# NoSQL Concepts, Techniques & Systems – Part 1

Valentina Ivanova IDA, Linköping University



### Outline – Today – Part 1

- RDBMS  $\rightarrow$  NoSQL  $\rightarrow$  NewSQL
- DBMS OLAP vs OLTP
- NoSQL Concepts and Techniques
  - Horizontal scalability
  - Consistency models
    - CAP theorem: BASE vs ACID
  - Consistent hashing
  - Vector clocks
- Hadoop Distributed File System HDFS



#### Outline – Next Lecture – Part 2

- NoSQL Systems Types and Applications
- Dynamo
- HBase
- Hive
- Shark



### DB rankings – September 2016

|             | Rank         |              |                      |                   | s           | core        |             |
|-------------|--------------|--------------|----------------------|-------------------|-------------|-------------|-------------|
| Sep<br>2016 | Aug<br>2016  | Sep<br>2015  | DBMS                 | Database Model    | Sep<br>2016 | Aug<br>2016 | Sep<br>2015 |
| 1.          | 1.           | 1.           | Oracle               | Relational DBMS   | 1425.56     | -2.16       | -37.81      |
| 2.          | 2.           | 2.           | MySQL 😆              | Relational DBMS   | 1354.03     | -3.01       | +76.28      |
| 3.          | 3.           | 3.           | Microsoft SQL Server | Relational DBMS   | 1211.55     | +6.51       | +113.72     |
| 4.          | <b>↑</b> 5.  | <b>↑</b> 5.  | PostgreSQL           | Relational DBMS   | 316.35      | +1.10       | +30.18      |
| 5.          | <b>4</b> .   | <b>4</b> .   | MongoDB 🖽            | Document store    | 316.00      | -2.49       | +15.43      |
| 6.          | 6.           | 6.           | DB2                  | Relational DBMS   | 181.19      | -4.70       | -27.95      |
| 7.          | 7.           | <b>1</b> 8.  | Cassandra 🖽          | Wide column store | 130.49      | +0.26       | +2.89       |
| 8.          | 8.           | <b>J</b> 7.  | Microsoft Access     | Relational DBMS   | 123.31      | -0.74       | -22.68      |
| 9.          | 9.           | 9.           | SQLite               | Relational DBMS   | 108.62      | -1.24       | +0.97       |
| 10.         | 10.          | 10.          | Redis                | Key-value store   | 107.79      | +0.47       | +7.14       |
| 11.         | 11.          | <b>1</b> 4.  | Elasticsearch 🖽      | Search engine     | 96.48       | +3.99       | +24.93      |
| 12.         | 12.          | <b>1</b> 3.  | Teradata             | Relational DBMS   | 73.06       | -0.57       | -1.20       |
| 13.         | 13.          | <b>J</b> 11. | SAP Adaptive Server  | Relational DBMS   | 69.16       | -1.88       | -17.36      |
| 14.         | 14.          | <b>J</b> 12. | Solr                 | Search engine     | 66.96       | +1.19       | -14.98      |
| 15.         | 15.          | 15.          | HBase                | Wide column store | 57.81       | +2.30       | -1.22       |
| 16.         | 16.          | <b>1</b> 7.  | FileMaker            | Relational DBMS   | 55.35       | +0.34       | +4.35       |
| 17.         | 17.          | <b>1</b> 8.  | Splunk               | Search engine     | 51.29       | +2.38       | +9.06       |
| 18.         | 18.          | <b>4</b> 16. | Hive                 | Relational DBMS   | 48.82       | +1.01       | -4.71       |
| 19.         | 19.          | 19.          | SAP HANA 🖽           | Relational DBMS   | 43.42       | +0.68       | +5.22       |
| 20.         | 20.          | <b>1</b> 25. | MariaDB              | Relational DBMS   | 38.53       | +1.65       | +14.31      |
| 21.         | 21.          | 21.          | Neo4j ↔              | Graph DBMS        | 36.37       | +0.80       | +2.83       |
| 22.         | <b>1</b> 24. | <b>↑</b> 24. | Couchbase 😛          | Document store    | 28.54       | +1.14       | +2.28       |
| 23.         | 23.          | <b>4</b> 22. | Memcached            | Key-value store   | 28.43       | +0.74       | -3.99       |
| 24.         | <b>4</b> 22. | <b>4</b> 20. | Informix             | Relational DBMS   | 28.19       | -0.86       | -9.76       |
| 25.         | 25.          | <b>1</b> 28. | Amazon DynamoDB 🖽    | Document store    | 27.42       | +0.82       | +7.43       |



