProcess, Granu-
lomaProcessv InflammationProcess, CarditisvCardioVas-
cularDisease}.

The second criterion is a classical criterion in abduction
problems. It requires that no element in a solution is redun-
dant.

Definition 4 (SUBSET MINIMALITY) A solution S to the
GTAP (T,C,Or,M) is said to be subset minimal iff there
is no proper subset S′ ( S such that S′ is a solu-
tion. The set of all subset minimal solutions is denoted as
Smin(T,C,Or,M).

An example of a subset minimal solution forP is {Inflam-
mationProcess v PathologicalProcess, GranulomaProcess
v InflammationProcess}. On the other hand, solution
{Carditis v CardioVascularDisease, InflammationProcess
v PathologicalProcess, GranulomaProcessv Inflammation-
Process} is not subset minimal as it contains Carditis v
CardioVascularDisease which is redundant for repairing the
missing is-a relations.

2Observe that both missing is-a relations are derivable using S1.
GranulomaProcess v NonNormalProcess is derivable as Granu-
lomaProcessv InflammationProcess (S1), InflammationProcessv
PathologicalProcess (S1), and PathologicalProcess v NonNormal-
Process (T ). Endocarditis v PathologicalPhenomenon is derivable
as Endocarditis v ∃hasAssociatedProcess.InflammationProcess
(T ), ∃hasAssociatedProcess.InflammationProcess v
∃hasAssociatedProcess.PathologicalProcess (S1), and
∃hasAssociatedProcess.PathologicalProcess v PathologicalPhe-
nomenon (T ).



In practice, both of the above two criteria are desirable.
We therefore define ways to combine these criteria depend-
ing on what kind of priority we assign for the single prefer-
ences.

Definition 5 (COMBINING WITH PRIORITY FOR SE-
MANTIC MAXIMALITY) A solution S to the GTAP
(T,C,Or,M) is said to be maxmin optimal iff S is seman-
tically maximal and there does not exist another semanti-
cally maximal solution S′ such that S′ is a proper subset
of S. The set of all maxmin optimal solutions is denoted as
Smax

min (T,C,Or,M).

As an example, {InflammationProcess v Pathological-
Process, GranulomaProcess v InflammationProcess, Cardi-
tis v CardioVascularDisease} is a maxmin optimal solution
for P . The advantage of maxmin optimal solutions is that a
maximal body of correct information is added to the ontol-
ogy and without redundancy. For GTAP these are the most
attractive solutions, but as mentioned before it is not clear
how to generate such a solution.

Definition 6 (COMBINING WITH PRIORITY FOR SUB-
SET MINIMALITY) A solution S to the GTAP (T,C,Or,M)
is said to be minmax optimal iff S is subset minimal and
there does not exist another subset minimal solution S′ such
that S′ is more informative than S. The set of all minmax
optimal solutions is denoted as Smax

min (T,C,Or,M).

As an example, {InflammationProcess v Pathological-
Process, GranulomaProcess v InflammationProcess} is a
minmax optimal solution for P . In practice, minmax opti-
mal solutions ensure fewer is-a relations to be added, thus
avoiding redundancy. This is desirable if the domain expert
would prefer to look at as small solutions as possible. The
disadvantage is that there may be correct relations that are
not derivable when they are not included in the solution.

For the skyline interpretation, we consider the subset min-
imality and the semantic maximality as two dimensions for
a solution S (see (Lambrix et al. 2013) for an explanation of
how the definition satisfies the skyline interpretation).

Definition 7 (SKYLINE OPTIMAL) A solution S to the
GTAP (T,C,Or,M) is said to be skyline optimal iff there
does not exist another solution S′ such that S′ is a proper
subset of S and S′ is equally informative as S. The set of all
skyline optimal solutions is denoted as Smax

min (T,C,Or,M).

All subset minimal, minmax optimal and maxmin optimal
solutions are also skyline optimal solutions. However, there
are semantically maximal solutions that are not skyline op-
timal. For example, {InflammationProcess v Pathological-
Process, GranulomaProcess v InflammationProcess, Cardi-
tis v CardioVascularDisease, Endocarditis v CardioVascu-
larDisease} is a semantically maximal solution for P , but
it is not skyline optimal as its subset {InflammationProcess
v PathologicalProcess, GranulomaProcessv Inflammation-
Process, Carditis v CardioVascularDisease} is equally in-
formative. There also exist skyline optimal solutions that are
not subset minimal solutions. For instance, {Inflammation-
Process v PathologicalProcess, GranulomaProcess v In-
flammationProcess, Carditis v CardioVascularDisease} is a

skyline optimal solution that is not subset minimal as remov-
ing Carditisv CardioVascularDisease would still yield a so-
lution (although not as informative). Skyline optimal is a re-
laxed criterion. It requires subset minimality for some level
of informativeness. Although maxmin solutions are pre-
ferred, in practice, it is not clear how to generate a maxmin
solution, except for a brute-force method that would query
the oracle with, for larger ontologies, unfeasibly many ques-
tions. Therefore, a skyline solution is the next best thing and,
in the case solutions exist, it is easy to generate a skyline op-
timal solution. However, the difficulty lies in reaching an as
high level of informativeness as possible.

Further, in addition to finding solutions, traditionally,
there are three main decision problems for logic-based ab-
duction: existence, relevance and necessity.

Definition 8 Given a GTAP (T,C,Or,M) we define the
following decision problems:

Existence S(T,C,Or,M) 6= ∅ ?
Relevance Given ψ, does a solution S ∈ S(T,C,Or,M)

exist such that ψ ∈ S?
Necessity Given ψ, do all the solutions in S(T,C,Or,M)

contain ψ?

If we replace S in Definition 8 with Smin, Smax, Smax
min

Smax
min and Smax

min , respectively, we obtain the GTAP decision
problems under the criteria of subset minimality, semantic
maximality and the combinations.

Dispensability Given ψ, does a solution S ∈
S(T,C,Or,M) exist such that ψ 6∈ S?

For convenience in Section Complexity Results we pri-
marily deal with dispensability rather than with necessity.
Results for necessity are easy corollaries to our results on
dispensability.

Complexity Results
In this section, we present complexity results for deciding
the existence and relevance of GTAP under several prefer-
ence criteria for both EL and EL++. The summary of the
results is shown in Table 2.

Since it holds that every definite Horn theory can be rep-
resented by a general EL TBox and every Horn theory can
be represented by a general EL++ TBox (Bienvenu 2008),
some existing complexity results on the abduction of Horn
theory can be adapted here for the case of general existence
and subset minimality case. Note that this applies to the
hardness proofs.

Complexity - EL++

General Case
Theorem 1 To decide if S(T,C,Or,M) 6= ∅ for a given
GTAP (T,C,Or,M) is NP-complete.

Proof. The entailment problem of EL++ is tractable
(Baader, Brandt, and Lutz 2005). Therefore the membership
in NP follows.

NP-hardness of this problem is shown by a transformation
from well-known satisfiability problem (SAT), cf. (Garey



EL EL++

Decision problems Existence Relevance Necessity Existence Relevance Necessity
General in P in P in P NP-complete NP-complete co-NP-complete

Subset Minimality in P NP-complete in P NP-complete NP-complete co-NP-complete
Semantic Maximality in P in P in P NP-complete NP-complete co-NP-complete

Minmax in P NP-complete in P NP-complete ΣP
2 -complete ΠP

2 -complete
Maxmin in P in P in P NP-complete NP-complete co-NP-complete
Skyline in P NP-complete in P NP-complete NP-complete co-NP-complete

Table 2: Complexity Results of GTAP

and Johnson 1979). Let Cl = {Cl1, . . . , Clm} be a set
of propositional clauses on X = {x1, . . . , xn}. Let X ′ =
{x′1, . . . , x′n}, G = {g1, . . . , gm}, R = {r1, . . . , rn} be sets
of new concepts and c be a new concept. Then, the GTAP
(T,C,Or,M) is constructed as follows.

Note that in order to simplify the presentation, for the def-
inition of the oracle, we write Or as a set containing the
subsumptions that are true according to the oracle. We also
apply this simplification in the other proofs of the paper.

C = X ∪X ′ ∪G ∪R ∪ c
M = {cvri : 1 ≤ i ≤ n, cvgj : 1 ≤ j ≤ m}
Or = {cvxi : 1 ≤ i ≤ n, cvx′i : 1 ≤ j ≤ n}
T = {xi u x′iv⊥, xivri, x′ivri : 1 ≤ i ≤ n} ∪ {cv>,>vc}

m⋃
i=1

({xjvgi : xj ∈ Cli} ∪ {x′jvgi : ¬xj ∈ Cli})

Next we prove that Cl is satisfiable iff (T,C,Or,M)
has a solution. We first observe that for each S ∈
S(T,C,Or,M), either cvxi ∈ S or cvx′i ∈ S (but not
both) must hold, for 1 ≤ i ≤ n, since otherwise T ∪ S 6|=
cvri.

