
Valentina Ivanova

IDA, Linköping University

NoSQL Concepts,
Techniques & Systems – Part 2

Outline

• NoSQL Systems - Types and Applications

• Dynamo

• HBase

• Hive

• Shark

2017-03-22 78NoSQL Concepts, Techniques & Systems / Valentina Ivanova

RDBMS

• Established technology

• Transactions support & ACID properties

• Powerful query language - SQL

• Experienced administrators

• Many vendors

2017-03-22 79

item id name color size

45 skirt white L

65 dress red M

Table: Item

NoSQL Concepts, Techniques & Systems / Valentina Ivanova

But … – One Size Does Not Fit All[1]

• Requirements have changed:

– Frequent schema changes,
management of unstructured
and semi-structured data

– Huge datasets

– High read and write scalability

– RDBMSs are not designed to be

• distributed

• continuously available

– Different applications have different requirements[1]

2017-03-22 80

[1] “One Size Fits All”: An Idea Whose Time Has Come and Gone https://cs.brown.edu/~ugur/fits_all.pdf
Figure from: http://www.couchbase.com/sites/default/files/uploads/all/whitepapers/NoSQL-Whitepaper.pdf

NoSQL Concepts, Techniques & Systems / Valentina Ivanova

https://cs.brown.edu/~ugur/fits_all.pdf

NoSQL (not-only-SQL)

• A broad category of disparate solutions

• Simple and flexible non-relational data models

– schema-on-read vs schema-on-write

• High availability & relax data consistency requirement (CAP
theorem)

– BASE vs ACID

• Easy to distribute – horizontal scalability

– data are replicated to multiple nodes

• Cheap & easy (or not) to implement (open source)

2017-03-22 81NoSQL Concepts, Techniques & Systems / Valentina Ivanova

Distributed (Data Management) Systems

• Number of processing nodes interconnected by a
computer network

• Data is stored, replicated, updated and processed
across the nodes

• Networks failures are given, not an exception

– Network is partitioned

– Communication between nodes is an issue

 Data consistency vs Availability

2017-03-22 82NoSQL Concepts, Techniques & Systems / Valentina Ivanova

2017-03-22 83Databases for Big Data / Valentina Ivanova

figure from http://blog.nahurst.com/visual-guide-to-nosql-systems

NoSQL Systems – Types and
Applications

2017-03-22 84NoSQL Concepts, Techniques & Systems / Valentina Ivanova

NoSQL Classification Dimensions[HBase]

• Data model – how the data is stored; does it evolve

• Storage model – in-memory vs persistent

• Consistency model – strict, eventual consistent, etc.

– Affects reads and writes requests

• Physical model – distributed vs single machine

• Read/Write performance – what is the proportion
between reads and writes

• Secondary indexes - sort and access tables based on
different fields and sorting orders

852017-03-22NoSQL Concepts, Techniques & Systems / Valentina Ivanova

NoSQL Classification Dimensions[HBase]

• Failure handling – how to address machine failures

• Compression – result in substantial savings in raw
storage

• Load balancing – how to address high read or write
rate

• Atomic read-modify-write – difficult to achieve in
a distributed system

• Locking, waits and deadlocks – locking models
and version control

862017-03-22NoSQL Concepts, Techniques & Systems / Valentina Ivanova

NoSQL Data Models

• Key-Value Stores

• Document Stores

• Column-Family Stores

• Graph Databases

• Impacts application,
querying, scalability

2017-03-22 87

figure from [DataMan]

NoSQL Concepts, Techniques & Systems / Valentina Ivanova

DBs not referred as NoSQL

• Object DBs

• XML DBs

• Special purpose DBs

– Stream processing

2017-03-22 88NoSQL Concepts, Techniques & Systems / Valentina Ivanova

Key-Value Stores[DataMan]

• Schema-free

– Keys are unique

– Values of arbitrary types

• Efficient in storing distributed data

• (very) Limited query facilities and indexing

– get(key), put(key, value)

– Value  opaque to the data store  no data level querying
and indexing

2017-03-22 89NoSQL Concepts, Techniques & Systems / Valentina Ivanova

Key-Value Stores[DataMan]