### RDBMS → NoSQL → NewSQL



### DBMS history (Why NoSQL?)

- 1960: Navigational databases
- 1970: Relational databases (RDBMS)
- 1990:
  - Object-oriented databases
  - Data Warehouses (OLAP)
- 2000: XML databases
- Mid 2000: first NoSQL
- 2011: NewSQL



#### **RDBMS**

- Established technology
- Transactions support & ACID properties
- Powerful query language SQL
- Experiences administrators
- Many vendors

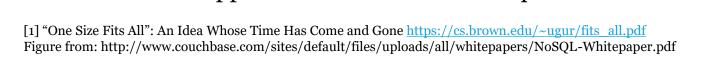
Table: Item

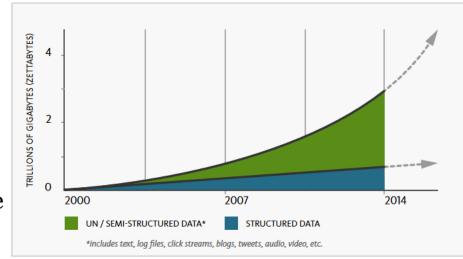
| item id | name  | color | size |
|---------|-------|-------|------|
| 45      | skirt | white | L    |
| 65      | dress | red   | M    |



### But ... – One Size [Does Not] Fit All<sup>[1]</sup>

- Requirements have changed:
  - Frequent schema changes, management of unstructured and semi-structured data
  - Huge datasets
  - High read and write scalability
  - RDBMSs are not designed to be
    - distributed
    - continuously available
  - Different applications have different requirements<sup>[1]</sup>







### NoSQL (not-only-SQL)

- A broad category of disparate solutions
- Simple and flexible non-relational data models
- High availability & relax data consistency requirement (CAP theorem)
  - BASE vs ACID
- Easy to distribute horizontal scalability
- Data are replicated to multiple nodes
  - Down nodes easily replaced
  - No single point of failure
- Cheap & easy (or not) to implement (open source)



#### But ...

- No ACID
- No support for SQL → Low level programming → data analysists need to write custom programs
- Huge investments already made in SQL systems and experienced developers
- NoSQL systems do not provide interfaces to existing tools



### NewSQL<sup>[DataMan]</sup>

- First mentioned in 2011
- Supports the relational model
  - with horizontal scalability & fault tolerance
- Query language SQL
- ACID
- Different data representation internally
- VoltDB, NuoDB, Clustrix, Google Spanner



### NewSQL Applications<sup>[DataMan]</sup>

- RBDMS applicable scenarios
  - schema is known in advance and unlikely to change a lot
  - strong consistency requirements, e.g., financial applications
  - transaction and manipulation of more than one object, e.g., financial applications
- But also Web-based applications<sup>[1]</sup>
  - with different collection of OLTP requirements
    - multi-player games, social networking sites
  - real-time analytics (vs traditional business intelligence requests)

[1] http://cacm.acm.org/blogs/blog-cacm/109710-new-sql-an-alternative-to-nosql-and-old-sql-for-new-oltp-apps/fulltext



### DBMS - OLAP and OLTP



### DBMS applications – OLAP and OLTP

- OLTP Online transaction processing RDBMS
  - university database; bank database; a database with cars and their owners; online stores



### DBMS applications – OLTP

Table: Orders

| order id | customer |
|----------|----------|
| 1        | 22       |
| 2        | 33       |

Table: Cart

| order id | Item id | quantity |
|----------|---------|----------|
| 1        | 45      | 1        |
| 1        | 55      | 1        |
| 1        | 65      | 2        |
| 2        | 65      | 1        |