Assume Cl is satisfiable. Let ψ be the truth assignment
such that ψ(Cl) is true. Define the solution S as

S = {cvxi : ψ(xi) = true, 1 ≤ i ≤ n}∪
{cvx′i : ψ(xi) = false, 1 ≤ i ≤ n}

Clearly T ∪ S |= cvr1 ∧ . . . ∧ cvrn. Moreover, because
for every Cli(1 ≤ i ≤ m) ψ(Cli) is true, we have T ∪S |=
cvg1 ∧ . . . ∧ cvgm. Therefore T ∪ S |= M holds.

Consider Cl is not satisfiable. For a solution S, either xi

or x′i must exist in S. Since there does not exist any truth
assignment such that ψ(Cl) is true, there does not exist
such S such that T ∪ S |= cvg1 ∧ . . . ∧ cvgm. Therefore
S(T,C,Or,M) = ∅.

Theorem 2 To decide if a given ψ is relevant for a given
GTAP (T,C,Or,M) is NP-complete. To decide if a given
ψ is dispensable for a given GTAP (T,C,Or,M) is NP-
complete.

Proof. Guess a solution S which contains ψ (resp. does not
contain ψ). Since the checking if S ∈ S(T,C,Or,M) is in
P, the membership in NP follows.

Hardness can be proven by a slight modification of the
reduction for the existence problem in Theorem 1. Define

the GTAP (T ′, C ′, Or′,M ′) as

C ′ = C ∪ e ∪ e′
M ′ = M ∪ h
Or′ = Or ∪ {cve, cve′}
T ′ = T \ {xivri, x′ivri : 1 ≤ i ≤ n}∪

{xi u evri, x′i u evri : 1 ≤ i ≤ n}∪
{e′vri : 1 ≤ i ≤ n, e′vgj : 1 ≤ j ≤ m}∪
{e u e′v⊥, evh, e′vh}

where e, e′, h are new concepts not occurring in C.
We show that Cl is satisfiable if and only if

(T ′, C ′, Or′,M ′) has a solution containing cve and not
containing cve′.

Assume Cl is satisfiable. Let ψ be the truth assignment
such that ψ(Cl) is true. Define the solution S as

S = {cvxi : ψ(xi) = true, 1 ≤ i ≤ n}∪
{cvx′i : ψ(xi) = false, 1 ≤ i ≤ n} ∪ {cve}

Then T ′∪S |= M ′ holds. Note that one and only one of cve
and cve′ is in any solution to (T ′, C ′, Or′,M ′). Therefore,
cve′ 6∈ S holds.

Assume Cl is not satisfiable. Then the solution S is
{cve′}. Clearly cve 6∈ S holds. This concludes the proof.

Subset Minimality
Theorem 3 To decide if Smin(T,C,Or,M) 6= ∅ for a
given GTAP (T,C,Or,M) is NP-complete.

Proof. We show that the problem is equivalent
to the existence problem in general case. That is,
Smin(T,C,Or,M) 6= ∅ iff S(T,C,Or,M) 6= ∅. The
’only if’ direction is trivial. Now we prove the ’if’ direction.
We show that if there is a solution S ∈ S(T,C,Or,M),
then there is a solution S′ ∈ Smin(T,C,Or,M) and
S′ ⊆ S. If S is subset minimal, then S′ = S. Otherwise, let
W be the set of all solutions S′′ such that S′′ ⊂ S. Since
the empty set is not a solution, there exists an S′ ∈ W , such
that ∀P ∈ W , P 6⊂ S′ holds. Clearly S′ is a subset minimal
solution.

Theorem 4 To decide if a given ψ is min-relevant for a
given GTAP (T,C,Or,M) is NP-complete. To decide if a
given ψ is min-dispensable for a given GTAP (T,C,Or,M)
is NP-complete.

Proof. Membership: guess a set S which contains (resp.
does not contain) ψ. Note that S ∈ Smin(T,C,Or,M)
iff S ∈ S(T,C,Or,M) and {∀h ∈ S : S \ h 6∈



S(T,C,Or,M)} holds. This is due to the monotonicity of
|= in EL++. Clearly the checking is in P, hence the mem-
bership in NP follows.

Hardness under the restrictions follows immediately by
Theorem 2.

Semantic Maximality

Theorem 5 To decide if Smax(T,C,Or,M) 6= ∅ for a
given GTAP (T,C,Or,M) is NP-complete.

Proof. The proof is analogous to that of Theorem 3: we
show that the problem is equivalent to the existence prob-
lem of the general case. That is, Smax(T,C,Or,M) 6= ∅
iff S(T,C,Or,M) 6= ∅. The ’only if’ direction is trivial.
Now we prove the ’if’ direction. We show that if there is
a solution S ∈ S(T,C,Or,M), then there is a solution
S′ ∈ Smax(T,C,Or,M) and S ⊆ S′. Let W be the set
of all solutions S′′ that S ⊆ S′′. Then there exists S′ ∈ W ,
such that ∀P ∈ W , S′ 6⊂ P holds. It is easy to show that
S′ is semantically maximal. Assume the opposite. There is
another solution S1 which is more informative than S′. That
is, there is a ψ such that T ∪ S1 |= S′ ∪ ψ and T ∪ S′ 6|= ψ.
Then S′ ∪ S1 should be a solution and it is a superset of S′.
⇒ Contradiction.

Theorem 6 To decide if a given ψ is max-relevant for a
given GTAP (T,C,Or,M) is NP-complete. To decide if a
given ψ is max-dispensable for a given GTAP (T,C,Or,M)
is NP-complete.

Proof. Membership: guess a set S which contains (resp.
does not contain) ψ. S ∈ Smax(T,C,Or,M) iff S ∈
S(T,C,Or,M) and ∀h ∈ Ors.t.T ∪ S 6|= h : T ∪ S ∪ h |=
M} holds. This is due to the monotonicity of |= in EL++.
The checking can be done in polynomial time since the num-
ber of possible TBox assertions is polynomial to C. Hence
the membership follows.

Hardness under the restrictions follows immediately by
Theorem 2.

Skyline Due to the fact that the set of skyline optimal so-
lutions contains all subset minimal solutions, the existential
problem follows trivially. That is, if there exists a subset
minimal solution, then there exists a skyline optimal solu-
tion.

Theorem 7 To decide if Smax
min (T,C,Or,M) 6= ∅ for a

given GTAP (T,C,Or,M) is NP-complete.

Theorem 8 To decide if a given ψ is skyline-relevant for
a given GTAP (T,C,Or,M) is NP-complete. To decide
if a given ψ is skyline-dispensable for a given GTAP
(T,C,Or,M) is NP-complete.

Proof. Membership: guess a set S which contains (resp.
does not contain) ψ. Note that S ∈ Smax

min (T,C,Or,M) iff
S ∈ S(T,C,Or,M) and {∀h ∈ S : T∪(S\h) 6|= S} holds.
This is due to the monotonicity of |= in EL++. Clearly the
checking is in P, hence the membership in NP follows. Hard-
ness under the restrictions follows immediately by Theorem
2.

Maxmin
Theorem 9 To decide if Smax

min (T,C,Or,M) 6= ∅ for a
given GTAP (T,C,Or,M) is NP-complete.

Proof. Again, we show that the problem is equivalent to
the existence problem of the general case. Since the exis-
tence problem of Smax(T,C,Or,M) is shown to be equiv-
alent to the general case, there exists Smax(T,C,Or,M).
Since Smax

min (T,C,Or,M) ⊆ Smax(T,C,Or,M) holds,
we need to remove from Smax(T,C,Or,M) those solu-
tions {S|∃S′, s.t.S′ ⊂ S : T ∪ S′ |= S}. Given a maxi-
mal solution S, we call such an S′ the witness of S. Note
that if S ∈ Smax(T,C,Or,M), then all the witnesses of
S as defined above are also in Smax(T,C,Or,M). There-
fore, during the removing process, if S is removed, S must
have a witness S′ and S′ is still in Smax(T,C,Or,M).
As a result, there will be at least one solution remaining
in Smax(T,C,Or,M) after the removal process. This con-
cludes the proof.

Theorem 10 To decide if a given ψ is maxmin-relevant
for a given GTAP (T,C,Or,M) is NP-complete. To de-
cide if a given ψ is maxmin-dispensable for a given GTAP
(T,C,Or,M) is NP-complete.

Proof. Membership: guess a set S which contains (resp.
does not contain) ψ. Note that S ∈ Smax

min (T,C,Or,M) iff
S ∈ Smax(T,C,Or,M) and {∀h ∈ S : T ∪ (S \ h) 6|= S}
holds. To check whether S ∈ Smax(T,C,Or,M) is feasi-
ble in polynomial time as shown in Theorem 6. The mini-
mality check is also feasible in polynomial time as shown in
Theorem 8, hence the membership in NP follows. Hardness
under the restrictions follows immediately by Theorem 2.

Minmax
Theorem 11 To decide if Smax

min (T,C,Or,M) 6= ∅ for a
given GTAP (T,C,Or,M) is NP-complete.

Proof. We show that the problem is equivalent to
the existence problem of the general case. That is,
Smax
min (T,C,Or,M) 6= ∅ iff S(T,C,Or,M) 6= ∅. If there is

a solution S ∈ S(T,C,Or,M), then from Theorem 3 there
is a solution which is subset minimal. Let W be the set of
all the subset minimal solutions. Then we remove from W
the solutions which are less informative, in the sense that if
there is S′, S′′ ∈ W such that S′ is more informative than
S′′, then S′′ is removed. Since the relation more informative
is transitive, the removal process is confluent. Then there ex-
ists a unique non-empty set W ′ ⊆ W , such that no solution
is more informative than another. It is obvious that W ′ is
Smax
min (T,C,Or,M).

