

Patrick Lambrix, Guilin Qi, Christian Meilicke

Outline

- Overview of defects in ontologies and ontology networks (30mins - all)
- Debugging semantic defects in ontologies (60mins – Guilin Qi)

□ including QA (10mins)

- Debugging ontology mappings (60mins Christian Meilicke)
- Debugging missing is-a structure (60mins
 - Patrick Lambrix)

Overview of defects in ontologies and ontology networks

What is an ontology?

- It has different definitions in different domains
- In Semantic Web, a popular definition is:

An ontology is an explicit specification of a conceptualization

Gruber, 1993

Ontology languages

RDF (Resource Description Framework)

□ Specifies relationship between data

- RDFS(Resource Description Framework Schema)
 Specifies relationship between schema
- OWL (Web Ontology Language)
 - Specifies more complex relationship between schema based on description logics

Description Logics

Description logics

- Are (mostly) decidable fragments of first-order predicate logic
- Provide logical underpinning of W3C standard OWL
- Building blocks
 - Concepts (unary predicates/formulae with one free variable)
 - o E.g., Person, Lawer ⊔ Doctor
 - Roles (binary predicates/formulae with two free variables)
 - E.g., hasChild
 - Individuals (constants)
 - E.g., John, Mary

Description Logics (Syntax)

Description languages Defining complex concepts: sets of individuals Defining complex roles: binary relations on individuals Complex concepts are built by □ Atomic concepts: Tissue, Heart □ Constructors: Tissue⊓∃part-of.Heart Complex roles are built by □ Atomic roles: part-of, has-location □ Constructors: HasFather⁻

Description Logics (Semantics)

Interpretation: I=(∆^I,.^I)
 □ Domain: ∆^I

 \Box Assignment function .^I

Description Logics (Cont.)

• Interpretation: $I = (\Delta^{I}, I)$

Construct	Syntax	Example	Semantics
Atomic concept	Α	Heart	$\mathbf{A}^{\mathbf{I}} \subseteq \Delta^{\mathbf{I}}$
Atomic role	R	part-of	$\mathbf{R}^{\mathbf{I}} \subseteq \Delta^{\mathbf{I}} \times \Delta^{\mathbf{I}}$
Negation	¬ C	– Heart	$\Delta^{\mathbf{I}} \setminus \mathbf{C}^{\mathbf{I}}$
Conjunction	C ¬ D	LawyernDoctor	$C^{I} \cap D^{I}$
Value restriction	∀ R.C	∀ part-of.Wood	{a ∀b. (a,b) ∈R ^I , b ∈C ^I }
•••			•••

Description Logics (Ontology)

TBox T: defining terminology of application domain

 \Box Inclusion assertion on concept :C \sqsubseteq D

Pericardium ⊑ Tissue ⊓ ∃ part-of.Heart

 \Box Inclusion assertion on roles: R \sqsubseteq S

Part-of ⊑ has-location

- ABox A: stating facts about a specific "world"
 - \square membership assertion: C(a) or R(a,b)

HappyMan(Bob), HasChild(Bob, Mary)

Description Logics(Semantics)

- Given an interpretation I
- Semantics of TBox axioms $\Box I \models C \sqsubseteq D \text{ if } C^{I} \subseteq D^{I}$ $\Box I \models R \sqsubseteq S \text{ if } R^{I} \subseteq D^{I}$
- Semantics of ABox assertions
 - $\Box I \models C(a) \text{ if } a^{I} \in C^{I}$
 - \Box I \models R(a,b) if (a^I,b^I) \in R^I

Description Logics(Semantics)

Model of an ontology O=<T, A>
 I is a model of O if it satisfies all axioms in
 T and all assertions in A

Concept satisfiability

Concept C is satisfiable in O if C^I is nonempty for some model I of O

Ontology Entailment:

 $\mathcal{O} \models \sigma \Leftrightarrow: \mathcal{I} \models \sigma \text{ for all models } \mathcal{I} \text{ of } \mathcal{O}$ $\mathcal{O} \models \text{Unsat}(C) \Leftrightarrow: \mathcal{O} \models C \sqsubseteq \bot$

Description Logics(Semantics)

Incoherent ontology: ontology with at least one unsatisfiable concept

□ Example: {PhDStudent \sqsubseteq Student, PhDStudent \sqsubseteq Employee, Student $\sqsubseteq\neg$ Employee}

- Inconsistent ontology: ontology without a model
 - □ Example: {PhDStudent ⊑ Student, PhDStudent ⊑ Employee, Student ⊑¬Employee, PhDStudent(John)}

Incoherent ontology can be consistent!

Ontology networks

An **ontology network** consists of a set of **ontologies** and sets of **mappings** between those ontologies.

Defects in ontologies and ontology networks

- Neither developing ontologies nor finding mappings between ontologies is an easy task.
- It may happen that
 - ontologies are not correct/complete
 - □ mappings between ontologies are not correct/complete
 - □ the integrated ontology network is not consistent

Defects in ontology networks

ontologies are not correct/complete

- Ontology debugging
- Ontology learning
- □ mappings between ontologies are not correct/complete
 - Ontology alignment
 - Debugging mappings
- □ the integrated ontology network is not consistent
 - Ontology network debugging

Defects in ontologies

- Syntactic defects
 - □ eg. wrong tags or incorrect format
- Semantic defects
 - □ eg. unsatisfiable concepts, inconsistent ontologies
- Modeling defects
 - □ eg. wrong or missing relations

Defects in ontologies and ontology networks

- Ontologies and ontology networks with defects, although often useful, also lead to problems when used in semantically-enabled applications.
- → Wrong conclusions may be derived or valid conclusions may be missed.

Example: Incoherent Ontology

Example: DICE ontology

- Brain⊆CentralNervousSystem п ∃systempart.NervousSystem п BodyPart п ∃ region.HeadAndNeck п ∀region.HeadAndNeck
- CentralNervousSystem⊑NervousSystem
- BodyPart ⊑¬NervousSystem or DisjointWith(BodyPart,NervousSystem)

Example: Inconsistent Ontology

Example from Foaf:

- Person(timbl)
- Homepage(timbl, <u>http://w3.org/</u>)
- Homepage(w3c, <u>http://w3.org/</u>)
- Organization(w3c)
- InverseFunctionalProperty(Homepage)
- DisjointWith(Organization, Person)
- Example from OpenCyc:
 - ArtifactualFeatureType(PopulatedPlace)
 - ExistingStuffType(PopulatedPlace)
 - DisjointWith(ExistingObjectType,ExistingStuffType)
 - ArtifactualFeatureType
 ExistingObjectType

Example - missing is-a relations

- In 2008 Ontology Alignment Evaluation Initiative (OAEI) Anatomy track, task 4
 - □ Ontology MA : Adult Mouse Anatomy Dictionary (2744 concepts)
 - □ Ontology NCI-A : NCI Thesaurus anatomy (3304 concepts)
 - □ 988 mappings between MA and NCI-A
 - 121 missing is-a relations in MA
 - 83 missing is-a relations in NCI-A

Influence of missing structure

Ontology-based querying.

Influence of missing structure

Incomplete results from ontology-based queries

Public ed.gov U.S. National Library of Medicine National Institutes of Health	PubMed IDiseases" [MeSH]	rch Help Search Clear
Medical Subject Headings (MeSH) All MeSH Categories Diseases Category		return 1363 articles return 613 articles 55% results are missed !
 Eye Diseases Scleral Diseases Scleritis 		

Example mappings -OAEI Results 2008-2010

- Matching systems generate highly incoherent mappings
 - □ Up to 50% of all generated correspondences have to be removed until a coherent subset can be found
 - □ No system generated fully coherent mappings in the past
 - Some systems like ASMOV and Codi have been the exception (nearly coherent mappings) and LogMap in 2011
- Mapping coherence becomes more important!