Table: Items

| item id | name  | color | size |
|---------|-------|-------|------|
| 45      | skirt | white | L    |
| 65      | dress | red   | M    |



### DBMS applications – OLAP and OLTP

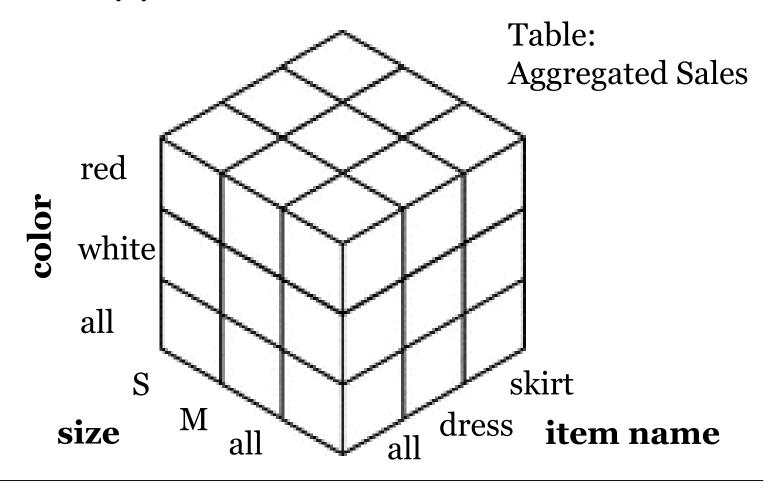
- OLTP Online transaction processing RDBMS
  - university database; bank database; a database with cars and their owners; online stores
- OLAP Online analytical processing Data warehouses
  - Summaries of multidimensional data

Example: sale (item, color, size, quantity)

What color/type of clothes is popular this season?



### DBMS applications – OLAP





### DBMS applications – OLAP and OLTP

Relational DBMS vs Data Warehouse
 <a href="http://datawarehouse4u.info/OLTP-vs-OLAP.html">http://datawarehouse4u.info/OLTP-vs-OLAP.html</a>

|                    | RDBMS (OLTP)                                                                | Data Warehouse (OLAP)                                                   |
|--------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------|
| Source of data     | Operational data; OLTPs are the original source of the data.                | Consolidation data; OLAP data comes from the various OLTP DBs           |
| Purpose of data    | To control and run fundamental business tasks                               | To help with planning, problem solving, and decision support            |
| What the data      | Reveals a snapshot of ongoing business processes                            | Multi-dimensional views of various kinds of business activities         |
| Inserts & Updates  | Short and fast inserts and updates initiated by end users                   | Periodic long-running batch jobs refresh the data                       |
| Queries            | Relatively standardized and simple queries returning relatively few records | Often complex queries involving aggregations                            |
| Processing Speed   | Typically very fast                                                         | Depends on the amount of data involved                                  |
| Space Requirements | Can be relatively small if historical data is archived                      | Larger due to the existence of aggregation structures and history data; |
| Database Design    | Highly normalized, many tables                                              | Typically de-normalized, fewer tables                                   |
| Backup & Recovery  | Highly important                                                            | Reloading from OLTPs                                                    |



### NoSQL Concepts and Techniques



### NoSQL Databases (not only SQL)

nosql-database.org

#### **NoSQL Definition:**

Next Generation Databases mostly addressing some of the points: being **non-relational**, **distributed**, **open source** and **horizontally scalable**.

The original intention has been modern web-scale databases. ... Often more characteristics apply as: schema-free, easy replication support, simple API, eventually consistent/BASE (not ACID), a huge data amount, and more.



Scalability: system can handle growing amounts of data without losing performance.