Theorem 12 To decide if a given ψ is minmax-relevant
for a given GTAP (T,C,Or,M) is ΣP

2 -complete. To de-
cide if a given ψ is minmax-dispensable for a given GTAP
(T,C,Or,M) is ΣP

2 -complete.

Proof. Membership can be shown by first guessing a solu-
tion S containing (resp. not containing) ψ, then verifying if
S ∈ Smax

min (T,C,Or,M). That is, to check whether there
does not exist a subset minimal solution which is more in-
formative than S. The check can be done by a co-NP oracle,



since checking that there does exist such a solution can be
done in NP (we guess a solution S′. Checking S′ is sub-
set minimal and S′ is more informative than S can be done
in polynomial time). Therefore, the membership in ΣP

2 fol-
lows.

ΣP
2 -hardness of this problem is shown by a transformation

from deciding Φ ∈ QBF2,∃. Let Φ without loss of generality
be a QBF ∃x1 . . .∃xn∀y1 . . .∀ymE. Let E be in disjunctive
normal formD1∨. . .∨Dl whereDi(1 ≤ i ≤ l) is a conjunc-
tion of literals. Let X = {x1, . . . , xn}, Y = {y1, . . . , ym},
X ′ = {x′1, . . . , x′n}, and Y ′ = {y′1, . . . , y′m}. Let further
G = {g1, . . . , gm}, R = {r1, . . . , rn} be sets of new con-
cepts and h, e, e′, c be new concepts. Then, the GTAP
(T,C,Or,M) is constructed as follows.

C = X ∪X ′ ∪ Y ∪ Y ′ ∪G ∪R ∪ h ∪ c ∪ e ∪ e′
M = {cvh}
Or = {cve, cve′, cvxi : 1 ≤ i ≤ n,

cvx′i : 1 ≤ i ≤ n, cvyj : 1 ≤ j ≤ m,
cvy′j : 1 ≤ j ≤ m}

T = {cv>,>vc}
∪{xi u x′iv⊥, xi u evri, x′i u evri : 1 ≤ i ≤ n}
∪{r1 u . . . u rnvh}
∪{yi u y′iv⊥, yi u e′vgi, y

′
i u e′vgi : 1 ≤ i ≤ m}

∪{g1 u . . . u gmve} ∪ T ′ ∪ T ′′

T ′ =
l⋃

i=1

s⋃
j=1

({yi1 u . . . u yip u y′ip+1
u . . . u y′iq

us
k=1,k 6=jxik

ut
k=s+1 x

′
ik

v x′ij
:

Di = yi1 ∧ . . . ∧ yip ∧ ¬yip+1 ∧ . . . ∧ ¬yiq

∧xi1 ∧ . . . ∧ xis
∧ ¬xis+1 ∧ . . . ∧ ¬xit

})

T ′′ =
l⋃

i=1

t⋃
j=s+1

({yi1 u . . . u yip u y′ip+1
u . . . u y′iq

us
k=1xik

ut
k=s+1,k 6=j x

′
ik

v xij :
Di = yi1 ∧ . . . ∧ yip

∧ ¬yip+1 ∧ . . . ∧ ¬yiq

∧xi1 ∧ . . . ∧ xis ∧ ¬xis+1 ∧ . . . ∧ ¬xit})
Intuitively, for each disjunct Di in E, for each x literal in
Di, T ′ and T ′′ consists of a subsumption where the negated
form of x is at the right hand side. More precisely, if x is
of the form xi, then x′i occurs at the right hand side; if x
is of the form ¬xi, then xi occurs at the right hand side.
For instance, assume Di = y1 ∧ ¬y2 ∧ x1 ∧ ¬x2. Then T ′
consists of the subsumption y1uy′2ux′2vx′1, and T ′′ consists
of y1 u y′2 u x1vx2.

Note that T is consistent and that (T,C,Or,M) is con-
structible in polynomial time. We show that Φ ∈ QBF2,∃
holds iff (cve) ∈ S (resp. (cve′) 6∈ S) such that S ∈
Smax
min (T,C,Or,M).
”Only if”: Assume Φ ∈ QBF2,∃ holds. Hence, there ex-

ists a truth assignment φ(X) such that ∀y1 . . .∀ymEφ(X) ∈
QBF1,∀ holds. Define the solution S as S = {cvxi :
φ(xi) = true, 1 ≤ i ≤ n} ∪ {cvx′i : φ(xi) = false, 1 ≤
i ≤ n} ∪ {cve}.

Clearly T ∪S |= M . Moreover, S is subset minimal. Next
we show there is no other subset minimal solution which
is more informative than S. Other than φ, there are 2n −
1 possible truth assignments over X . For each such truth

assignment ψ, we can obtain the corresponding solution S′,
analogously to the way obtaining S by replacing φ with ψ.
Clearly every such S′ is a subset minimal solution. However,
it is obvious that T ∪ S′ 6|= S, since S 6= S′ and there is at
least one variable xi such that φ(xi) 6= ψ(xi).

Let µ be an arbitrary truth assignment over Y . Define S′
as S′ = {cvyi : µ(yi) = true, 1 ≤ i ≤ m} ∪ {cvy′i :
µ(yi) = false, 1 ≤ i ≤ m} ∪ {cve′}. Clearly any other
subset minimal solution S′′ which does not contain cve
must contain such an S′. Note that we do not fix S′ since
µ is arbitrary. To prove S is a minmax solution, we need to
show that there does not exist such a subset minimal solu-
tion S′′ such that T ∪ S′′ |= S holds. In the following we
show that for every such a possible solution S′′, T ∪S′′ ∪S
is inconsistent.

Since ∀y1 . . .∀ymEφ(X) ∈ QBF1,∀ holds, there exists a
disjunct Di ∈ E, such that Diφ,µ(X,Y ) is true. That is,
for every z ∈ Di, cvz ∈ S ∪ S′′ and for every ¬z ∈ Di,
cvz′ ∈ S ∪ S′′. Let ρ be a rule in T ′ ∪ T ′′ regarding Di (w.
l. o. g.) with the form:

yi1 u . . . u yip
u y′ip+1

u . . . u y′iq

us
k=1,k 6=jxik

ut
k=s+1 x

′
ik
vx′ij

Since ρ ∈ T , we have T ∪ S′′ ∪ S |= cvx′ij
. On the other

hand, T ∪ S′′ ∪ S |= cvxij
holds too, because xij

∈ Di.
Therefore T ∪ S′′ ∪ S is not consistent, hence T ∪ S′′ 6|= S.

”If”: Assume Φ ∈ QBF2,∃ does not hold. Hence, for
every truth assignment φ(X), there exists a truth assign-
ment µ(Y ), such that Eφ,µ(X,Y ) is false. That is, each
Diφ,µ(X,Y ) (1 ≤ i ≤ l) is false. We prove that there does
not exist a minmax solution which contains cve (resp. does
not contain cve′). Define the solution S as S = {cvxi :
φ(xi) = true, 1 ≤ i ≤ n} ∪ {cvx′i : φ(xi) = false, 1 ≤
i ≤ n} ∪ {cve}. Clearly T ∪ S |= M . Moreover, S is sub-
set minimal. Next we show that there exists another subset
minimal solution which is more informative than S. Define
S′ as S′ = {cvyi : µ(yi) = true, 1 ≤ i ≤ m} ∪ {cvy′i :
µ(yi) = false, 1 ≤ i ≤ m} ∪ {cve′}. First we show that
T ∪S ∪S′ is consistent. From the construction of T , we no-
tice that inconsistency can only occur if there is an xj ∈ X
(resp. x′j ∈ X ′) such that cvxj ∈ S (resp. cvx′j ∈ S), and
T ∪ S ∪ S′ |= cvx′j (resp. T ∪ S ∪ S′ |= cvxj) also holds.

Consider any subsumption ρ = Qvp in T ′ ∪T ′′. Assume
ρ is regarding the disjunct Di. If for every z ∈ Q, (cvz) ∈
S ∪ S′ holds, then except for one literal (we call it z1), the
truth assignments enable all other literals in Di to be true.
Since Diφ,µ(X,Y ) is false, z1 has to be false. If z1 is
a positive literal with the form of x, then x is assigned as
false in φ. Therefore cvx′ is in S. From the construction
of ρ we obtain that p is in fact x′. Thus T ∪ S ∪ S′ |= cvx′
holds, and T ∪ S ∪ S′ is consistent. Analogously, if z1 is a
negative literal with the form of ¬x, then x is assigned as
true in φ. Therefore cvx is in S. From the construction of ρ
we obtain that p is in fact x. Thus T ∪ S ∪ S′ |= cvx holds,
and T ∪ S ∪ S′ is consistent.

Now that T ∪ S ∪ S′ is consistent, T ∪ S ∪ S′ |= S
holds. Clearly (S ∪ S′ \ cve) is a subset minimal solution.
Moreover, it is straightforward to verify that T ∪ (S ∪ S′ \
cve) |= S. This concludes the proof.