Example: Incoherent Mapping

- String-based matching techniques generates:
- 1#Animal = 2#Animal
 - \square 1#RedWoodAnt \sqsubseteq 2#WoodPlant
- In ontology #1:
 - \Box RedWoodAnt \sqsubseteq Insect \sqsubseteq Animal
- In ontology #2: \Box Animal \sqsubseteq \neg Plant
 - \Box WoodPlant \sqsubseteq Plant

1#RedWoodAnt unsatisfiable!

Why?

Instance migration

O₂ is *inconsistent* after instance migration!

Debugging semantic defects in ontologies

Outline

- Justification for Debugging Ontologies
- Methods for Finding Justifications
- A Scalable Method for Debugging Large Inconsistent Ontologies
- Conclusion

Outline

- Justification for Debugging Ontologies
- Methods for Finding Justifications
- A Scalable Method for Debugging Large Inconsistent Ontologies
- Conclusion

What is a Justification?

Justification

Let $\mathcal{O} \models \sigma$. $J \subseteq \mathcal{O}$ is a justification for σ in $\mathcal{O} \Leftrightarrow$:

- $J \models \sigma$

- for every $J' \subset J$, $J' \not\models \sigma$

minimal set of axioms having the entailment

What is a Justification?

Justification

Let $\mathcal{O} \models \sigma$. $J \subseteq \mathcal{O}$ is a justification for σ in $\mathcal{O} \Leftrightarrow$:

- $J \models \sigma$

- for every $J' \subset J$, $J' \not\models \sigma$

minimal set of axioms having the entailment

Debugging Inconsistent Ontology

- Minimal Inconsistent Subset (MIS) O' of O:
 - □ O' is inconsistent (inconsistency)
 - $\Box O''$ is consistent for $O'' \subset O'(minimalism)$
- MIS and justifications
 - □ A MIS is a special justification
 - O' is a MIS of O iff O' is a justification for $\top \Box \bot$

Debugging Incoherent Ontology

- Minimal Unsatisfiability Preserving Subset (MUPS) T for A w.r.t. T: $T' \subseteq T$
 - □ A is unsatisfiable in T' (unsatisfiability)
 - □ A is satisfiable in any T" where T" ⊂ T' (minimalism)
- MUPS and justifications
 A MUPS is a special justification
 - Computing justification can be reduced to computing MUPS in OWL DL
 - $O \vDash C \sqsubseteq D$ iff $O \vDash C \sqcap \neg D \sqsubseteq \bot$

Outline

- Justification for Debugging Ontologies
- Methods for Finding Justifications
- A Scalable Method for Debugging Large Inconsistent Ontologies
- Conclusion

Finding One Justification

Tableau-based approach
 Is based on tableau algorithm for DLs
 Apply tracing techniques

Black-box based approach

Takes a DL reasoner as an oracle

□ Is easy to implement and still efficient

Compute One Justification

- Start with $J \leftarrow \mathcal{O}$
- For each axiom $lpha \in \mathcal{O}$, if $J \setminus \{lpha\} \models \sigma$ then $J \leftarrow J \setminus \{lpha\}$

It requires n subsumption tests with $n = \operatorname{card}(\mathcal{O})$
Works on Finding Justifications Relevance-based strategy

- Start with $J \leftarrow \{ \alpha \in \mathcal{O} \mid \operatorname{Sig}(\alpha) \cap \operatorname{Sig}(\sigma) \neq \emptyset \}$
- Expand J with $\beta \in \mathcal{O} \setminus J$ with $Sig(\beta) \cap Sig(J) \neq \emptyset$ until $J \models \sigma$

Works on Finding Justifications

- Tableau-based approach
 - Is based on extensions of tableau algorithms
 - Reasoner dependent, hard to implement
- Automata-based approach
 - Automata-based algorithms for reasoning in DLs extended to pinpointing algorithms
- Black-box based approach
 - Reuses existing techniques for diagnosis
 - i.e., Hitting Set Tree algorithm

Works on Finding Justifications

Given a justification J for σ in \mathcal{O} , there is another $J' \Leftrightarrow$:

 $\mathcal{O}ackslash\{lpha\}\models\sigma ext{ for some }lpha\in J$ $J'\subseteq\mathcal{O}ackslash\{lpha\}$

Works on Finding Justifications Finding all justifications

Given a justification J for σ in \mathcal{O} , there is another $J' \Leftrightarrow$:

Given justifications J_1, \ldots, J_n for σ in \mathcal{O} , there is another $J' \Leftrightarrow$: $\mathcal{O} \setminus H \models \sigma$ for some set H s.t. $H \cap J_i \neq \emptyset$

Works on Finding Justifications Hitting set tree algorithm

	$lpha_1$	Pericardium	_	Tissue $\Box \exists part-of.Heart$
V	$\checkmark \alpha_2$	Endocardium	_	$Tissue \sqcap \exists part-of.HeartValve \sqcap \exists part-of.HeartWall$
	$\sim \alpha_3$	HeartValve	_	BodyValve □ ∃part-of.Heart
V	$lpha_4$	HeartWall	_	BodyWall □ ∃part-of.Heart
	$lpha_5$	Pericarditis =	=	Inflammation $\Box \exists has$ -location.Pericardium
V	$\checkmark \alpha_6$	Endocarditis =	=	Inflammation $\Box \exists has$ -location.Endocardium
V	$\checkmark \alpha_7$	Inflammation	_	Disease □ ∃acts-on.Tissue
V	$\checkmark \alpha_8$	Disease □ ∃has-location.Heart	_	HeartDisease
V	$\checkmark \alpha_9$	part-of	_	has-location
V	$\checkmark \alpha_{10}$	Trans	s(h	as-location)

 $\mathcal{O}_{\text{med}} \models \sigma = (\text{Endocarditis} \sqsubseteq \text{HeartDisease})$ $\begin{cases} \alpha_2, \alpha_3, \alpha_6, \alpha_7, \alpha_8, \alpha_9, \alpha_{10} \\ \circ & \alpha_2 \\ \circ & \alpha_6 \\ \circ & \alpha_7 \\ \circ & \alpha_8 \\ \circ & \circ \\ \circ$

Challenging Problems

Fine-grained justifications
 □ Irrelevant parts of an axiom
 □ Example: {B⊑C□D, D⊑E} ⊨ B⊑E

Scalability

NP-hard even for tractable DLs

Modularization-based Strategy

• Start with $J \leftarrow \mathcal{O}'$ with \mathcal{O}' a σ -module in \mathcal{O}

 $\mathcal{O}\models\sigma\Leftrightarrow\mathcal{O}'\models\sigma$

Apply Hitting Set Three algorithm to the module

Reachability-based modules (S,08) and Locality-based modules (Grau et al.,07) Module extraction is purely syntactic; 1st phase is cheap The modules are reasonably small

Modularization-based Strategy

Reachability-based modules (S,08) and Locality-based modules (Grau et al.,07)

Module extraction is purely syntactic; 1st phase is cheap

The modules are reasonably small

Theorem: The (minimal) locality-based module for concept {A} in a SHOIQ ontology O contains all the relevant axioms for any subsumption $\sigma = \{A \sqsubseteq B\}$

Experiments

Three algorithms have been implemented using KAON2 as the subsumptionreasoner:1. ALL_JUSTS(Kalyanpur et al.,07)

- 2. REL_ALL_JUSTS (Ji et al.,08)
- 3. MODULE_ALL_JUSTS

Ontologies	#Axioms	#Concepts	#Roles	Module size		Extraction time
				Average	Maximum	(sec)
GALEN	4 529	2 7 4 8	413	75	530	6
GO	28 897	20 465	1	16	125	40
NCI	46 940	27 652	70	29	436	65

Experiments (Cont.)