• Types

– In-memory stores – Memcached, Redis

– Persistent stores – BerkeleyDB, Voldemort,
RiakDB

• Not suitable for

– structures and relations

– accessing multiple items (since the access is by key and often
no transactional capabilities)

2017-03-22 90NoSQL Concepts, Techniques & Systems / Valentina Ivanova

Key-Value Stores[DataMan]

• Applications:

– Storing web session information

– User profiles and configuration

– Shopping cart data

– Using them as a caching layer to store results of expensive
operations (create a user-tailored web page)

2017-03-22 91NoSQL Concepts, Techniques & Systems / Valentina Ivanova

Column-Family Stores[DataMan]

• Schema-free

– Rows have unique keys

– Values are varying column
families and act as keys for
the columns they hold

– Columns consist of key-value pairs

• Better than key-value stores for querying and
indexing

2017-03-22 92NoSQL Concepts, Techniques & Systems / Valentina Ivanova

Column-Family Stores[DataMan]

• Types

– Googles BigTable, Hadoop HBase

– No column families –
Amazon SimpleDB, DynamoDB

– Supercolumns - Cassandra

• Not suitable for

– structures and relations

– highly dynamic queries (HBase and Cassandra)

2017-03-22 93NoSQL Concepts, Techniques & Systems / Valentina Ivanova

Column-Family Stores[DataMan]

• Applications:

– Document stores applications

– Analytics scenarios – HBase and
Cassandra

• Web analytics

• Personalized search

• Inbox search

2017-03-22 94NoSQL Concepts, Techniques & Systems / Valentina Ivanova

Document Stores[DataMan]

• Schema-free

– Keys are unique

– Values are documents – complex
(nested) data structures in JSON,
XML, binary (BSON), etc.

• Indexing and querying based
on primary key and content

• The content needs to be representable as a document

• MongoDB, CouchDB, Couchbase

2017-03-22 95NoSQL Concepts, Techniques & Systems / Valentina Ivanova

Document Stores[DataMan]

• Applications:

– Items with similar nature but
different structure

– Blogging platforms

– Content management systems

– Event logging

– Fast application development

2017-03-22 96NoSQL Concepts, Techniques & Systems / Valentina Ivanova

Graph Databases[DataMan]

• Graph model

– Nodes/vertices and links/edges

– Properties consisting of key-value pairs

• Suitable for very interconnected
data since they are efficient in
traversing relationships

• Not as efficient

– as other NoSQL solutions for non-graph applications

– horizontal scaling

• Neo4J, HyperGraphDB

2017-03-22 97NoSQL Concepts, Techniques & Systems / Valentina Ivanova

Graph Databases[DataMan]

• Applications:

– location-based services

– recommendation engines

– complex network-based applications

• social, information, technological,
and biological network

– memory leak detection

2017-03-22 98NoSQL Concepts, Techniques & Systems / Valentina Ivanova

Multi-model Databases

• … but one application can actually require different
data models for the different data it stores

• Provide support for multiple data models against a
single backend:

– OrientDB supports key-value, document, graph &
object models; geospatial data;

– ArangoDB supports key-value, document & graph
models stored in JSON; common query language;

• How to query the different models in a uniform way

2017-03-22 99NoSQL Concepts, Techniques & Systems / Valentina Ivanova

Big Data Analytics Stack

2017-03-22 100

figure from: https://www.sics.se/~amir/dic.htm

NoSQL Concepts, Techniques & Systems / Valentina Ivanova

Dynamo[Dynamo]

2017-03-22 101NoSQL Concepts, Techniques & Systems / Valentina Ivanova

Dynamo

• Highly-available key-value store

• CAP: Availability and Partition Tolerance

• Use case: customer should be able to view and add to
the shopping cart during various failure scenarios

– always serve writes and reads

• Many Amazon services only need primary-key access

– Best seller lists

– Customer preferences

– Product catalog

2017-03-22 102NoSQL Concepts, Techniques & Systems / Valentina Ivanova

Amazon’s Service Oriented Architecture

• Example: a single page
is rendered employing
the responses from over
150 services

2017-03-22 103NoSQL Concepts, Techniques & Systems / Valentina Ivanova

Why not RDBMS?