Complexity - EL
In the following proofs we define the solution Sor as Sor =
{Pi v Qi | ∀Pi, Qi ∈ C : Or(Pi v Qi) = true} with the
intended meaning that Sor consists of all the subsumptions
that are true according to the domain expert.

General Case
Theorem 13 To decide if S(T,C,Or,M) 6= ∅ for a given
GTAP (T,C,Or,M) is in P.

Proof. To decide the existence problem, we need to test
whether T ∪Sor |= M , and the entailment problem of EL is
tractable (Baader, Brandt, and Lutz 2005). Note that T ∪Sor

is consistent, thus if T ∪Sor 6|= M , then there does not exist
a solution.

Theorem 14 To decide if a given ψ is relevant for a given
GTAP (T,C,Or,M) is in P.

Proof. We assumeOr(ψ) is true. Otherwise the the relevant
problem returns false. The problem is equivalent to the ex-
istence problem. That is, if there exists a solution S, then
S ∪ ψ is also a solution. If there does not exist a solution,
then ψ is not relevant, since ψ ∈ Sor.

Theorem 15 To decide if a given ψ is in all the solutions for
a given GTAP (T,C,Or,M) is in P.

Proof. Two entailment tests are called: (1) T ∪ Sor |= M
and (2) T ∪ (Sor \ ψ) 6|= M . If both (1) and (2) holds, then
ψ is in every solution. Otherwise, either there does not exist
a solution ((1) does not hold), or there is a solution that does
not contain ψ (T ∪ (Sor \ ψ)).

Subset Minimality
Theorem 16 To decide if Smin(T,C,Or,M) 6= ∅ for a
given GTAP (T,C,Or,M) is in P.

Proof. The problem is equivalent to the existence problem
in general case. Detailed proof see Theorem 3.

Theorem 17 To decide if a given ψ is min-relevant for a
given GTAP (T,C,Or,M) is NP-complete.

Proof. Hardness follows immediately due to the fact that
the min-relevant problem for definite Horn theory prob-
lem is NP-complete (Friedrich, Gottlob, and Nejdl 1990),
(Bienvenu 2008). For the upper bound, we can guess
a solution S which contains ψ, and test whether S ∈
Smin(T,C,Or,M). Note that S ∈ Smin(T,C,Or,M) iff
T ∪ S |= M and {∀h ∈ S : T ∪ (S \ h) 6|= M} holds. Thus
the problem is in NP.

Theorem 18 To decide if a given ψ is in every minimal so-
lution for a given GTAP (T,C,Or,M) is in P.

Proof. The upper bound follows the proof in general case
in Theorem 15. That is, two entailment tests are called: (1)
T ∪Sor |= M and (2) T ∪(Sor \ψ) 6|= M . If both (1) and (2)
holds, then ψ is in every solution, thus also in every solution
of Smin(T,C,Or,M). Otherwise, S = T ∪ (Sor \ ψ) is
a solution which does not contain ψ. Then there is a subset
minimal solution S′ ⊆ S. Obviously S′ does not contain ψ
as well.

Semantic Maximality For EL TBox, Sor if T ∪Sor |= M
is the most informative solution. Therefore all the decision
problems are trivial.

Minmax
Theorem 19 To decide if Smax

min (T,C,Or,M) 6= ∅ for a
given GTAP (T,C,Or,M) is in P.

Proof. Follows the counterpart in EL++, see Theorem 11.

Theorem 20 To decide if a given ψ is minmax-relevant for
a given GTAP (T,C,Or,M) is NP-complete.

Proof. Hardness follows from the NP-complete complexity
of the min-relevance problem. In the following we prove the
upper bound. First a subset minimal solution S that contains
ψ can be guessed and tested. Given a solution S, we define
closure(S) = {x : T ∪ S |= x}. Next we prove that S is
minmax optimal iff {∀h ∈ S : T ∪ (Sor \ closure(S)) ∪
(S \h) 6|= h}. If: if {∀h ∈ S : T ∪(Sor \closure(S))∪(S \
h) 6|= h} holds, then no element from S can be derived from
outside the closure of S. Thus no more informative solution
exists. Only if: assume {∃h ∈ S : T ∪ (Sor \ closure(S))∪
(S \h) |= h} holds. Then S′ = (Sor \closure(S))∪(S \h)
is a solution and T ∪ S′ |= S. We first reduce S′ to S′′ such
that T ∪ S′′ |= S holds and S′′ is subset minimal. Next we
show that S′′ is more informative than S. Since S is subset
minimal, T ∪(S\h) 6|= h holds. Then from S′′ we know that
there must be an h′ ∈ S′′ such that h′ ∈ (Sor \closure(S)).
Then it follows that T ∪ S 6|= h′.

Theorem 21 To decide if a given ψ is in every minmax so-
lution for a given GTAP (T,C,Or,M) is in P.

Proof. The upper bound follows the proof in minimal case
in Theorem 18.

Skyline
Theorem 22 To decide if Smax

min (T,C,Or,M) 6= ∅ for a
given GTAP (T,C,Or,M) is in P.

Proof. The problem is equivalent to the existence problem
in general case, thus the upper bound follows immediately.

Theorem 23 To decide if a given ψ is skyline-relevant for a
given GTAP (T,C,Or,M) is NP-complete.

Proof. The upper bound follows the NP-completeness of
the skyline-relevant problem on EL++, see Theorem 8. To
prove the hardness, we construct a reduction from the rele-
vance problem of the subset minimality for EL as follows.
Given a GTAP (T,C,Or,M) (denoted as P1) where T is
a TBox in EL, where M = {A v B}. Note that this sim-
plification does not affect the NP hardness of the problem.
We construct another GTAP (T ′, C,Or,M) (denoted as P2),
with T ′ = T ∪{PivA,BvQi|PivQi ∈ Sor}. The intuition
of P2 is that if there is a solution S such that T ∪ S |= M ,
then T ∪ S |= Sor holds.

In the following we prove that a given ψ is subset minimal
relevant to P1 if and only if ψ is skyline relevant to P2.

If: Assume ψ is skyline relevant to P2. There exists a so-
lution S2 containing ψ, such that there does not exist any so-
lution S′2 ⊂ S2 and S′2 is equally informative to S2. Now we
show that S2 is also a subset minimal solution to P1. First we



prove that T ∪S2 |= M . Assume the opposite: T ∪S2 6|= M
holds, then it follows T ′ ∪ S2 6|= M , because extending T
with {PivA,BvQi does not result in the subsumption of
AvB. Assume S2 is not subset minimal in P1. Then there is
another solution S′′2 ⊂ S2, such that T ∪ S′′2 |= M . Then it
follows T ′ ∪ S′′2 |= M , thus S2 and S′′2 are equally informa-
tive in P2, contradiction.

Only if: ψ is subset minimal relevant to P1. Then there
exist a solution S1 containing ψ and S1 is a minimal solu-
tion. Since T ⊆ T ′, S1 is also a solution to P2. Since S1 is
minimal to P1, any subset of S1 is not a solution to P1. With
the same argument in the If direction, we can conclude that
any subset of S1 is not a solution either.

Theorem 24 To decide if a given ψ is in every skyline solu-
tion for a given GTAP (T,C,Or,M) is in P.

Proof. Follows Theorem 18.

Maxmin
Theorem 25 To decide if Smax

min (T,C,Or,M) 6= ∅ for a
given GTAP (T,C,Or,M) is in P.

Proof. The problem is equivalent to the existence problem
in general case, thus the upper bound follows immediately.

Theorem 26 To decide if a given ψ is maxmin-relevant for
a given GTAP (T,C,Or,M) is in P.

Proof. Follows Theorem 23.

Theorem 27 To decide if a given ψ is in every maxmin so-
lution for a given GTAP (T,C,Or,M) is in P.

Proof. Follows Theorem 18.

Algorithm - EL
In this section we present an algorithm for repairing miss-
ing is-a structure (solving GTAP (T,C,Or,M)) in ontolo-
gies that are represented in EL and where the TBox is nor-
malized as described in (Baader, Brandt, and Lutz 2005).
A normalized TBox T contains only axioms of the forms
A1 u . . . u An v B, A v ∃r.B, and ∃r.A v B, where
A, A1, . . ., An and B are atomic concepts and r is a role.
Further, based on lessons learned in (Lambrix et al. 2013),
we require that the missing is-a relations are validated be-
fore the repairing. We also note that EL TBoxes are always
consistent. Thus ∀m ∈ M : Or(m) = true, and T ∪M
is consistent and therefore, M is a solution. The algorithm
in Algorithm 1 computes a skyline optimal solution for a
GTAP (T,C,Or,M). AsM is a solution, the algorithm will
always return a result. The result can be a subset minimal
solution that is a subset of M or a solution that is more in-
formative than M .