Performance comparison of the three algorithms:

Randomly select σ_1 and σ_2 from subs (\mathcal{O})

 $\begin{array}{c|cccc} \mathsf{GALEN:} \sigma_1 & \mathsf{AcuteErosionOfStomach} &\sqsubseteq & \mathsf{GastricPathology} \\ \mathsf{GALEN:} \sigma_2 & \mathsf{AppendicularArtery} &\sqsubseteq & \mathsf{PhysicalStructure} \\ \mathsf{GO:} \sigma_1 & & \mathsf{GO_0000024} &\sqsubseteq & \mathsf{GO_0007582} \\ \mathsf{GO:} \sigma_2 & & & \mathsf{GO_0000027} &\sqsubseteq & \mathsf{GO_0044238} \\ \mathsf{NCI:} \sigma_1 & & & \mathsf{CD97_Antigen} &\sqsubseteq & \mathsf{Protein} \\ \mathsf{NCI:} \sigma_2 & & & & \mathsf{APC_8024} &\sqsubseteq & \mathsf{Drugs_and_Chemicals} \end{array}$

Results

ALL_JUSTS REL_ALL_JUSTS MODULE_ALL_JUSTS

Problem

Problem 1: not goal-directed, i.e., independent of the super-concept in a given concept subsumption entailment

Example:

- The syntactic locality-based module w.r.t. ChiefActress is O={ax₁,...,ax₅}
- Size of the module can be still large
- Problem 2: contain all concept/role assertions

Goal-directed Approach

The problem to be solved

A just-preserving module of O for $A \subseteq B \Leftrightarrow A$ just-preserving module of O' for $B(a_A)$

So, the problem we focus on is

Key Idea

Inspiration

- Relatively easy to analyze models of a propositional program
- OWL DL can be translated to propositional logic

related to the unsatisfiability

Experiments

- Aim: module extracted by goal-directed (GD) approach vs. syntactic locality-based module
 - □ Module size
 - Efficiency and scalability of the subsequent computation of all justifications
- Test ontologies
 - □ Real life ontologies: GALEN, GO, NCI
 - ←40 concept subsumption entailments per ontology
 - Benchmark ontologies: LUBM1/10, UOBM-Lite1/10
 - ← 40 concept membership entailments per ontology

Offline Results

0	$ N_C $	$ N_R $	$ N_I $	$ \mathcal{T} $	$ \mathcal{A} $	Offline time(sec)
GALEN	2,748	412	0	4,529	0	1,431
GO	20,465	1	0	28,897	0	7,519
NCI	27,652	70	0	46,940	0	10,901
LUBM1	59	16	50,253	94	100,543	9
LUBM10	59	16	629,568	94	1,272,575	116
UOBM-Lite1	51	43	95,010	130	245,864	62
UOBM-Lite10	51	43	820,208	130	2,096,973	679

- The offline phase: costly, but reasonable
 - Independent of any given entailment on named objects
 - Tractable

Comparison Results

	Mod	ule Extr. by O	ur Method	Syn. Locality-based Module			
	#SH	$SHT_{avg}(sec)$	Size _{avg}	#SH	$SHT_{avg}(sec)$	Size _{avg}	
GALEN	40	3.555	69.75	40	3.814	134.78	
GO	40	7.314	9.55	40	11.985	32.25	
NCI	40	4.065	7.23	40	7.518	70.95	
LUBM1	40	69.061	22.15	20	201.481	100,596.00	
LUBM10	40	95.721	20.48	0	MO ₁	1,272,615.00	
UOBM-Lite1	16	24.813	897.80	11	155.220	245,966.00	
UOBM-Lite10	15	32.278	799.83	0	MO ₂	2,097,047.00	

- Modules extracted by GD modules <_{size} locality-based modules
- Finding all justifications in GD modules >_{efficient} Finding all justifications in locality-based modules
- Finding all justifications in GD modules >>_{scalable} Finding all justifications in locality-based modules (against increasing number of ABox axioms)

"Finding All Justifications of OWL Entailments Using TMS and MapReduce" CIKM 2011

Experiments (scalability)

Dat	aSet	Time(min)	Speedup (Baseline: LUBM1000-2)
LU	BM1000-2	39.25	1
LU	BM1000-4	22.47	1.75
LU	BM1000-8	16.98	2.31
	DataSet	Time(min)	Speedup
			(Baseline: Dbpedia-1)
	Dbpedia-1	11.78	1
	Dbpedia-2	7.72	1.51
	Dbpedia-4	6.26	1.88
	Dbpedia-8	4.88	2.42
	Speedup:	average ave	g just.time baseline rage just.time

Finding Justification in EL+

- An incremental method to compute all Just
 - Utilizes hierarch information obtained from classification
 - □ Reuse computed justifications
- Advantage: no labels are attached to entailed subsumption

"An Algorithm for Axiom Pinpointing in EL+ and its Incremental Variant" CIKM 2011 (poster)

Outline

- Justification for Debugging Ontologies
- Methods for Finding Justifications
- A Scalable Method for Debugging Large Inconsistent Ontologies
- Conclusion

Problem

 Problem of existing modularization-based optimizations

- □ Are hard to be adapted
- □ May not be useful if the union of all the MIS is large
- Example:

Tbox: $A \sqsubseteq B$ $B \sqcap D \sqsubseteq \bot$ Abox: A(a1),...,A(an) C(a1),...,C(an)

The union of all the MIS is the ontology itself

Goal-directed Approach

The problem to be solved

A just-preserving module of O for $A \subseteq B \Leftrightarrow A$ just-preserving module of O' for $B(a_A)$

So, the problem we focus on is

Key Idea

- Compile an ontology to a propositional program
- Decompose the program
- Obtain a decomposition of the ontology

Experimental Data

Table 1. The characteristics of all test ontologies

Ø	Expressivity	#C	#R	#I	#Ax
University	$SOIF(\mathbf{D})$	30	12	34	74
Chemical	ALCHF	48	20	48	162
MiniTambis	\mathcal{ALCF}	183	44	183	350
UOBM-Lite1 $_{+50\sim+250}$				$95,\!113-\!95,\!522$	$246,\!144-\!246,\!744$
UOBM-Lite $5_{+50\sim+250}$	$\mathcal{SHIF}(\mathbf{D})$	51	43	$420,\!251\!-\!420,\!662$	1,075,340-1,075,940
UOBM-Lite $10_{+50\sim+250}$				820,358-820,958	2,097,253-2,097,853

Note: "#C", "#R"", "#I"" and "#Ax" are respectively the numbers of atomic concepts, atomic roles, individuals and axioms in \mathcal{O} .

Results

Table 2. Typical comparison results and some runtime statistics

Ø	Pellet	Ours	Compile	Decompose	#MIS	#Sub	#A-S	#M-S
University	0:02:40	0:00:25	0:00:04	0:00:01	8	8	10	1
Chemical	>4:00:00	0:02:39	0:00:16	0:00:01	362	37	31	21
MiniTambis	>4:00:00	0:03:10	0:00:59	0:00:01	37	30	19	2
UOBM-Lite1 ₊₅₀	>4:00:00	0:06:47	0:01:33	0:00:03	50	47	7	2
UOBM-Lite1 ₊₂₅₀	>4:00:00	0:20:04	0:01:38	0:00:04	250	140	29	9
UOBM-Lite5 ₊₅₀	>4:00:00	0:35:02	0:10:08	0:00:28	50	50	5	1
UOBM-Lite 10_{+50}	out of mem	1:14:33	0:15:36	0:00:32	50	50	5	1

Note: "Pellet" (resp. "Ours") is the total time Pellet (resp. our system) spends to compute all MISs of \mathcal{O} ; "Compile" (resp. "Decompose") is the time spent in the O-PP compilation process (resp. the decomposition process); "#MIS" is the number of MISs of \mathcal{O} ; "#Sub" is the number of extracted sub-ontologies that are not in any consistent bin; "#A-S" (resp. "#M-S") is the maximum number of axioms (resp. MISs) in every extracted sub-ontology that is not in any consistent bin.