• Amazon’s services often store and retrieve data only
by key

– thus do not need complex querying and managing
functionalities

• Replication technologies usually favor consistency,
not availability

• Cannot scale out easily

2017-03-22 105NoSQL Concepts, Techniques & Systems / Valentina Ivanova

Dynamo[Dynamo]

• Storage system requirements:

– Query model

• put and get operations to items identified by key

• binary objects, usually < 1MB

– ACID-compliant systems have poor availability
but Dynamo applications

• does not require isolation guarantees

• permits only single key updates

2017-03-22 106NoSQL Concepts, Techniques & Systems / Valentina Ivanova

Dynamo[Dynamo]

• System requirements:

– Efficiency

• Runs on commodity hardware with Amazon’s
services having stringent latency requirements

– No security related requirements

2017-03-22 107NoSQL Concepts, Techniques & Systems / Valentina Ivanova

Dynamo[Dynamo]

• Design considerations

– When to resolve conflicting updates

• Reads or writes – never reject writes

– Who resolves conflicting updates

• Data store or application

– Incremental scalability

– Symmetry

– Decentralization

– Heterogeneity

2017-03-22 108NoSQL Concepts, Techniques & Systems / Valentina Ivanova

Dynamo - Techniques

• Consistent hashing

• Quorum-like techniques

• Object versioning & vector clocks

2017-03-22 109NoSQL Concepts, Techniques & Systems / Valentina Ivanova

NoSQL: Techniques – Consistent Hashing [Karger]

Basic idea:

• arrange the nodes in a ring

• include hash values of all nodes in hash structure

• calculate hash value of the key to be added/retrieved

• choose node which occurs next clockwise in the ring

• if node is dropped or gets lost, missing data is
redistributed to adjacent nodes

• if a new node is added, its hash value is added to the hash table

• the hash realm is repartitioned, and hash data will
be transferred to new neighbor

→ no need to update remaining nodes!

2017-03-22 110NoSQL Concepts, Techniques & Systems / Valentina Ivanova

Dynamo[Dynamo]

• 128-bit identifier is generated by hashing the key to
identify storage node

• Challenges in the basic algorithm

– Non-uniform data and load distribution

– Heterogeneity is not accounted for

• Virtual nodes

– Looks like a single node in the system, but each node
can be responsible for more than one virtual node.

2017-03-22 111NoSQL Concepts, Techniques & Systems / Valentina Ivanova

Dynamo[Dynamo]

• Each data item is replicated on N hosts

• Each key is assigned to a coordinator node

– Handles read or write operations

• Preference list contains > N nodes

– List of nodes responsible for storing the value for a
particular key, known by every node

– Constructed by skipping positions in the ring

– Nodes in different data centers

2017-03-22 112NoSQL Concepts, Techniques & Systems / Valentina Ivanova

Dynamo[Dynamo]

• System architecture

– get(key) and put(key, context, object)

• Context stores the object version

– Quorum protocol – N, W, R

• N – number of nodes that store replicas

• R – number of nodes for a successful read

• W – number of nodes for a successful write

• R + W > N strong consistency

– Latency of get (or put) depends on the slowest node

• R + W ≤ N eventual consistency – better latency

2017-03-22 113NoSQL Concepts, Techniques & Systems / Valentina Ivanova

Dynamo[Dynamo]

• get(key) and put(key, context, object)

– Context stores the object version

• Coordinator node handles reads and writes

– put() - generates a vector clock and sends to N nodes

– get() - requests all existing version and returns all
causality unrelated to the client

• The divergent versions are then reconciled and the
reconciled version superseding the current versions
is written back.

2017-03-22 114NoSQL Concepts, Techniques & Systems / Valentina Ivanova

NoSQL: Techniques – Vector Clock[Coulouris]

• A vector clock for a system of N nodes is an array of N integers.

• Each process keeps its own vector clock, Vi , which it uses to
timestamp local events.