The basic step in the algorithm (RepairSingleIsa) com-
putes a solution for a GTAP with one missing is-a relation
(i.e. GTAP (T,C,Or, {E v F}) in the following way. First,
superconcepts of E are collected in a Source set and sub-
concepts of F are collected in a Target set (lines 3 and 4).
Source contains expressions of the forms A and ∃r.A while
Target contains expressions of the forms A, A1 u . . . u An

and ∃r.A where A, A1, . . ., An are atomic concepts and

1 Procedure RepairSingleIsa begin
Input: E v F, T, Or, C
Output: Solution for GTAP (T, C, Or, {E v F})

2 Sol := ∅;
3 Source := find superconcepts of E;
4 Target := find subconcepts of F;
5 foreach A ∈ Source do
6 foreach B ∈ Target do
7 if A and B are atomic concepts & A v B ∈ Or then
8 if there exists K v L ∈ Sol such that T |= A v K and T

|= L v B then
9 do nothing;

10 else
11 remove every K v L ∈ Sol s.t. T |= K v A and T

|= B v L;
12 Sol := Sol ∪ {A v B};

13 else if A is of the form ∃r.N & B is of the form ∃r.O then
14 Sol := Sol ∪ RepairSingleIsa(N v O, T, Or, C);

15 return Sol;

16 Procedure RepairMultipleIsa begin
Input: M, T, Or, C
Output: Solution for GTAP (T, C, Or, M)

17 foreach Ei v Fi ∈ M do
18 SingleSoli := RepairSingleIsa(Ei v Fi, T, Or, C);
19 Solution :=

S
iSingleSoli;

20 remove redundancy in Solution within same level of informativeness;
21 return Solution;

22 Procedure Repair begin
Input: M, T, Or, C
Output: Solution for GTAP (T, C, Or, M)

23 Missing := M;
24 Solution := RepairMultipleIsa(Missing, T, Or, C);
25 Final-Solution := Solution;
26 while Solution 6= Missing do
27 Missing := Solution;
28 Solution := RepairMultipleIsa(Missing, T ∪ Missing, Or, C);
29 Final-Solution := Final-Solution ∪ Solution;
30 remove redundancy in Final-Solution within same level of

informativeness;

31 return Final-Solution;

Algorithm 1: Solving GTAP.

r is a role. Adding an is-a relation between an element in
Source and an element in Target to the ontology would make
E v F derivable (and thus this gives us logical solutions,
but not necessarily solutions that are correct according to
the domain). As we are interested in solutions containing
is-a relations between atomic concepts, we check for every
pair (A,B) ∈ Source × Target whether A and B are atomic
concepts and Or(A v B) = true (i.e. correct according to
the domain). If so, then this is a possible solution for GTAP
(T,C,Or, {E v F}). However, to conform to subset min-
imality and semantic maximality, if the current solution al-
ready contains is-a relations that would lead to the entail-
ment of A v B then we do not use A v B (8-9). Other-
wise we use A v B and remove elements from the current
solution that would be entailed if A v B is used (10-12).
Further, in the case where A is of the form ∃r.N and B is of
the form ∃r.O, then making N v O derivable would also
makeA v B derivable (13-14). It is clear that for the result
of RepairSingleIsa, i.e. Sol, the following holds: T ∪ Sol |=



E v F and ∀s ∈ Sol : Or(s) = true. Together with the
fact that EL TBoxes are consistent, this leads to the fact that
Sol is a solution of GTAP (T,C,Or, {E v F}).

In RepairMultipleIsa the algorithm collects for each miss-
ing is-a relation a solution from RepairSingleIsa and takes
the union of these. Therefore, the following holds for Solu-
tion in line 19: T ∪ Solution |= M and ∀s ∈ Solution :
Or(s) = true. Together with the fact that EL TBoxes are
consistent, this leads to the fact that Solution is a solution of
GTAP (T,C,Or,M). Further, in line 20, we remove redun-
dancy while keeping the same level of informativeness, and
thus obtain a skyline optimal solution. (In the case where
there are several ways to remove redundancy, one is chosen,
as the extended ontologies will be equivalent in the sense
that they entail the same statements.)

In Repair we try to improve the result from RepairMulti-
pleIsa by trying to find a skyline optimal solution on a higher
level of informativeness. Given that any element in the solu-
tion of RepairMultipleIsa that is not in M can be considered
as a new missing is-a relation (which was not detected ear-
lier), we can try to find additional more informative ways
of repairing by solving a new GTAP problem for these new
missing is-a relations (and continue as long as new missing
is-a relations are detected). As a (skyline optimal) solution
for the new GTAP is also a (skyline optimal) solution of the
original GTAP, the solution found in Repair is a skyline op-
timal solution for the original GTAP.

As an example run consider the GTAP in Figure 1. For
a given ontology and set of missing is-a relations, the algo-
rithm will first find solutions for repairing individual miss-
ing is-a relations using RepairSingleIsA. For the missing is-
a relation Endocarditis v PathologicalPhenomenon the fol-
lowing is-a relations provide logical solutions for repairing
the missing is-a relation: Endocarditis v PathologicalPhe-
nomenon, Endocarditis v Fracture, Endocarditis v Car-
dioVascularDisease, Carditis v PathologicalPhenomenon,
Carditis v Fracture, Carditis v CardioVascularDisease as
well as InflammationProcess v PathologicalProcess. As the
first one is the missing is-a relation which was already val-
idated, only the other six is-a relations are presented to
the oracle for validation. Out of these six Endocarditis v
Fracture and Carditis v Fracture are not correct accord-
ing to the domain and are therefore not included in solu-
tions. Further, relations Endocarditis v CardioVascularDis-
ease, Endocarditis v PathologicalPhenomenon, Carditis v
PathologicalPhenomenon are removed given it is possi-
ble to entail them from the ontology together with the
remaining relations. Therefore, after validation, RepairS-
ingleIsA returns {InflammationProcess v PathologicalPro-
cess, Carditis v CardioVascularDisease}. The same pro-
cess is repeated for the second missing is-a relation Gran-
ulomaProcess v NonNormalProcess. In this case the fol-
lowing is-a relations provide logical solutions for repair-
ing the missing is-a relation: GranulomaProcess v NonNor-
malProcess and GranulomaProcess v PathologicalProcess.
GranulomaProcess v NonNormalProcess is the missing is-
a relation and was already validated as correct according
to the domain. GranulomaProcess v PathologicalProcess is
presented to the oracle and validated as correct according

to the domain. As GranulomaProcess v NonNormalPro-
cess can be entailed from the ontology together with Gran-
ulomaProcess v PathologicalProcess, RepairSingleIsA re-
turns {GranulomaProcess v PathologicalProcess}. The so-
lutions for the single is-a relations are then combined to form
a solution for the set of missing is-a relations. In our case,
there are no redundant relations and therefore RepairMul-
tipleIsA returns {InflammationProcess v PathologicalPro-
cess, Carditis v CardioVascularDisease, GranulomaProcess
v PathologicalProcess}. We note that this is a skyline opti-
mal solution. In Repair the system tries to improve the ac-
quired solution. This time the oracle is presented with a total
of 13 relations for validation out of which only one is vali-
dated to be correct, i.e. GranulomaProcess v Inflammation-
Process. This is added to the solution. Given this new is-a re-
lation, GranulomaProcess v PathologicalProces is removed
from the solution as it can now be entailed from the on-
tology and GranulomaProcess v InflammationProcess. The
new solution is {InflammationProcess v PathologicalPro-
cess, Carditis v CardioVascularDisease, GranulomaProcess
v InflammationProcess}. This is again a skyline optimal so-
lution and it is more informative than the previous solution.
As new missing is-a relations were detected, the repairing is
run for the third time. However, in this run the solution is not
improved and thus the algorithm outputs the final result. We
note that in this example we found a skyline optimal solu-
tion that is also semantically maximal. In general, however,
it is not possible to know whether the solution is semanti-
cally maximal without checking every possible is-a relation
between atomic concepts in the ontology.

Algorithm - EL++

In this section we present an algorithm for repairing missing
is-a structure (solving GTAP (T,C,Or,M)) in ontologies
that are represented in EL++ and where the TBox is nor-
malized as described in (Baader, Brandt, and Lutz 2005).

A normalized TBox T contains only axioms of the forms
A1 u . . . u An v B, A v ∃r.B, and ∃r.A v B, as well as
role inclusions of the forms r v s and r1 ◦ r2 v s where
A, A1, . . ., An and B are atomic concepts and r, r1 and
r2 are roles. As in the previous section, we require that the
missing is-a relations are validated before the repairing i.e.
∀m ∈M : Or(m) = true. We note that EL++ TBoxes can
be inconsistent. ThusM is a solution iff T ∪M is consistent.
Therefore, we also require that T ∪M is consistent. The al-
gorithm in Algorithm 2 computes a skyline optimal solution
for a GTAP (T,C,Or,M). As M is a solution, the algo-
rithm will always return a result. The result can be a subset
minimal solution that is a subset of M or a solution that is
more informative than M .