Results

Fig. 1. The total execution time (seconds) against increasing numbers of conflicts

Conclusion

Finding all justifications is a hard task

There are methods that are practical
But they do not scale to large ontologies

Our solutions

- Modularization: syntactic locality-based module extraction and goal-directed module extraction
- Optimization based on MapReduce
- Incremental computation of justifications
- A decomposition-based optimization method

References

- Gang Wu, Guilin Qi, Jianfeng Du. Finding All Justifications of OWL Entailments Using TMS and MapReduce, Proc. of19th ACM Conference on Information and Knowledge Management (CIKM), 2011.
- Xiaojun Cheng, Guilin Qi. An Algorithm for Axiom Pinpointing in EL+ and its Incremental Variant, Proc. of 19th ACM Conference on Information and Knowledge Management (CIKM), 2011.
- Jianfeng Du and Guilin Qi. Decomposition-based Optimization for Debugging of Inconsistent OWL DL Ontologies. Proceedings of the 4th International Conference on Knowledge Science, Engineering and Management (KSEM), 39–50, 2010.
- Jianfeng Du, Guilin Qi and Qiu Ji. Goal-Directed Module Extraction for Explaining OWL DL Entailments, In Proceedings of the 8th International Semantic Web Conference (ISWC), 163-179, 2009.
- Boontawee Suntisrivaraporn, Guilin Qi, Qiu Ji, Peter Haase. A Modularization-based Approach to Finding All Justifications for OWL DL Entailments, in the 3rd Asian Semantic Web Conference (ASWC), 1-15, 2008.

Debugging mappings in ontology networks

Outline

- Background & Motivating Example
- Preliminaries/Theory
- Algorithms
 - □ Reasoning Components
 - □ Local Optimal Diagnosis
 - □ Global Optimal Diagnosis
- Implemented System
- Experimental Results
- User Support

Outline

Background & Motivating Example

Preliminaries/Theory

Algorithms

- Reasoning Components
- Local Optimal Diagnosis
- Global Optimal Diagnosis
- Implemented System
- Experimental Results
- User Support

Terminology

- Ontology Matching is a process that creates alignments (or mappings)
- Alignments are sets of correspondences
- Correspondences are links between concepts, properties or instances of two ontologies

Ontology Matching

Reductionistic Alignment Semantic

- A reductionistic alignment semantic S is a function that maps an alignment A between O₁ and O₂ on a set of axioms X.
- The aligned ontology $A_S(O_1, O_2)$ is defined as $O_1 \cup O_2 \cup X$ where S refers to some semantics
- Natural Semantics

□ X results from a 1:1 mapping from correspondences to axioms

- \langle Person, Human, =, 0.9 $\rangle \mapsto$ Person = Human
- \langle createdBy, writtenBy, >, 0.75 $\rangle \mapsto$ createdBy \supseteq writtenBy

Alignment Incoherence

- Alignment makes an satisfiable concept unsatisfiable
- Concrete definition depends on:
 - □ What kind of concepts are taken into account?
 - Only atomic concepts as **Person, Document**
 - Also concepts of type 9 hasWritten.>
 - □ Semantics of alignments/correspondences?
 - Distributed Description Logics
 - "Natural Semantics" = direct translation to axioms

Degree of Incoherence

Motivating Example

Translating between English and an unknown language

Motivating Example

Motivating Example

Example in DL

 $O_1 = \{$

Tree \equiv Snok Maple = Gavagai

 $O_2 = \{$

Gavagai $\sqsubseteq \neg$ Snok

 $A_{S}(O_{1}, O_{2}) \models Gavagai \sqsubseteq Snok$ $A_{S}(O_{1}, O_{2}) \models Gavagai \sqsubseteq : Snok$

100

... and thus $A_s(O_1, O_2) \vDash Gavagai \sqsubseteq \bot$

Reasoning-sensitive Applications

- Alignments can be used in many applications
 - □ Instance Migration
 - □ Query Rewriting
 - Ontology Merging
 - □ …

Incoherent alignments result in inconsistencies or empty result sets

Why Coherent Alignments?

- Reasoning-sensitive applications need coherent alignments
- Positive impact on the precision of alignments

Outline

Background & Motivating Example

Preliminaries/Theory

- Algorithms
 - Reasoning Components
 - Local Optimal Diagnosis
 - Global Optimal Diagnosis
- Implemented System / Availability
- Experimental Results
- User Support

Diagnosis - Idea

■ Introduced by Reiter (1987):

Dermine a set of those system components which, when assumed to be functioning abnormally, explain the discrepancy between observed and correct behaviour.

- System is the aligned ontology $A_s(O_1, O_2)$
- Abnormal behaviour = Incoherence
- Elements from A are assumed to be incorrect

Conflict Sets and MIPS

- Reiter talks about conflict sets, which are minimal subsets of system components leading to abnormal behaviour
- MIPS = Minimal Incoherence Preserving Subalignment
 - \Box M μ A is a MIPS iff
 - M is incoherent
 - Each M' ¹/₂ M is coherent

Diagnosis

- A subset ¢ µ A of an incoherent alignment A is diagnosis for A (w.r.t. O₁ and O₂) iff
 - □ A n ¢ is coherent and there exists no ¢' ½ ¢ such that An¢' is coherent

• It follows:

 \Box ¢ is a minimal hitting set over all MIPS in A

Two Examples

First Idea

- Pick a randomly chosen MIPS and remove 'worst' correspondence
- Repeat until no MIPS is left
- Algorithm fails in constructing minimal hitting set

low confidence

high confidence

Definition: Accused correspondence

low confidence

A correspondence $c \in A$ is accused by A iff there exists a MIPS in A with $c \in M$ such that for all $c' \neq c$ in M it holds that

- $(1) \ \mathbb{R}(c^{\prime}) \geq \mathbb{R}(c)$ and
- (2) c' is not accused by A.

Definition: Local optimal diagnosis (LOD)

The set of all accussed correspondences is referred to as local optimal diagnosis (LOD).