- Vertical Scalability (scale up)
  - add resources (more CPUs, more memory) to a single node
  - using more threads to handle a local problem
- Horizontal Scalability (scale out)
  - add nodes (more computers, servers) to a distributed system
  - gets more and more popular due to low costs for commodity hardware
  - often surpasses scalability of vertical approach



### Distributed (Data Management) Systems

- Number of processing nodes interconnected by a computer network
- Data is stored, replicated, updated and processed across the nodes
- Networks failures are given, not an exception
  - Network is partitioned
  - Communication between nodes is an issue
  - → Data consistency vs Availability



- A distributed system through the developers' eyes
  - Storage system as a black box
  - Independent processes that write and read to the storage
- Strong consistency after the update completes, any subsequent access will return the updated value.
- Weak consistency the system does not guarantee that subsequent accesses will return the updated value.
  - inconsistency window



- Weak consistency
  - Eventual consistency if no new updates are made to the object, eventually all accesses will return the last updated value
    - Popular example: DNS



- Server side view of a distributed system Quorum
  - N number of nodes that store replicas
  - R number of nodes for a successful read
  - W number of nodes for a successful write



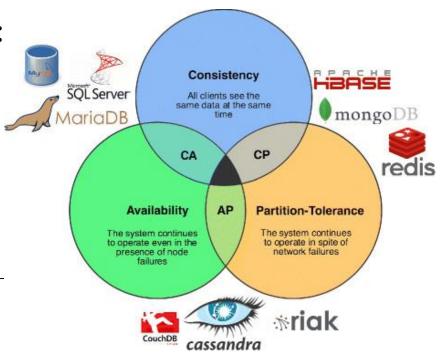
- Server side view of a distributed system Quorum
  - R + W > N strong consistency
    - Consistency (& reduced availability) W=N
  - $-R + W \le N$  eventual consistency
    - Inconsistency window the period until all replicas have been updated in a lazy manner
  - High read loads hundreds of N, R=1
  - Fault tolerance/availability (& relaxed consistency) W=1



# CAP Theorem: Consistency, Availability, Partition Tolerance [Brewer]

#### **Theorem**

(Gilbert, Lynch SIGACT'2002): only 2 of the 3 guarantees can be given in a shared-data system.





35

### NoSQL: Concepts

#### CAP Theorem: Consistency, Availability, Partition Tolerance<sup>[Brewer]</sup>

#### Consistency

- after an update, all readers in a distributed system see the same data
- all nodes are supposed to contain the same data at all times

#### Example

- single database instance will always be consistent
- if multiple instances exist, all writes must be duplicated before write operation is completed



# CAP Theorem: Consistency, Availability, Partition Tolerance<sup>[Brewer]</sup>

#### Availability

 all requests will be answered, regardless of crashes or downtimes (clients can always read and write data)

#### Example

- a single instance has an availability of 100% or 0%, two servers may be available 100%, 50%, or 0%



# CAP Theorem: Consistency, Availability, Partition Tolerance<sup>[Brewer]</sup>

#### Partition Tolerance

system continues to operate, even if two sets of servers get isolated

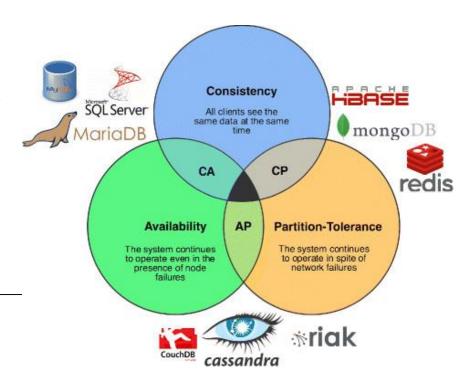
#### Example

- system gets partitioned if connection between server clusters fails
- failed connection will not cause troubles if system is tolerant



## CAP Theorem: Consistency, Availability, Partition Tolerance<sup>[Brewer]</sup>

- (Positive) consequence: we can concentrate on two challenges
- ACID properties needed to guarantee consistency and availability
- **BASE** properties come into play if availability and partition tolerance is favored





# ACID: Atomicity, Consistency, Isolation, Durability

- Atomicity → all operations in a transaction will complete, or none will
- **Consistency** → before and after the transaction, the database will be in a consistent state
- Isolation → operations cannot access data that is currently modified
- Durability → data will not be lost upon completion of a transaction



# BASE: Basically Available, Soft State, Eventual Consistency [Fox]

- Basically Available → an application works basically all the time (despite partial failures)
- Soft State → the system may change over time, even without input
- Eventual Consistency → will be in some consistent state (at some time in future)