The structure of the algorithm is similar to the structure
of the algorithm in the previous section. There are two main
differences. First, as EL++ Tboxes may be inconsistent,
we need to check whether adding a possible solution to the
Tbox will result in a consistent TBox. Secondly, given that
EL++ allows role inclusion, the basic step in the algorithm
(RepairSingleIsa) was modified to take this into account
when searching for solutions which are found using axioms



containing ∃ expressions. RepairSingleIsa computes a solu-
tion for a GTAP with one missing is-a relation (i.e. GTAP
(T,C,Or, {E v F}) in the following way. First, supercon-
cepts of E are collected in a Source set and subconcepts of
F are collected in a Target set. Source contains expressions
of the forms A and ∃r.A while Target contains expressions
of the forms A, A1 u . . . u An and ∃r.A where A, A1, . . .,
An are atomic concepts and r is a role. As before, adding an
is-a relation between an element in Source and an element
in Target to the ontology would make E v F derivable.
As we are interested in solutions containing is-a relations
between atomic concepts, we check for every pair (A,B) ∈
Source × Target whether A and B are atomic concepts and
Or(A v B) = true. If so, then this is a possible solution.
Further, if A is of the form ∃r.N and B is of the form ∃r.O,
then making N v O derivable would also make A v B
derivable. In EL++ there are two more possibilities when A
is of the form ∃r.N and B is of the form ∃s.O. If T contains
r v s, then making N v O derivable would also make
A v B derivable. Further, if T contains r ◦ r1 v s and N
v ∃r1.P , then making P v O derivable would also make
A v B derivable.

As an example run for the algorithm in EL++ consider
the GTAP in Figure 2. For a given ontology and set of
missing is-a relations, the algorithm will first find solu-
tions for repairing individual missing is-a relations using
RepairSingleIsA. For the missing is-a relation Endocardi-
tis v PathologicalPhenomenon the following is-a relations
provide logical solutions for repairing the missing is-a rela-
tion: Endocarditisv PathologicalPhenomenon, Endocarditis
v Fracture, Endocarditis v CardioVascularDisease, Cardi-
tis v PathologicalPhenomenon, Carditis v Fracture, Cardi-
tis v CardioVascularDisease as well as InflammationPro-
cess v PathologicalProcess. As the first one is the miss-
ing is-a relation which was already validated, only the other
six is-a relations are presented to the oracle for validation.
Out of these six Endocarditis v Fracture and Carditis v
Fracture are not correct according to the domain and are
therefore not included in solutions. Further, relations Endo-
carditisvCardioVascularDisease, Endocarditisv Patholog-
icalPhenomenon, Carditis v PathologicalPhenomenon are
removed given it is possible to entail them from the ontol-
ogy together with the remaining relations. Therefore, after
validation, RepairSingleIsA returns {InflammationProcess
v PathologicalProcess, Carditisv CardioVascularDisease}.
The same process is repeated for the second missing is-a
relation GranulomaProcess v NonNormalProcess. In this
case the following is-a relations provide logical solutions
for repairing the missing is-a relation: GranulomaProcess
v NonNormalProcess and GranulomaProcess v Patholog-
icalProcess. GranulomaProcessv NonNormalProcess is the
missing is-a relation and was already validated as cor-
rect according to the domain. GranulomaProcess v Patho-
logicalProcess is presented to the oracle and validated
as correct according to the domain. As GranulomaPro-
cess v NonNormalProcess can be entailed from the on-
tology together with GranulomaProcess v Pathological-
Process, RepairSingleIsA returns {GranulomaProcess v
PathologicalProcess}. For the missing is-a relation Wound

1 Procedure RepairSingleIsa begin
Input: E v F, T, Or, C
Output: Solution for GTAP (T, C, Or, {E v F})

2 Sol := ∅;
3 Source := find superconcepts of E;
4 Target := find subconcepts of F;
5 foreach A ∈ Source do
6 foreach B ∈ Target do
7 if T ∪ Sol ∪ {A v B} is consistent then
8 if A and B are atomic concepts & A v B ∈ Or then
9 if there exists K v L ∈ Sol such that T |= A v K

and T |= L v B then
10 do nothing;
11 else
12 remove every K v L ∈ Sol s.t. T |= K v A

and T |= B v L;
13 Sol := Sol ∪ {A v B};

14 else if A is of the form ∃r.N & B is of the form ∃s.O then
15 Extra Sols := FindExistsSolutions(T, r, N, s, O);
16 foreach Rel ∈ Extra Sols do
17 Sol := Sol ∪ RepairSingleIsa(Rel, T, Or, C);

18 return Sol;

19 Procedure RepairMultipleIsa begin
Input: M, T, Or, C
Output: Solution for GTAP (T, C, Or, M)

20 foreach Ei v Fi ∈ M do
21 SingleSoli := RepairSingleIsa(Ei v Fi, T, Or, C);
22 Solution :=

S
iSingleSoli;

23 if T ∪ Solution is inconsistent then
24 return M;
25 remove redundancy in Solution within same level of informativeness;
26 return Solution;

27 Procedure Repair begin
Input: M, T, Or, C
Output: Solution for GTAP (T, C, Or, M)

28 Missing := M;
29 Solution := RepairMultipleIsa(Missing, T, Or, C);
30 Final-Solution := Solution;
31 while Solution 6= Missing do
32 Missing := Solution;
33 Solution := RepairMultipleIsa(Missing, T ∪ Missing, Or, C);
34 Final-Solution := Final-Solution ∪ Solution;
35 remove redundancy in Final-Solution within same level of

informativeness;

36 return Final-Solution;

37 Procedure FindExistsSolutions begin
Input: T, r, N, s, O
Output: Set of is-a relations

38 CandidateSols := ∅;
39 Compositions := find all role inclusions of form r v s or r ◦ r1 v s in

TBox T;
40 foreach Comp ∈ Compositions do
41 if Comp is of form r v s then
42 CandidateSols := CandidateSols ∪ {N v O};
43 else
44 Cs := { P | T |= N v ∃r1.P };
45 CandidateSols := CandidateSols ∪ {P v O | P ∈ Cs};

46 return CandidateSols;

Algorithm 2: Algorithm for solving GTAP in EL++.

v PathologicalPhenomenon relations Wound v Pathologi-
calPhenomenon, SoftTissueTraumaProcess v Pathological-



C = { GranulomaProcess, CardioVascularDisease, PathologicalPhenomenon, Fracture, Endocarditis, Carditis, InflammationProcess,
PathologicalProcess, NonNormalProcess, Wound, BurningProcess, SoftTissueTraumaProcess, TraumaticProcess}

T = { CardioVascularDisease v PathologicalPhenomenon, Fracture v PathologicalPhenomenon,
∃isImmediateConsequence.PathologicalProcess v PathologicalPhenomenon, Endocarditis v Carditis,
Endocarditis v ∃isImmediateConsequence.InflammationProcess, PathologicalProcess v NonNormalProcess,
hasAssociatedProcess v isImmediateConsequence, Wound v ∃hasAssociatedProcess.SoftTissueTraumaProcess}

M = { Endocarditis v PathologicalPhenomenon, GranulomaProcess v NonNormalProcess, Wound v PathologicalPhenomenon,
BurningProcess v SoftTissueTraumaProcess, BurningProcess v TraumaticProcess }

The following is-a relations are correct according to the domain, i.e Or returns true for:
GranulomaProcess v InflammationProcess, GranulomaProcess v PathologicalProcess, GranulomaProcess v NonNormalProcess,
CardioVascularDisease v PathologicalPhenomenon, Fracture v PathologicalPhenomenon, Endocarditis v PathologicalPhenomenon,
Endocarditis v Carditis, Endocarditis v CardioVascularDisease,
Carditis v PathologicalPhenomenon, Carditis v CardioVascularDisease, InflammationProcess v PathologicalProcess,
InflammationProcess v NonNormalProcess, PathologicalProcess v NonNormalProcess, Wound v PathologicalPhenomenon,
TraumaticProcess v NonNormalProcess, TraumaticProcess v PathologicalProcess, SoftTissueTraumaProcess v TraumaticProcess,
SoftTissueTraumaProcess v NonNormalProcess, SoftTissueTraumaProcess v PathologicalProcess, BurningProcess v NonNormalProcess,
BurningProcess v PathologicalProcess, BurningProcess v SoftTissueTraumaProcess, BurningProcess v TraumaticProcess.

Let P = GTAP(T , C, Or, M ).

Figure 2: Small EL++ example.

Process, Wound v Fracture, Wound v CardioVascularDis-
ease provide logical solutions for repairing the missing is-
a relation. Out of these, only Wound v PathologicalPhe-
nomenon and SoftTissueTraumaProcessv PathologicalPro-
cess are correct according to the oracle, and RepairSingleIsA
therefore returns {Woundv PathologicalPhenomenon, Soft-
TissueTraumaProcess v PathologicalProcess}. For the re-
maining missing is-a relations BurningProcess v SoftTis-
sueTraumaProcess and BurningProcessv TraumaticProcess
the procedure RepairSingleIsA returns {BurningProcess v
SoftTissueTraumaProcess} and {BurningProcess v Trau-
maticProcess} respectively. The solutions for the single is-
a relations are then combined to form a solution for the
set of missing is-a relations. In our case, Wound v Patho-
logicalPhenomenon is redundant and therefore RepairMul-
tipleIsA returns {InflammationProcess v PathologicalPro-
cess, Carditis v CardioVascularDisease, GranulomaProcess
v PathologicalProcess, BurningProcess v TraumaticPro-
cess, BurningProcess v SoftTissueTraumaProcess, SoftTis-
sueTraumaProcess v PathologicalProcess}. We note that
this is a skyline optimal solution. In Repair the system tries
to improve the acquired solution. This time the oracle is pre-
sented with a total of 25 relations for validation out of which
only two are validated to be correct, i.e. GranulomaPro-
cess v InflammationProcess and SoftTissueTraumaProcess
v TraumaticProcess. These are added to the solution. Given
these new is-a relations, GranulomaProcess v Patholog-
icalProcess and BurningProcess v TraumaticProcess are
removed from the solution as they are redundant. The
new solution is {InflammationProcess v PathologicalPro-
cess, Carditis v CardioVascularDisease, GranulomaProcess
v InflammationProcess, SoftTissueTraumaProcess v Trau-
maticProcess, BurningProcessv SoftTissueTraumaProcess,
SoftTissueTraumaProcess v PathologicalProcess}. This is

again a skyline optimal solution and it is more informative
than the previous solution.