Local Optimal Diagnosis: Example

IV

(e)

ь

а

Ш

d

a)

Confidences

$$\mbox{(a)} = 1.0 \\
 \mbox{(b)} = 0.9 \\
 \mbox{(c)} = 0.8 \\
 \mbox{(d)} = 0.7 \\
 \mbox{(e)} = 0.6$$

(Ե)

Global Optimal Diagnosis

Definition: Global optimal diagnosis

 $\phi \mu A$ is a global optimal diagnosis for an inocherent alignment A, iff

- A n ¢ is coherent
- there exists no ¢' μ A with $\sum_{c 2 \notin} \mathbb{B}(c) < \sum_{c 2 \notin} \mathbb{B}(c)$ for which A n ¢' is coherent
- A diagnosis (= minimal hitting set) which "removes as less confidence as possible".
- Note: Requires to compute the smallest weighted hitting set

Global Optimal Diagnosis

Confidences

Differences between local and global optimal diagnosis occur only if MIPS are overlapping

Outline

- Background & Motivating Example
- Preliminaries/Theory
- Algorithms
 - **Reasoning Components**
 - Local Optimal Diagnosis
 - Global Optimal Diagnosis
- Implemented System / Availability
- Experimental Results
- User Support

Incoherence Detection

- Test for incoherence
 - Classify both ontologies and check for unsatisfiable classes C
 - \square Classify the aligned ontology and check for unsatisfiable classes C_A
 - \Box Compare C and C_A

MIPS Detection

- Expand and shrink algorithm to find one MIPS proposed by Kalyanpur (2006) for ontology debugging
- Iterative procedure that requires |A| times reasoning in ther aligned ontologies in worst case

Inefficient:

- □ Each step in the loop requires to compute unsatisfiable classes in $A_S(O_1, O_2)$ because A has changed
- □ Algorithm finds only one MIPS per iteration

Black-Box vs. White-Box

- Approach on last slides are black-box approaches
- White-Box approach works differently:
 - □ Compute all MUPS for one unsatisfiable concept by single call to reasoner
 - Trace relevant axioms that resulted in unsatifiability in tableau
 - □ Might be more efficient ... but not <u>directly</u> applicable to debugging alignments

Pattern-based Reasoning

- Idea: Use incomplete method for incoherence detection for pairs of correspondences
- First classify O₁ and O₂ once, then check certain patterns for all pairs of correspondences

MIPS Example I

A a same to dDaman

Alignment

(1) $(Acceptance_{\#1}, AcceptedPaper_{\#2}, =$	}
(2) $\langle Paper_{\#1}, Paper_{\#2}, \equiv \rangle$	
Axioms of ontology #1	Axioms of ontology #2
(3) Paper \sqsubseteq Document	(6) AcceptedPaper \sqsubseteq EvaluatedPaper
(4) Acceptance \sqsubseteq Decision	(7) EvaluatedPaper \sqsubseteq AssignedPaper
(5) Document $\sqsubseteq \neg$ Decision	(8) AssignedPaper ⊑ SubmittedPaper
	(9) SubmittedPaper ⊑ Paper
Entailments	
(10) $Acceptance_{\#1} \equiv AcceptedPaper_{\#2}$	from (1)
(11) $Paper_{\#1} \equiv Paper_{\#2}$	from(2)
(12) AcceptedPaper_ $\#_2 \sqsubseteq Paper_{\#_2}$	from (6), (7), (8) and (9)
(13) $Acceptance_{\#1} \sqsubseteq Paper_{\#2}$	from (10) and (12)
(14) $Acceptance_{\#1} \sqsubseteq Paper_{\#1}$	from (11) and (13)
(15) Acceptance $_{\#1} \sqsubseteq Document_{\#1}$	from (3) and (14)
(16) Acceptance $_{\#1} \sqsubseteq \neg Decision_{\#1}$	from (5) and (15)
(17) Acceptance _{#1} $\sqsubseteq \bot$	from (4) and (16)

_\

MIPS Example II

Alignment	
(1) $\langle rejectPaper_{\#1}, reviewerOfPaper_{\#2}, \equiv \rangle$	
Axioms of ontology #1	Axioms of ontology #2
(2) $\exists_{\geq 2} reject Paper^{-1}$. $\top \sqsubseteq \bot$	(3) reviewerOfPaper \equiv
	$has Reviewer^{-1}$
	(4) AssignedPaper \sqsubseteq
	$\exists_{\geq 3}$ has Reviewer. \top
Entailments	
(5) $rejectPaper_{\#1} \equiv reviewerOfPaper_{\#2}$	from (1)
(6) $rejectPaper_{\#1}^{-1} \equiv hasReviewer_{\#2}$	from (3) and (5)
(7) rejectPaper ["] _{#1} \equiv hasReviewer ⁻¹ _{#2}	from (6)
(8) Assigned Paper _{#2} $\sqsubseteq \exists_{\geq 3} reject Paper_{\#1}^{-1}$. \top	from (4) and (7)
(9) Assigned Paper _{#2} $\sqsubseteq \exists_{\geq 2} reject Paper_{\#1}^{-1}$. \top	from (8)
(10) AssignedPaper _{#2} $\sqsubseteq \bot$	from (2) and (9)

Outline

- Background & Motivating Example
- Preliminaries/Theory

Algorithms

- Reasoning Components
- **Local Optimal Diagnosis**
- Global Optimal Diagnosis
- Implemented System / Availability
- Experimental Results
- User Support

Local Optimal Diagnosis - BF

Local Optimal Diagnosis - BF

... final result is the Local Optimal Diagnosis {3,6,8}

Improvements

- Only simple brute force variant presented here
 Speed up with pattern-based reasoning in:

 Meilicke, Stuckenschmidt. An efficient method for computing alignment diagnoses. RR-2009.
- Main Idea: Use pattern-based reasoning as above, check correctness afterwards and fix MIPS that have been missed out

Outline

- Background & Motivating Example
- Preliminaries/Theory

Algorithms

- Reasoning Components
- Local Optimal Diagnosis
- Global Optimal Diagnosis
- Implemented System / Availability
- Experimental Results
- User Support

a	b	с	d	e	f	
0.8	0.7	0.6	0.5	0.4	0.3	= 0.0(1

Patternbased Reasoning

- Idea: Use incomplete method for incoherence detection for pairs of correspondences in preprocessing step
- Use found MIPS for branching
- Use fullfledged reasoning only, when all previously found MIPS are resolved

A*-Search -Patternbased Reasoning

Outline

- Background & Motivating Example
- Preliminaries/Theory
- Algorithms
 - □ Reasoning Components
 - Local Optimal Diagnosis
 - □ Global Optimal Diagnosis

Implemented System / Availability

- Experimental Results
- User Support

Short Demo

http://web.informatik.uni-mannheim.de/alcomo/

Outline

- Background & Motivating Example
- Preliminaries/Theory
- Algorithms
 - □ Reasoning Components
 - Local Optimal Diagnosis
 - Global Optimal Diagnosis
- Implemented System / Availability

Experimental Results

User Support

OAEI

- Ontology Alignment Evaluation Initiative
- Yearly campaign that offeres several evaluation tracks for ontology matching systems
- Takes place tomorrow together with OM workshop
- Rich source for testcases
 Ontologie pairs and reference alignments
 Automtically generated alignments

Global vs. Local

Aggregated Results - Global

	Input			Repaired			Comparison		
Matcher	pre	f	rec	pre	f	rec	pre	f	rec
AgrMaker ₁₀	0.493	0.559	0.647	0.55	0.58	0.614	+0.057	+0.021	-0.033
ASMOV_{10}	0.348	0.469	0.719	0.381	0.496	0.709	+0.033	+0.027	-0.01
Ef2Match10	0.487	0.549	0.627	0.53	0.565	0.605	+0.043	+0.016	-0.022
Falcon ₁₀	0.583	0.578	0.572	0.659	0.607	0.562	+0.076	+0.029	-0.01
$GeRMeSMB_{10}$	0.328	0.397	0.503	0.352	0.402	0.467	+0.024	+0.005	-0.036
$SOBOM_{10}$	0.282	0.384	0.603	0.337	0.412	0.531	+0.055	+0.028	-0.072
AgrMaker ₀₉	0.404	0.478	0.585	0.484	0.513	0.546	+0.08	+0.035	-0.039
AgrMakerE ₀₉	0.282	0.381	0.585	0.316	0.384	0.49	+0.034	+0.003	-0.095
Aroma ₀₉	0.352	0.409	0.487	0.411	0.435	0.461	+0.059	+0.026	-0.026
ASMOV ₀₉	0.374	0.392	0.412	0.382	0.396	0.412	+0.008	+0.004	+/-0
ASMOV_{08}	0.312	0.379	0.484	0.344	0.393	0.458	+0.032	+0.014	-0.026
Lily ₀₈	0.406	0.457	0.523	0.443	0.464	0.487	+0.037	+0.007	-0.036
Average	0.388	0.453	0.562	0.432	0.471	0.528	+0.044	+0.018	-0.034

Extracting Coherent Alignments

125

Outline

- Background & Motivating Example
- Preliminaries/Theory
- Algorithms
 - □ Reasoning Components
 - Local Optimal Diagnosis
 - □ Global Optimal Diagnosis
- Implemented System / Availability
- Experimental Results
- User Support

Motivation

Automatically generated alignments are not perfectManually generating alignments takes lots of efforts

- Idea: Automatically generate an (maybe imprecise) alignment with high recall and revise it manually!
- Can alignment incoherence be used to support the process?