• Processes piggyback vector timestamps on the messages they
send to one another, and there are simple rules for updating the
clocks

two events e and e': that e → e' ↔ V(e) < V(e')

c ‖ e since neither V(c) ≤ V(e) nor V(e) ≤ V(c)

c & e are concurrent

2017-03-22 115NoSQL Concepts, Techniques & Systems / Valentina Ivanova

Dynamo - Versioning

• Asynchronous update
propagation

• Use case: shopping cart

• Each update is a new,
immutable version -->
many versions of an
object may exist

• Replicas eventually
become consistent

2017-03-22 116NoSQL Concepts, Techniques & Systems / Valentina Ivanova

Dynamo - Versioning

• Reconciliation

– Syntactic

– Semantic

• Vector clocks

– Client specifies
which version is
updating

– All leave objects are
returned if syntactic
reconciliation fails

2017-03-22 117NoSQL Concepts, Techniques & Systems / Valentina Ivanova

Dynamo - Versioning

• Sx, Sy, Sz – nodes

• D1, D2, D3, D4, D5 –
versions of data items

• [Sx, 1] vector clock
at Sx

• Divergent versions are rare

– One version: 99.94%

– Four versions: 0.00009%

2017-03-22 118NoSQL Concepts, Techniques & Systems / Valentina Ivanova

Dynamo[Dynamo]

• Handling failure – hinted handoff

• Sloppy quorum - all read and write operations are
performed on the first N healthy nodes from the
preference list

– If a node is temporary down the replica is sent to
another

– The replica will have a hint in its metadata for its
intended location

– After the node recovers it will receive the replica

2017-03-22 119NoSQL Concepts, Techniques & Systems / Valentina Ivanova

Dynamo - Summary

• Highly-available key-value store

• CAP: Sacrifices consistency for availability in the
pretense of network partitions

• Every node has the same responsibilities

• Consistent hashing

• Vector clocks for replicas reconciliation

• Quorum-like and decentralized replica
synchronization protocol

2017-03-22 120NoSQL Concepts, Techniques & Systems / Valentina Ivanova

HBase[HBase][Hadoop]

2017-03-22 121NoSQL Concepts, Techniques & Systems / Valentina Ivanova

Column-oriented Databases

• Saved data grouped by columns

• Not all values are needed for some
queries/applications

– Analytical databases

• Leads to

– Reduced I/O

– Better compression due to similar values

2017-03-22 122NoSQL Concepts, Techniques & Systems / Valentina Ivanova

Column-oriented Model[HBase]

Row-oriented
storage

SQL Schema

Column-oriented
storage (HBase)

HBase – a Column-family Database

• Column-family store; hosts very large sparse tables

• Based on Google BigTable and built on top of HDFS

• Provide low-latency real-time read/write random
access on a (sequence of) cell level

• Scales linearly on commodity hardware

• Atomic access to row data

• CAP: provides strong consistency
and partition tolerance
 all writes on the primary replica

2017-03-22 124NoSQL Concepts, Techniques & Systems / Valentina Ivanova

HBase[HBase] Canonical Example – webtable

2017-03-22 125

Row key Time
stamp

Family
content

Family
outgoing

links

Family
inbound links

html png cnnsi.co
m

my.look.c
a

news.bbc
.com

theguardi
an.com

com.cnn.www t9 CNN cnn.com cnn.com cnn.com

t8 logo.png

t6 contents:html
= "<html>…​"

logo1.png

t5 contents:html
= "<html>…​"

t3 contents:html
= "<html>…​"

NoSQL Concepts, Techniques & Systems / Valentina Ivanova

HBase in Facebook[HBaseInFacebook]

• Facebook applications that use HBase with HBase
enhancements performed internally in Facebook

– Facebook Messaging - High write throughput

– Facebook Insights – Real-time analytics

– Facebook Metric System - Fast reads of recent
data and table scans

• Others: Adobe, StumbleUpon, Twitter, Yahoo!