As new missing is-a relations were detected, the re-
pairing is run for the third time. In this iteration 5 rela-
tions required validation and only relation TraumaticPro-
cess v PathologicalProcess is validated as correct accord-
ing to the domain. The new solution is {Inflammation-
Process v PathologicalProcess, Carditis v CardioVas-
cularDisease, GranulomaProcess v InflammationProcess,
SoftTissueTraumaProcess v TraumaticProcess, Burning-
Process v SoftTissueTraumaProcess, TraumaticProcess v
PathologicalProcess}. The relation SoftTissueTraumaPro-
cess v PathologicalProcess was removed from the solution
as it is redundant.

The algorithm is run again and in this iteration no new is-
a relations were validated to be correct so the solution from
the previous iteration is returned as the final solution.

System
We have implemented a system for repairing missing is-a
relations. The input to the system is a an ontology and a set
of validated missing is-a relations. The output is a solution
to GTAP (called a repairing action). The system was imple-
mented in Java and uses the ELK reasoner (version 0.4.1)
(Kazakov, Krötzsch, and Simančı́k 2011) to detect implicit
entailments in the ontology. The system is semi-automatic
and requires interaction with a user which is a domain ex-
pert serving as an oracle and who decides whether an is-a
relation is correct according to the domain.

Once the ontology and the set of missing is-a relations are
loaded, the user starts the debugging process by pressing the
button Generate Repairing Actions. The system
then removes redundant is-a relations and the non-redundant
missing is-a relations are shown in a drop-down list allowing



Figure 3: Screenshot - Repairing using Source and Target
sets.

the user to switch between missing is-a relations. Additional
relations acquired using ∃ expressions are also included in
the drop-down list. It is also possible to scroll between rela-
tions using the arrow buttons in the bottom part of the screen.

After selecting an is-a relation from the list, the user is
presented with the Source and the Target set for that is-a
relation. The user then needs to choose relations which are
correct according to the domain for that is-a relation. Miss-
ing is-a relations are automatically validated to be correct
according to the domain while the relations that were ac-
quired using ∃ expressions have to be explicitly validated by
the user.

In Figure 3 the user is presented with the Source and the
Target set for the missing is-a relation Endocarditisv Patho-
logicalPhenomenon (concepts in the missing is-a relation are
marked in red). In this case the user has selected {Carditisv
CardioVascularDisease} as a repairing action for the miss-
ing is-a relation (concepts marked in purple) and needs to
confirm this by clicking the Validate button.

The user also has the option to check which relations have
been validated so far and which relations can be validated,
by clicking the Validate Is-a Relations button. In
the pop-up window that appears the user can validate new
relations, remove validations from already validated rela-
tions as well as ask for a recommendation by clicking the
Recommend button (Figure 4). Recommendations are ac-
quired by querying external sources (currently, WordNet,
UMLS Methathesaurus and Uberon).

The validation phase is ended by clicking on the
Validation Done button. The system then calculates
the consequences of the chosen repairing actions and
presents the user with a new set of is-a relations that need
to be repaired. The validation phase and consequent com-
putations represent one iteration of the Repair procedure in
Algorithm 1. If the repairing did not change between two

Figure 4: Screenshot - Validating is-a relations in a repairing
action.

iterations the system outputs the repairing.
At any point the user can save validated relations from

the ”File” menu which makes it possible to do debugging
accross multiple sessions.

Experiments
We have run several debugging experiments on an Intel Core
i7-2620M Processor at 3.07 GHz with 4 GB RAM under
Windows 7 Professional and Java 1.7 compiler. In all ex-
periments the validation phase took the most time while the
computations between iterations took less than 10 seconds.

The results are summarized in Tables 3 - 7. The ’It’
columns represent the different iterations of Repair in Al-
goritm 1. The ’Missing’ rows give the number of missing
is-a relations in each iteration. Such a missing is-a relation
can be repaired by adding itself (’Repaired by itself’), by
adding other is-a relations that were not derivable in the on-
tology and thus represent new knowledge added to the ontol-
ogy (’Repaired using new knowledge’). The ’New relations’
row shows how many new is-a relations were added to the
ontology. When such relations were found using ∃ (lines 13
and 14 in the algorithm), then the number of such relations
is shown in parentheses. We note that for iteration i+ 1 the
number of missing is-a relations is the number of new rela-
tions from iteration i plus the number of missing is-a rela-
tions repaired by themselves from iteration i if there are no
redundant relations. We also note that in the last iteration all
missing is-a relations from that iteration are always repaired
by themselves and these represent the final repairing action.

For the example in Figure 1 the system behaves as ex-
plained in the algorithm section and the results are summa-
rized in Table 3. The results for the example in Figure 2 are
given in Table 4. We also experimented with repairing an
ontology for which we randomly removed is-a relations and



It1 It2 It3
Missing 2 3 3
Repaired by itself 0 2 3
Repaired using new knowledge 2 1 0
New relations 3(1) 1 0

Table 3: Results for small ontology in Figure 1.

It1 It2 It3
Missing 5 6 6
Repaired by itself 2 4 6
Repaired using new knowledge 3 2 0
New relations 4(2) 2 0

Table 4: Results for ontology in Figure 2.

then repaired the ontology. Further, we debugged the two
ontologies from the Anatomy track at the 2013 Ontology
Alignment Evaluation Initiative.

BioTop Experiment
In this experiment we used the Biotop ontology from the
2013 OWL Reasoner Evaluation Workshop dataset contain-
ing 280 concepts and 42 object properties. For the set of
missing is-a relations we randomly selected 47 is-a relations.
Then the ontology was modified by removing is-a relations
which would make the selected is-a relations derivable. The
unmodified ontology was used as domain knowledge in the
experiment. The results for debugging Biotop ontology are
presented in Table 5.

The debugging process took 4 iterations. In the first it-
eration 28 relations were repaired by adding new rela-
tions. In total 26 new relations were added in the first it-
eration out of which 3 are of the form N v O where
for some missing is-a relation A v B the ontology con-
tains axioms A v ∃r.N and ∃r.O v B. For example,
for missing is-a relation GreatApe v Primate we have
a repairing action {FamilyHominidaeQuality v OrderPri-
matesQuality} given that the ontology contains axioms
GreatApe v ∃hasInherence.FamilyHominidaeQuality and
∃hasInherence.OrderPrimatesQuality v Primate.

The input to the second iteration contained 41 non-
redundant is-a relations (4 redundant is-a relations were re-
moved from the solution in iteration 1). In total 10 is-a re-
lations were repaired by adding new is-a relations. Out of
these 10 repaired is-a relations, 5 are relations from the ini-
tial set of missing is-a relations while the other 5 are re-
lations which were added in the first iteration. For example,
is-a relation Atomv Entity from the initial set of missing re-
lations can be repaired with {AtomvMaterialEntity} given
that MaterialEntity v Entity was added in the previous iter-
ation.

In the third iteration, the input contained 42 is-a relations.
In total 4 is-a relations (3 from the initial set of missing is-a
relations and 1 from iteration 1) were repaired by adding 3
new relations. Out of the 3 new relations 1 is acquired using
axioms containing ∃ expressions.

It1 It2 It3 It4
Missing 47 41 42 41
Repaired by itself 19 31 38 41
Repaired using new knowledge 28 10 4 0
New relations 26(3) 11 3(1) 0

Table 5: Results for debugging the Biotop ontology.

Finally, in the fourth iteration no new relations were added
and the system outputs the solution.

OAEI Anatomy Experiment
We debugged the two ontologies from the Anatomy track
at the 2013 Ontology Alignment Evaluation Initiative, i.e.
Mouse Anatomy ontology (AMA) containing 2744 concepts
and a fragment of NCI human anatomy ontology (NCI-A)
containing 3304 concepts. The input missing is-a relations
for these two experiments were a set of 94 and 58 missing is-
a relations, respectively, for AMA and NCI-A. These miss-
ing is-a relations were obtained by using a logic-based ap-
proach using an alignment between AMA and NCI-A (Lam-
brix and Liu 2013) to generate candidate missing is-a rela-
tions which were then validated by a domain expert to obtain
actual missing is-a relations.