Main Idea

User makes decision given list of correspondences
 User can ACCEPT a correspondence
 or REJECT a correspondence.

(Manually) undecided correspondences are
 Involved in some conflict
 Not involved in some conflict
 Have to be rejected because of an ACCEPT

User Support: Demo

- <u>http://web.informatik.uni-</u> <u>mannheim.de/alcomo/revision/asmov/</u>
- <u>http://web.informatik.uni-</u> mannheim.de/alcomo/revision/dssim/

Other Approaches

- Previous approach was minimalistic
 Reduce overload for the user
- Alternative approach: ContentMap
 - □ Jimenez-Ruiz, et al.: Ontology integration using mappings: Towards getting the right logical consequences.
 - □ Can show all justifications (MIPS) and repair plans (diagnoses)

References

- Christian Meilicke: Alignment Incoherence in Ontology Matching. Thesis, University of Mannheim, Chair of Artificial Intelligence, 2011.
- Guilin Qi, Qiu Ji, Peter Haase: A Conflict-Based Operator for Mapping Revision. In Proceedings of the 8th International Semantic Web Conference (ISWC'09), 521-536, 2009.
- Related Topics at ISWC
 - □ On Monday: OM-Workshop
 - On Thursday 14:00: Ernesto Jiménez-Ruiz and Bernardo Cuenca Grau: LogMap: Logic-based and Scalable Ontology Matching

Debugging the missing is-a structure of taxonomies

Outline

- Background
- Definitions
- Debugging approach
- Implemented system
- Experiments
- Future Work

Outline

Background

- Definitions
- Debugging approach
- Implemented system
- Experiments
- Future Work

Taxonomy networks

A **taxonomy network** consists of a set of **taxonomies** and sets of **mappings** between these taxonomies.

Defects in ontologies

- Syntactic defects
 - □ eg. wrong tags or incorrect format
- Semantic defects
 - □ eg. unsatisfiable concepts or inconsistent ontologies

Modeling defects

- □ eg. wrong or missing relations
- \rightarrow Solution requires domain knowledge.

Missing is-a relations

- In 2008 Ontology Alignment Evaluation Initiative (OAEI) Anatomy track, task 4
 - □ Ontology MA : Adult Mouse Anatomy Dictionary (2744 concepts)
 - □ Ontology NCI-A : NCI Thesaurus anatomy (3304 concepts)
 - □ Partial reference alignment between them (988 mappings)
 - 121 missing is-a relations in MA
 - 83 missing is-a relations in NCI-A

Influence of missing structure

Ontology-based querying.

Influence of missing structure

Incomplete results from ontology-based queries

Assumptions and scope

We focus on **taxonomies**,

 \rightarrow named concepts and is-a relations.

We assume that all the existing structure in the taxonomies is correct.

Assumptions and scope

- We assume that all the existing mappings in the taxonomy network are correct.
- The mappings represent equivalence and subsumption.

Partial Reference Alignment (PRA) – is a set of correct mappings between two ontologies.

□ The existing correct mappings are called **PRA mappings.**

□ Concepts in PRA mappings are called **PRA concepts.**

Debugging missing is-a structure in taxonomy networks

Given a set of taxonomies networked by sets of **correct** mappings, how to **detect and repair the missing is-a relations in these networked taxonomies**?

Outline

Background

Definitions

- Debugging approach
- Implemented system
- Experiments
- Future Work

Detecting missing is-a relations

- Using external knowledge
 - □ Ontology learning
 - □ Discovery of subsumption relations (Hearst patterns)
- Using knowledge inherent in the network
Missing is-a relations

Given two concepts A and B in a taxonomy O in the network. If "A is-a B" is **logically derivable from the taxonomy network**, but **not from the taxonomy O alone**, then "A is-a B" is a **missing is-a relation**.

Example of missing is-a relations

• Two small pieces of MA and NCI-A, both about concept "joint", and 3 equivalence mappings.

Repairing missing is-a relations

Repair the original taxonomies by adding a set of is-a relations (called **structural repair**) to each taxonomy, such that the missing is-a relations can be derived from the extended taxonomy.

Structural repair

- ☐ The is-a relations within the structural repair are called 'repairing actions'.
- → The set of missing is-a relations themselves is a structural repair, but it is not always the only nor the best choice.

Example

Question:

How can we recognize structural repairs that are interesting for a domain expert?

 \rightarrow heuristics.

Axiom-based Heuristic

Prefer to use structural repair **without non-contributing** repairing actions.

Information-based heuristic

Prefer to use structural repair with **more informative** repairing actions.

(limb_joint, joint) is more informative than
(hip_joint, joint) and (elbow_joint, joint)

Strict hierarchy heuristic

Prefer to use structural repair which **does not change the existing is-a relations in the original ontology into equivalence relations**.

(**bone, joint**) will introduce an equivalence relation between '**joint**' and '**bone**'.

Single relations heuristic

Assume that it is more likely that domain experts have missed a single relation than a chain of relations

Assume it is more likely that

 (ankle_joint, limb_joint)
 is missing than
 (ankle_joint, x1) and (x1,x2), and ... and (xk-1, xk)
 and (xk, limb_joint).

Outline

- Background
- Definitions
- Debugging approach
- Implemented system
- Experiments
- Future Work

Overview of debugging approach

Phase 1. Detecting missing is-a relations

Detecting missing is-a relations

- Based on definition
- Only need to detect missing is-a relations between PRA concepts

Phase 2. Generating repairing actions

Example

For missing is-a relation (**hip_joint, joint**), we generate two sets of concepts representing 3×4 repairing actions using algorithm 1.

Algorithm 1 - basic algorithm

Intuition

Given a set of missing is-a relations, find possible repairing actions taking into account that all missing is-a relations will be repaired.

Figure 4.5: The basic algorithm for generating repairing actions.

Algorithm 1 - basic algorithm

Conforms to the heuristics

- □ For a repairing action (**s**, **t**) regarding missing is-a relation (**a**, **b**), it is guaranteed that
 - since $\mathbf{a} \to \mathbf{s}$ and $\mathbf{t} \to \mathbf{b}$

 \Box (s, t) is relevant for repairing (a, b) <u>Axiom-based heuristic</u>

- □ (s, t) is at least as informative as (a, b) *Information-based heuristic*
- (a, t) and (s, b) will not introduce equivalence relations, where in the original taxonomy we have only is-a relations
 <u>Strict-hierarchy heuristic</u>
- For each missing is-a relation one is-a relation is selected for repairing

Single relation heuristic

3. For each (a,b) ∈ M: Source(a,b) := super-concepts(a) - super-concepts(b); Target(a,b) := sub-concepts(b) - sub-concepts(a);
4. Missing is-a relation (a,b) can be repaired by choosing an element from Source(a,b) × Target(a,b).