2017-03-22 126NoSQL Concepts, Techniques & Systems / Valentina Ivanova

HBase[HBase]

• Terminology overlaps,
but misleading:

– Most basic unit
Column

• versions

– Row

– Table

– Cell

2017-03-22 127NoSQL Concepts, Techniques & Systems / Valentina Ivanova

HBase[HBase]

• A table consists of
multiple rows

– primary key access

• A row has a key and
column families:

– Atomic access to row
data

– Sorted lexically:
r1
r10
r11
r2

2017-03-22 128NoSQL Concepts, Techniques & Systems / Valentina Ivanova

HBase[HBase]

• Columns Families:
content

• Columns:
family:qualifier
content:pdf

content:html

• All columns in a
column family
stored together in
HFile

2017-03-22 129NoSQL Concepts, Techniques & Systems / Valentina Ivanova

HBase – Cell [HBase]

• Cell contains value and timestamp
– (Table, RowKey, Family, Column, Timestamp) → Value

2017-03-22 130NoSQL Concepts, Techniques & Systems / Valentina Ivanova

HBase[HBase]

• Canonical example – webtable

2017-03-22 131

Row key Tim
e
sta
mp

Family
content

Family
outgoing

links

Family
inbound links

html png cnnsi.co
m

my.look.
ca

news.bb
c.com

theguard
ian.com

com.cnn.europ
e

t9 CNN cnn.com cnn.com cnn.com

t8 logo.png

t6 contents:html
= "<html>…​"

logo1.png

t5 contents:html
= "<html>…​"

com.cnn.asia t8 contents:html
= "<html>…​"

NoSQL Concepts, Techniques & Systems / Valentina Ivanova

HBase - Summary

• Column-oriented data store

– Hosts very large sparse tables on commodity hardware

– Column values are timestamped

• Low-latency real-time random access on HDFS!

– blog.cloudera.com/blog/2012/06/hbase-io-hfile-input-output/

• Row are sorted & stored lexicographically

– Atomic access to row data

• But no transactional features across multiple rows

– No real indexes & high write throughput

• Canonical application - webtable

2017-03-22 132NoSQL Concepts, Techniques & Systems / Valentina Ivanova

Big Data Analytics Stack

2017-03-22 133

figure from: https://www.sics.se/~amir/dic.htm

NoSQL Concepts, Techniques & Systems / Valentina Ivanova

Hive[Hive]

2017-03-22 134NoSQL Concepts, Techniques & Systems / Valentina Ivanova

Motivation

• MapReduce programming model is low level

• Hadoop/Spark lacks expressiveness

– end users need to write code even for simplest aggregations,
hard to maintain and reuse

• Many experienced SQL developers

• Business intelligence tools already provide SQL
interfaces

2017-03-22 135NoSQL Concepts, Techniques & Systems / Valentina Ivanova

Hive[Hive]

• Scalable data warehouse

• Built on top of Hadoop

– translates a query into
MapReduce tasks

– Intermediate results
materialized on HDFS

• HiveQL - SQL-like
declarative language + UDFs

• Data analytics at Facebook

• Open source since August 2008

2017-03-22 136NoSQL Concepts, Techniques & Systems / Valentina Ivanova

DBMS applications – OLTP vs OLAP

2017-03-22 137

order customer

1 22

2 33

order Item quantity

1 45 1

1 55 1

1 65 2

2 65 1

item name color size

45 skirt white L

65 dress red M

Table: Order

Table: Cart

Table: Item c
o

lo
r

it
e

m
 n

a
m

e

dress

red

white

all

size
M

S

all

skirt

all

Table:
Aggregated Sales

NoSQL Concepts, Techniques & Systems / Valentina Ivanova

Hive[Hive + Hadoop]

• Tables, columns, rows, partitions

– SerDe to read/write table
rows in custom format

• Types

– Primitive & complex – maps,
arrays, arbitrarily nested

– User-defined types

• Schema-on-read not
schema-on-write

• Updates, Locks, Indexes

2017-03-22 138NoSQL Concepts, Techniques & Systems / Valentina Ivanova

Hive – Tables[Hive + Hadoop]

• The data typically is stored in HDFS

– Tables stored in directories in HDFS

CREATE TABLE managed_table (dummy STRING);