Mouse Anatomy The results for debugging AMA are
given in Table 6. Three iterations were required to reach the
final solution. Out of 94 initial missing is-a relations 37 were
repaired by repairing actions which add new knowledge to
the ontology while 57 were repaired using only the missing
is-a relation itself. In total 44 new and non-redundant rela-
tions were added to the ontology in the first iteration. Out of
37 relations which were repaired by adding new relations,
22 had more than 1 non-redundant relation in the repairing
action. For example, the missing is-a relation wrist joint v
joint is repaired by a repairing action {limb joint v joint,
wrist joint v synovial joint}.

The set of missing is-a relations in the second iteration
contains 101 relations, i.e. 57 relations which were repaired
by adding the missing is-a relation itself and 44 newly added
relations. In this iteration, 3 is-a relations were repaired by
adding new knowledge to the ontology. All 3 of these is-a
relations are is-a relations which were added in the previ-
ous iteration. For example, is-a relation wrist joint v syn-
ovial joint is repaired by a repairing action {wrist joint v
hand joint} which is possible given that the is-a relation
metacarpo-phalangeal joint v joint from the initial set of
missing is-a relations was repaired by a repairing action
{hand joint v synovial joint, limb joint v joint} in the first
iteration.

Finally, the set of missing is-a relations containing 101 is-
a relations in the third iteration is also the solution for the
initial set of missing is-a relations given that no new rela-
tions were added in the third iteration.

NCI - Human Anatomy The initial set of missing is-a re-
lations contained 58 relations for the NCI-A ontology. Out
of these 58 relations in the first iteration 9 were repaired by



It1 It2 It3
Missing 94 101 101
Repaired by itself 57 98 101
Repaired using new knowledge 37 3 0
New relations 44 3 0

Table 6: Results for debugging AMA - Mouse Anatomy on-
tology.

It1 It2 It3
Missing 58 55 54
Repaired by itself 49 50 54
Repaired using new knowledge 9 5 0
New relations 6 4 0

Table 7: Results for debugging NCI-A - Human Anatomy
ontology.

adding relations which introduce new knowledge to the on-
tology. In total 6 new is-a relations were added.

In the second iteration, 5 out of 55 is-a relations were re-
paired by adding new relations while repairing actions for
the 50 other is-a relations were unchanged. All 5 is-a re-
lations which were repaired by adding new relations to the
ontology are is-a relations which were repaired by repairing
actions containing only the missing is-a relation from the
first iteration. This exemplifies why it is beneficial to con-
sider already repaired is-a relations in subsequent iterations
as Source and Target sets for some missing is-a relations can
change and more informative solutions might be identified.

The input to the third iteration is a set of 54 is-a relations
and given that no changes were made, these relations are the
final solution.

Lessons Learned
The experiments have shown that the iterative approach to
repairing missing is-a relations is beneficial as in all our ex-
periments additional relations were added to the ontology
in subsequent iterations. Running the system on already re-
paired is-a relations gives the opportunity to identify new
repairing actions which introduce new knowledge to the on-
tology. An example of this is found in the BioTop experi-
ment where is-a relations from the initial set of missing is-a
relations were repaired by more informative solutions in the
third iteration.

Currently, the system removes redundant is-a relations
from a solution after every iteration. This step is crucial for
producing skyline optimal solutions. However, in situations
where an is-a relation is repaired by a relation acquired from
the axioms containing ∃ expressions it might be advanta-
geous to keep also the missing is-a relation in subsequent
iterations even though it is redundant. The reason for this is
that the Source set and the Target set for the missing is-a re-
lation might get updated in later iterations and therefore new
repairing actions might be identified. One way to solve this
is to make it possible in the system to show these missing
is-a relations with their Source and Target sets but not to in-

clude them in the solution unless they are repaired using new
knowledge. For example, let us assume that the missing is-a
relation Human v Primate was repaired in one iteration by
a repairing action {Humanv Primate, SpeciesHomoSapien-
sQualityvOrderPrimatesQuality} in which case the second
relation was found using ∃. In the next iteration the relation
GreatApe v Primate was added to the ontology. If the sys-
tem removed redundant relation Humanv Primate then rela-
tion Humanv GreatApe would not be detected as a possible
repairing action for Human v Primate.

In cases where missing is-a relations are repaired using
new knowledge, new is-a relations are added to the ontology
which were not derivable before. These new is-a relations
can be considered as missing is-a relations as they were not
detected by the detection algorithm. Given this, the system
can also be used for completing the is-a structure of ontolo-
gies, even when no missing is-a relations are available. This
can be achieved by using a set of is-a relations which are al-
ready derivable from the ontology as input. As in the BioTop
experiment, by doing this, the system may identify addi-
tional is-a relations which represent new knowledge which
can be added to the ontology. This methodology also allows
a domain expert to deal with existing is-a relations which
the domain expert has identified as relations which need to
be revised or investigated further.

Related Work
The abduction framework has been applied to the database
and knowledge representation problems. In the early years it
was used in database update problems (Kakas and Mancar-
ella 1990). Database provenance (Cheney, Chiticariu, and
Tan 2009) is a variant of an abduction process. (Eiter and
Gottlob 1995) is the most related article regarding the proof
techniques in the current paper. Calvanese et al. (Calvanese
et al. 2011) presented the complexity results on ABox ab-
duction regarding conjunctive query answering over DL-
Lite ontologies, that is, to explain why a given tuple is miss-
ing in the answer set.

There is not much work on the repairing of missing is-a
structure. In (Lambrix, Liu, and Tan 2009; Lambrix and Liu
2013) this was addressed in the setting of taxonomies where
the problem as well as some preference criteria were de-
fined. Further, an algorithm was given and an implemented
system was proposed. A later version of that system (Lam-
brix and Ivanova 2013), also dealing with semantic defects,
was then used for debugging ontologies related to a project
for the Swedish National Food Agency (Ivanova et al. 2012).
An extension dealing with both ontology debugging and
ontology alignment is described in (Ivanova and Lambrix
2013). In (Lambrix, Dragisic, and Ivanova 2012) the prob-
lem was formalized as an abduction problem and an algo-
rithm was given for finding solutions for ALC acyclic ter-
minologies. In this paper we extend the previous formaliza-
tion by formalizing the role of the domain expert as well
as by introducing preference criteria for the solutions to the
problem. Further, we present complexity results for differ-
ent decision problems and provide an algorithm for EL and
EL++ ontologies. Also, the algorithms in this paper can be



restricted to taxonomies and in that case finds more infor-
mative solutions than (Lambrix, Liu, and Tan 2009). Except
for (Lambrix, Dragisic, and Ivanova 2012) in which GTAP
without abduciles was defined, there is no other work yet on
GTAP. There is some work on TBox abduction. (Hubauer,
Lamparter, and Pirker 2010) proposes an automata-based
approach to TBox abduction in EL. It is based on a reduc-
tion to the axiom pinpointing problem which is then solved
with automata-based methods.

Further, there is work that addresses related topics but
not directly the problem that is addressed in this paper.
There is much work on the detection of missing (is-a) re-
lations in e.g. ontology learning (Cimiano, Buitelaar, and
Magnini 2005), using linguistic (Hearst 1992) and logical
(Corcho et al. 2009) patterns, or by using knowledge inher-
ent in an ontology network (Lambrix, Liu, and Tan 2009;
Ivanova et al. 2012). As mentioned before, these approaches,
in general, do not detect all missing is-a relations. There is
also much work on a dual problem to the one addressed in
this paper, i.e. the debugging of semantic defects. Most of the
work on debugging semantic defects aims at identifying and
removing logical contradictions from an ontology (Haase
and Stojanovic 2005; Schlobach 2005; Kalyanpur et al.
2006b; 2006a; Flouris et al. 2008), from mappings between
ontologies (Meilicke, Stuckenschmidt, and Tamilin 2007;
Wang and Xu 2008; Ji et al. 2009; Qi, Ji, and Haase
2009) or ontologies in a network (Jimenez-Ruiz et al. 2009;
Ivanova et al. 2012).

Finally, there is also work on other abductive reasoning
problems in (simple) description logics including concept
abduction (Colucci et al. 2004; Bienvenu 2008; Donini et al.
2009) and ABox abduction (Du et al. 2011; Klarman, En-
driss, and Schlobach 2011; Calvanese et al. 2012) as defined
in (Elsenbroich, Kutz, and Sattler 2006).

Conclusions and Future Work

We have studied the GTAP in the context of ontology re-
pairing. We first defined a model of GTAP and extended it
with various preferences. Then we presented complexity re-
sults on the existence, relevance and necessity decision prob-
lems for ontologies that can be represented as TBoxes using
a member of the EL family. Unless the polynomial hierarchy
collapses, GTAP is much harder than the classical deduction
problem, which is tractable for EL++. Further, we provided
algorithms and a system for finding skyline optimal solu-
tions to the GTAP and showed its usefulness through exper-
iments.

In the future, we are interested in studying the GTAP for
other knowledge representation languages. Further, we will
investigate variants of the GTAP with different preference
relations and restrictions of the signature. Another interest-
ing topic is to study the GTAP in the context of modular on-
tologies where it may not be possible to introduce changes in
the imported ontologies. Further, we will look into the inte-
gration of different abduction frameworks to deal with both
modeling and semantic defects.

Acknowledgements
We thank the Swedish Research Council (Vetenskapsrådet),
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