Algorithm 2 - extended algorithm

Intuition:

Taking into account influence of other missing is-a relations that are common to all possible choices for repairing actions of other missing is-a relations.

Input
The ontology under repair O, its set of missing is-a relations M.
Output
Repairing actions.
Algorithm
1. Initialize KB with ontology;
2. For every missing is-a relation $(a,b) \in M$:
Create two new concepts x and y in the KB;
Add the axioms $a \rightarrow x, x \rightarrow y, y \rightarrow b$ to the KB;
3. For each $(a,b) \in M$:
Source-ext(a,b) := super-concepts(a) - super-concepts(x);
Target-ext(a,b) := sub-concepts(b) - sub-concepts(y);
4. Missing is-a relation (a, b) can be repaired by choosing an original ontology element
from Source-ext (a,b) and an original ontology element from Target-ext (a,b) .

Figure 4.7: The extended algorithm for generating repairing actions.

 $\begin{aligned} Source-ext(5,4) &= \{5,4,1,2,x_1,y_1\} - \{4,1,x_1,y_1\} = \{5,2\} \\ Target-ext(5,4) &= \{4,8,9,10,5,6,7,x_1,y_1,x_2,y_2\} - \{5,6,7,x_1,y_1\} \\ &= \{4,8,9,10,x_2,y_2\} \\ Source-ext(8,4) &= \{8,4,1,3,x_2,y_2\} - \{4,1,x_2,y_2\} = \{8,3\} \\ Target-ext(8,4) &= \{4,8,9,10,5,6,7,x_1,y_1,x_2,y_2\} - \{8,9,10,x_2,y_2\} \\ &= \{4,5,6,7,2\} \end{aligned}$

For instance, if we choose repairing action (2, 4) for missing is-a relation (5, 4), which means x_1 and y_1 will become equivalent to 2 and 4 respectively, the influence is that concept 2 will become a new element in Target-ext(8, 4)

Phase 3. Ranking missing is-a relations

 Rank the missing is-a relations with respect to the number of possible repairing actions.

Phase 4. Recommending repairing actions

Recommend repairing actions based on external domain knowledge, such as WordNet and UMLS.

Recommendation algorithm

- We assume that we can query the external domain knowledge regarding subsumption of concepts
 - □ General thesauri
 - e.g. WordNet
 - □ Specialized domain-specific sources
 - e.g. UMLS (Unified Medical Language System)

Algorithm

□ Given a missing is-a relation with already generated repairing actions, among those, recommend the most informative repairing actions that are supported by evidence in the domain knowledge.

Example

For missing is-a relation (**hip_joint, joint**), the recommendation algorithm suggests from the previously generated repairing actions the use of (**limb_joint, joint**).

Phase 5. Executing repairing actions

Executing repairing actions

Intuition

- Every time a repairing action is chosen and executed, the repairing actions for the other missing is-a relations need to be recomputed based on the taxonomy extended with the chosen repairing action.
- □ In order to optimize the update process, keep track of the influences.

Outline

- Background
- Definitions
- Debugging approach

Implemented system

- Experiments
- Future Work

Generate Repaining Actions Massing IS-A Relations Recommend Repaining Actions Recommend Repaining Actions I Source : 3 Image: 10000480; wrist joint Image: 10000490; joint Image: 10000490; joint Image: 10000490; joint Ma_0000681; sing is-a relations Mssing IS-A Relations : 7 Image: 10000480; wrist joint Image: 10000480; wrist joint Image: 10000490; joint Image: 100000490; joint Image: 10000490; joint	RepOSE		
Ontologies networked by PRAs Load Ontologies and PRAs Ontologies : 2 joint_mouse_anatomy.owl Image: Show Ontology Missing is-a relations Image: Show Ontology Detect Missing IS-A Relations Missing IS-A Relations : 7 Image: Im	RepO	SE Repair of Ontological Structure Environment	
Load Ontologies and PRAs Ontologies : 2 joint_mouse_anatomy.owl Missing is-a relations Detect Missing IS-A Relations Missing IS-A Relations : 7 MA_0000460:wrist joint Repair Generate Repairing Actions Recommend Repairing Actions Repair Source : 3 MA_0000460:wrist joint MA_0001505: interior gidts MA_0000319 MA_0001697:stage000000019 MA_0001697:stage00000000:gnndaumois MA_0001697:stage00000000:gnnotaments MA_00001697:stage00000000:gnnotaments MA_00001697:stage0000000:gnnotaments MA_00001697:stage0000000:gnnotaments MA_00001697:stage0000000:gnnotaments MA_00001697:stage0000000:gnnotaling MA_00001697:stage0000000:gnnotaling MA_00001697:stage0000000:gnnotaling MA_00001697:stage0000000:gnnotaling MA_00001697:stage000000:gnnotaling MA_00001697:stage0000000:gnnotaling MA_000001697:stage0000000:gnnotaling	Ontologies networked by PRAs		
joint_mouse_anatomy.owl Show Ontology Missing IS-A relations Missing IS-A Relations: Detect Missing IS-A Relations Missing IS-A Relations:: 7 MA_0000460:wrist joint MA_0000319;joint Repair Recommend Repairing Actions Recommendations:: 1 UseExtendedAlg WordNet UMLSK MA_0000319 Source : 3 If WordNet UMLSK MA_0001507.44(p000050: start) p00022: pprovial point MA_0001505: juint of girlds MA_0001505: juint of girlds MA_0001507.44(p000450: start) p00022: pprovial point MA_0000151: juint of wordstart point of start MA_0000451: starts point of start MA_000151: juint of starts point MA_0000514: torelimib joint Save MA_000151: juint of starts point of start	Load Ontologies and PRAs	Ontologies : 2	
Missing is-a relations Detect Missing IS-A Relations Missing IS-A Relations : 7 Ma_0000460:wrist joint -> MA_0000319;joint ▼ Repair		joint_mouse_anatomy.owl Show Ontology	Ę
Detect Missing IS-A Relations Missing IS-A Relations : 7 MA_0000460:wrist joint -> MA_0000319;joint Repair Generate Repairing Actions Recommend Repairing Actions Recommendations : 1 UseExtendedAlg Source : 3 MA_0000460: wrist joint Ma_0000460: wrist joint MA_0000691: simet of ginter MA_0000460: wrist joint MA_0000691: simet of ginter MA_00001512: joint of wrist joint MA_00001614: Sprelimb joint	Missing is-a relations		
MA_0000460:wrist joint -> MA_0000319;joint Repair Generate Repairing Actions Recommend Repairing Actions UseExtendedAlg WordNet UMLSK Source : 3 MA_0000691->MA_0000319 Image: Commend Repairing Actions Source : 3 MA_00015026: spint of sides MA_0001480: wrist joint MA_0001499: gomphosis MA_0000480: wrist joint MA_0000480: wrist joint MA_0000480: wrist joint MA_0000499: spint of sides MA_0000499: spint of sides MA_0000499: spint of si	Detect Missing IS-A Relations	Missing IS-A Relations : 7	
Repair Generate Repairing Actions Recommend Repairing Actions Recommendations : 1 UseExtendedAlg WordNet UMLSK Ma_0000691->MA_0000319 Source : 3 Target : 26 Ma_0001505: joint of girdle Ma_0000499: gomphosis Ma_0000505: joint of girdle Ma_0000499: gomphosis Ma_0000505: joint of girdle Ma_0000499: gomphosis Ma_0000505: joint of girdle Ma_0000490: gomphosis Ma_0000505: joint of girdle Ma_0000490: gomphosis Ma_0000505: joint of girdle Ma_0000490: gomphosis Ma_00001505: joint of girdle Ma_0000490: gomphosis Ma_0000500: joint of side Ma_0000490: gomphosis Ma_0000511: joint Ma_0000511: joint of side Ma_0000511: joint of side Ma_0000511: joint of side Ma_0000511: joint of side Ma_0001512: semocostal joint Ma_0000511: joint of side Ma_0001511: joint of side Ma_0000511: joint of side <		MA_0000460;wrist joint -> MA_0000319;joint	
Generate Repairing Actions Recommend Repairing Actions Recommendations : 1 UseExtendedAlg WordNet UMLSK MA_0000691->MA_0000319 > Source : 3 Target : 26 MA_0001605: joint of gidls MA_0001605: joint of gidls MA_0001605: joint of gidls MA_0000480: wrist joint MA_0000480: wrist joint MA_0000480: wrist joint MA_0000480: wrist joint MA_0000514: forelimib joint Repair MA_0000451: slowy joint MA_0000451: slowy joint MA_0000514: forelimib joint Save MA_0001605: since slowy for station of slowy joint MA_0001512: stancocstal joint MA_0001611: limb joint Save MA_0001614: forelimb joint MA_0001614: slowy for slowy station of slowy joint	Repair		
LuseExtendedAlg WordNet UMLSK MA_0000691->MA_0000319 ▼ Source : 3 Target : 26 MA_0001505: jeint of sintle MA_00001505: jeint of sintle MA_00001505: jeint of sintle MA_00001505: ieint of sintle MA_00001505: ieint of sintle MA_00001505: ieint of sintle MA_00001505: ieint of sintle MA_00001513: joint MA_00001511: ibiter bintle MA_00001513: joint de verte bail basy MA_00001513: joint of verte bail basy MA_00001512: stemocestal joint MA_00001512: stemocestal joint MA_00015151: joint of sit MA_00015151: joint of sit MA_000015151: joint of sit MA_00015151: joint of sit MA_000015151: join	Generate Repairing Actions	Recommend Repaining Actions Recommendations : 1	
Source : 3 Target : 26 MA_0001505 joint of girdle MA_0000505 giont of girdle MA_0000510 joint MA_0000510 joint MA_0000511 joint MA_0000511 is inter joint MA_0000511 is inter joint MA_0001512: stemocostal joint		WordNet UMLSK MA 0000691->MA 0000319	Ê
	Source : 3 MA_0000480: wrist joint MA_0000614: forelimb MA_0000691: lim	Joint Target : 26 MA_000150744g9000500: start ptBAbg000500: syndexmexis MA_0001505: jeint of girdle MA_0001505: jeint of girdle MA_000050700: more than a start and the syndexmexis MA_000050700: more than a start and the syndexmexis MA_000050700: jeint of girdle MA_000050700: jeint of girdle MA_000050700: jeint of girdle MA_00005100: jeint of syndexmexis MA_00005100: jeint MA_00005100: jeint of shot MA_00001512: stemocostal jeint MA_0001501: more shots MA_0001501: more shots MA_0001501: more shots	sis int int