LOAD DATA INPATH '/user/tom/data.txt' INTO table

managed_table;

DROP TABLE managed_table;

• CREATE TABLE + LOAD DATA move the data

• DROP TABLE the data and metadata are deleted, the

data no longer exists

2017-03-22 139NoSQL Concepts, Techniques & Systems / Valentina Ivanova

Hive – External Tables[Hive + Hadoop]

• The data typically is stored in HDFS

– External tables – when using other tools on the same dataset

CREATE EXTERNAL TABLE external_table (dummy STRING)

LOCATION '/user/tom/external_table';

• CREATE EXTERNAL TABLE does not move the

data

• DROP TABLE the metadata only are deleted, the

data continue to exist

2017-03-22 140NoSQL Concepts, Techniques & Systems / Valentina Ivanova

Hive – Partitions and Buckets[Hive + Hadoop]

• The data typically is stored in HDFS

– Tables stored in directories in HDFS

• Managed & external tables

– Partitions by a partition column

• CREATE TABLE test_part(ds string, hr int)

PARTITIONED BY (ds string, hr int)

• SELECT * FROM test_part

WHERE ds='2009-02-02' AND hr=11;

– Buckets gives extra structure; more efficient
queries

2017-03-22 141NoSQL Concepts, Techniques & Systems / Valentina Ivanova

Hive – Tables, Partitions and Buckets[Hive +

Hadoop]

• Tables stored in directories in HDFS

hdfs://user/hive/warehouse/table_name

• Partitions are subdirectories

hdfs://user/hive/warehouse/table_name/partition_name

• Buckets are stored in files

hdfs://user/hive/warehouse/table_name/bucket_name

hdfs://user/hive/warehouse/table_name/partition_name/b
ucket_name

2017-03-22 142NoSQL Concepts, Techniques & Systems / Valentina Ivanova

HiveQL vs SQL[Hadoop]

Feature HiveQL SQL

Updates UPDATE, INSERT, DELETE UPDATE, INSERT, DELETE

Transactions Limited support Supported

Indexes Supported Supported

Data types SQL supported + boolean, array, map, struct Integral, floating point, fixed point, text and
binary strings, temporal

Functions Hundreds of built-in functions Hundreds of built-in functions

Multiple inserts Supported Not supported

CREATE TABLE AS SELECT Supported Not valid SQL-92, but found
in some databases

SELECT SQL-92. SORT BY for
partial ordering. LIMIT to
limit number of rows returned.

SQL-92

Joins SQL-92 or variants (join tables in the FROM
clause, join condition in the WHERE clause)

Inner joins, outer joins, semi
joins, map joins, cross joins

Subqueries In the FROM, WHERE, or HAVING clause
(uncorrelated queries not supported)

In any clause. Correlated or noncorrelated.

Views Read-only. Materialized views not supported. Updatable. Materialized or nonmaterialized.

Extension points User-defined functions. Map-Reduce scripts. User-defined functions. Stored procedures.

• Change the order of the FROM and
SELECT/MAP/REDUCE

• Multi inserts

FROM table_name

INSERT OVERWRITE TABLE table_one

SELECT table_name.column_one,table_name.column_two

INSERT OVERWRITE DIRECTORY '/output_dir'

SELECT table_name.column_two

WHERE table_name.column_one == 'something'

2017-03-22 144

HiveQL vs SQL[Hive]

NoSQL Concepts, Techniques & Systems / Valentina Ivanova

• Word Count in Hive using custom user program

FROM (

MAP doctext

USING 'python wc_mapper.py' AS (word, cnt)

FROM docs

CLUSTER BY word

) a

REDUCE word, cnt USING 'python wc_reduce.py';

2017-03-22 145

HiveQL vs SQL[Hive]

NoSQL Concepts, Techniques & Systems / Valentina Ivanova

• Metastore

– Served by RDBMS

– Metadata about
the tables

– Specified at table
creation time and
reused when the
table is referenced

2017-03-22 146

Hive – Architecture[Hive]

NoSQL Concepts, Techniques & Systems / Valentina Ivanova

• Driver manages the
lifecycle of a HiveQL
statement:

– Query Compiler
and Optimizer –
creates a logical
plan from HiveQL
query

– Execution Engine
- executes the plan
preserving
dependencies

2017-03-22 147

Hive – Architecture[Hive]

NoSQL Concepts, Techniques & Systems / Valentina Ivanova

• Hive server – enables
access from clients
written in different
languages

• Hive clients

– CLI

– JDBC/ODBC

– webUI

2017-03-22 150

Hive – Architecture[Hive]

NoSQL Concepts, Techniques & Systems / Valentina Ivanova

Hive - Summary

• Data warehouse translates SQL-like queries to
MapReduce jobs

• HiveQL is SQL-like language with additional features

• Schema-on-read  no preprocessing

• Table partitions and buckets for more efficient
queries

• Column-oriented, row-oriented and text file storage
formats

2017-03-22 151NoSQL Concepts, Techniques & Systems / Valentina Ivanova

SparkSQL[Shark]

2017-03-22 152NoSQL Concepts, Techniques & Systems / Valentina Ivanova

Hive, Shark and SparkSQL[SparkSQLHistory]

• Hive

• Shark project started around 2011

– built on the Hive codebase

– swaps Hadoop with Spark

• SparkSQL

– Shark code base hard to optimize and maintain

– Shark and Hive compatible

• Hive’s SQL dialects, UDF (user-defined functions) &
nested data types

2017-03-22 153NoSQL Concepts, Techniques & Systems / Valentina Ivanova

Spark vs MapReduce

• Supports a chain of multiple transformations, not
just the two-stage MapReduce topology

• Optimized for low latency

• Provides Resilient Distributed Datasets (RDDs)

– Written in memory, much faster than the network

– One copy & the lineage graph

– RDDs can be rebuilt in parallel in case of failure and slow
execution

• Since RDD are immutable

– Enables mid-query fault tolerance

2017-03-22 154NoSQL Concepts, Techniques & Systems / Valentina Ivanova

Shark[Shark]

• Provides unified engine for running efficiently SQL
queries and iterative machine learning algorithms

• In-memory computations

• Benefits from In-memory Resilient Distributed
Datasets (RDDs) due to

– often complex analytic functions are iterative

– traditional SQL warehouse workloads exhibit
strong temporal and spatial locality

2017-03-22 155NoSQL Concepts, Techniques & Systems / Valentina Ivanova

Shark – Fault Tolerance[Shark]

• Main-memory databases

– track fine-grained updates to tables

– replicate writes across the network

– expensive on large commodity clusters

• Shark

– tracks coarse-grained operations, eg, map, join, etc.

– recovers by tracking the lineage of each dataset and
recomputing lost data

– supports machine learning and graph computations

2017-03-22 156NoSQL Concepts, Techniques & Systems / Valentina Ivanova

Shark – Fault Tolerance Properties[Shark]

• Shark can tolerate the loss of any set of worker nodes

– Also during a query

– Lost data will be recomputed using the lineage graph

• Lost partitions are rebuilt in parallel

• If a task is slow, it could be run on another node

• Recovery is supported for both SQL and machine
learning user defined functions

2017-03-22 157NoSQL Concepts, Techniques & Systems / Valentina Ivanova

Shark & Hive Architecture

• Query parsing and
logical plan
generation by the
Hive compiler

• Physical plan
generation –
consists of RDDs
transformations

2017-03-22 158

figure from http://www.rosebt.com/blog/spark-shark-and-mesos-data-analytics-stack

NoSQL Concepts, Techniques & Systems / Valentina Ivanova

Shark – Query Execution[Shark]

• … but how to make it efficient given that:

– UDF and complex analytic functions

– Schema-on-read approach, i.e., extract-transform-
load (ETL) process has been skipped thus a priory
statistics for query optimization are not available

2017-03-22 159NoSQL Concepts, Techniques & Systems / Valentina Ivanova

Shark Extensions

• In-memory columnar storage and columnar
compression

– Reduces data size and processing time

• Partial DAG Execution

– Re-optimize a running query

2017-03-22 160NoSQL Concepts, Techniques & Systems / Valentina Ivanova

Shark Executions[Shark]