Outline

- Background
- Definitions
- Debugging approach
- Implemented system
- Experiments
- Future Work

Datasets

Anatomy dataset (2008 OAEI Anatomy)

Bibliography dataset (2010 OAEI Benchmark)

- Bibliography Dataset 1 network
 - □ Initially, we found
 - 22 missing is-a relations in ontology 101 (of which 12 redundant)
 - 20 in ontology 304 (of which 13 redundant + 1 becoming redundant during repair)
 - 1 in each of the others.
 - During the repairing
 - We found 3 additional missing is-a relations in ontology 304.
 - The whole debugging process took about 5 minutes.

- Bibliography Dataset 4 small networks
 - □ Initially, we found
 - For 101-301: 1 missing is-a relation for each ontology
 - For 101-302: 17 missing is-a relations (of which 11 redundant) for 101 and 1 for 302
 - For 101-303: 1 missing is-a relation for 303
 - For 101-304: 4 missing is-a relations for 101 and 5 (of which 1 redundant) for 304
 - During the repairing, no additional missing is-a relations were found.
 - □ The whole debugging process took less than 5 minutes.

- Bibliography Dataset comparison
- 301, 302, 303: same results in both scenarios
- More missing is-a relations found and repaired in the scenario with 1 network

- Anatomy Dataset
 - □ Initially, we found 199 missing is-a relations in MA and 167 in NCI-A.
 - □ During the repairing
 - We found 6 additional missing is-a relations in MA, and 10 in NCI-A.
 - For 25 missing is-a relations in MA and 11 in NCI-A, the repairing actions changed.
 - In most cases, the ranking and recommendations seemed useful.
 - Most source and target sets are small enough to allow a good visualization.
 - Extended algorithm: influences for most missing is-a relations; clusters
 - □ The whole debugging process took about 3 hours.

Recommending repairing actions

- □ We use WordNet as domain knowledge.
- □ The running time for generating recommendations for all missing is-a relations was
 - Circa 4 minutes for MA
 - Circa 2 minutes for NCI-A
- □ Number of recommendations
 - MA: 19 receive 1; 12 receive 2; 2 receive 3.
 - NCI-A: 5 receive 1.

Anatomy Dataset

		total initially	equivalence initially	redundar	nt to rep initial	air lly		total durin	equ Ig duri	ivalence	redundant during	to repair during
MA		199	6	78	115		MA	6	0	0	1	5
NC	I-A	167	3	84	80		NCI-A	A 10	0		3	7
	Figur	re 17: Scena	rio 1 - Initially c	etected miss	ing is-a rela	ntions. Figure	e 29: Scenario) 1 - Additi	onally de	etected miss	ing is-a relatio	ons during whole
	Figur	e 17: Scena	rio 1 - Initially d	etected miss	ing is-a rela	ask	e 29: Scenaric	0 1 - Additi	total	etected miss	use rec	not use rec
	Figur	e 17: Scena expliciti repaired	rio 1 - Initially o	obvious self	ing is-a rela obvious non-self	ask recommendation	e 29: Scenaric) 1 - Additi	total	etected miss use rec self	use rec non-self	not use rec self
	Figur total 120	expliciti repaired 101	rio 1 - Initially of your of the second seco	obvious self 28	obvious non-self	ask recommendation	29: Scenaric	1 - Additi	total	use rec self 52	use rec non-self 16	not use rec self 3

Figure 25: Scenario 1 - Repaired missing is-a relations.

Figure 28: Scenario 1 - Recommendations.

Outline

- Background
- Definitions
- Repairing the structure of an ontology
- Implemented system
- Experiments
- Future Work

Extension

- Debugging *wrong* and missing is-a structure within networked taxonomies
 - \rightarrow demo session

Experiment on Anatomy dataset (2010 OAEI Anatomy) MA: 2744 concepts, 1807 asserted is-a relations NCI-A: 3304 concepts, 3761 asserted is-a relations PRA: 986 equivalence relations, 1 subsumption

\rightarrow

new is-a relations: 107 for MA, 64 for NCI-A removed is-a relations: 3 from MA, 12 from NCI-A total: 5 hours debugging time (almost all time on validation)
Future work

Debugging is-a structure within networked ontologies
ontologies in more expressive knowledge representation languages

Investigate the interaction and integration of ontology alignment and ontology debugging process

References

- Lambrix P, Liu Q, Tan H, Repairing the missing is-a structure of ontologies, *Proceedings of the 4th Asian Semantic Web Conference - ASWC09*, LNCS 5926, 76-90, 2009.
- Lambrix P, Liu Q, RepOSE: A system for debugging is-a structure in networked taxonomies, Demo at the 10th International Semantic Web Conference – ISWC11, 2011.