• In-memory columnar storage – in-memory
computation is essential to low-latency query
answering

• Shark stores all columns of primitive types as JVM
primitive arrays

– Caching Hive records as JVM objects is inefficient
 examples in the paper

2017-03-22 161

13 1000 23

14 2000 27

13 14

1000 2000

23 27

Row Storage

Column Storage

NoSQL Concepts, Techniques & Systems / Valentina Ivanova

Shark Extensions

• In-memory columnar storage and columnar
compression

– Reduces data size and processing time

• Partial DAG Execution

– Re-optimize a running query

2017-03-22 162NoSQL Concepts, Techniques & Systems / Valentina Ivanova

Shark Executions[Shark]

• Partial DAG Execution (PDE)

– dynamic approach for query optimization

• The query plan is altered based on run-time collected
statistics

– Workers collect global and per partition statistics

– Workers send them to the master

– The master dynamically alters the query plan

2017-03-22 163NoSQL Concepts, Techniques & Systems / Valentina Ivanova

Shark – Summary

• Data warehouse based on Hive

– the latest version called SparkSQL

• Efficiently execute complex analytical queries and
machine learning algorithms

• Extends Spark execution engine and uses RDDs

• Fault tolerance by tracking the lineage of the RDDs
and recomputing in case of failure

– does not rely on replication

• Tutorials: http://spark.apache.org/docs/latest/sql-
programming-guide.html

2017-03-22 166NoSQL Concepts, Techniques & Systems / Valentina Ivanova

References

• A comparison between several NoSQL databases with comments and notes by
Bogdan George Tudorica, Cristian Bucur

• nosql-databases.org

• Scalable SQL and NoSQL data stores by Rick Cattel

• [Brewer] Towards Robust Distributed Systems @ACM PODC'2000

• [12 years later] CAP Twelve Years Later: How the "Rules" Have Changed, Eric A.
Brewer, @Computer Magazine 2012. https://www.infoq.com/articles/cap-
twelve-years-later-how-the-rules-have-changed

• [Fox et al.] Cluster-Based Scalable Network Services @SOSP'1997

• [Karger et al.] Consistent Hashing and Random Trees @ACM STOC'1997

• [Coulouris et al.] Distributed Systems: Concepts and Design, Chapter: Time &
Global States, 5th Edition

• [DataMan] Data Management in cloud environments: NoSQL and NewSQL
data stores.

2017-03-22 167NoSQL Concepts, Techniques & Systems / Valentina Ivanova

References

• NoSQL Databases - Christof Strauch – University of Stuttgart

• The Beckman Report on Database Research

• [Vogels] Eventually Consistent by Werner Vogels, doi:10.1145/1435417.1435432

• [Hadoop] Hadoop The Definitive Guide, Tom White, 2011

• [Hive] Hive - a petabyte scale data warehouse using Hadoop

• https://github.com/Prokopp/the-free-hive-book

• [Massive] Mining of Massive Datasets

• [HiveManual]
https://cwiki.apache.org/confluence/display/Hive/LanguageManual

• [Shark] Shark: SQL and Rich Analytics at Scale

• [SparkSQLHistory] https://databricks.com/blog/2014/07/01/shark-spark-sql-
hive-on-spark-and-the-future-of-sql-on-spark.html

2017-03-22 168NoSQL Concepts, Techniques & Systems / Valentina Ivanova

https://github.com/Prokopp/the-free-hive-book
https://cwiki.apache.org/confluence/display/Hive/LanguageManual

References

• [HDFS] The Hadoop Distributed File System

• [Dynamo] Dynamo: Amazon’s Highly Available Key-value Store, 2007

• [HBaseInFacebook] Apache hadoop goes realtime at Facebook

• [HBase] HBase The Definitive Guide, 2011

• [HDFSpaper] The Hadoop Distributed File System @MSST2010

2017-03-22 169NoSQL Concepts, Techniques & Systems / Valentina Ivanova

www.liu.se