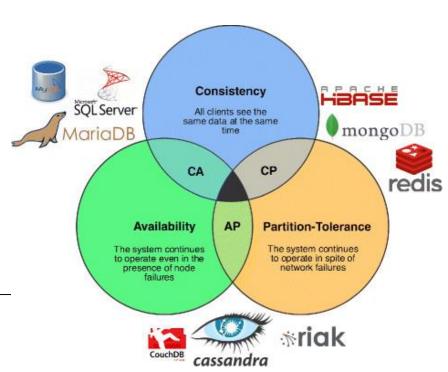
42

### **NoSQL: Concepts**

#### CAP Theorem: Consistency, Availability, Partition Tolerance[Brewer]

- (Positive) consequence: we can concentrate on two challenges
- **ACID** properties needed to guarantee consistency and availability
- **BASE** properties come into play if availability and partition tolerance is favored
- Note!  $C(CAP) \neq C(ACID)$





### NoSQL: Techniques

Basic techniques (widely applied in NoSQL systems)

- distributed data storage, replication (how to distribute the data) → Consistent hashing
- distributed query strategy (horizontal scalability) → MapReduce (in the MapReduce lecture)
- recognize order of distributed events and potential conflicts → Vector clock (later in this lecture)



### NoSQL: Techniques – Consistent Hashing [Karger]

#### Task

- find machine that stores data for a specified key k
- trivial hash function to distribute data on n nodes:
   h(k; n) = k mod n
- BUT if number of nodes changes, all data will have to be redistributed!

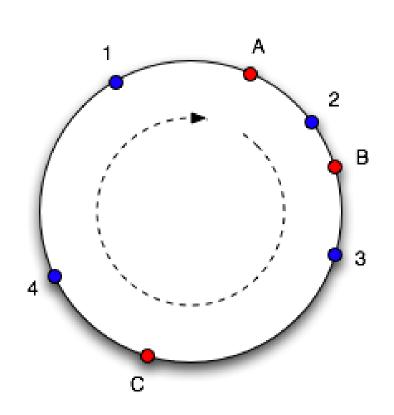
#### Challenge

- minimize number of nodes to be updated after a configuration change
- incorporate hardware characteristics into hashing model



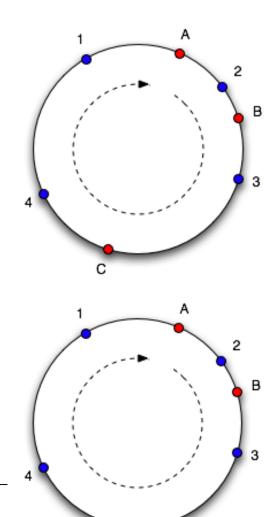
#### Basic idea

- arrange the nodes in a ring and each node is in charge of the hash values in the range between its neighbor node
- include hash values of all nodes in hash structure
- calculate hash value of the key to be added/retrieved
- choose node which occurs next clockwise in the ring



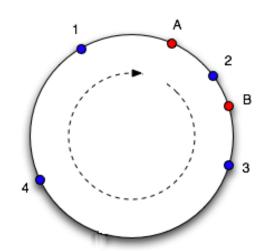


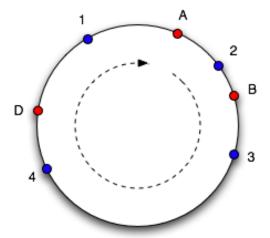
- include hash values of all nodes in hash structure
- calculate hash value of the key to be added/retrieved
- choose node which occurs next clockwise in the ring
- if node is dropped or gets lost, missing data is redistributed to adjacent nodes (replication issue)





- if a new node is added, its hash value is added to the hash table
- the hash realm is repartitioned, and hash data will be transferred to new neighbor
- → no need to update remaining nodes!







- A replication factor r is introduced: not only the next node but the next r nodes in clockwise direction become responsible for a key
- Number of added keys can be made dependent on node characteristics (bandwidth, CPU, ...)



# NoSQL: Techniques – Logical Time

#### Challenge

- recognize order of distributed events and potential conflicts
- most obvious approach: attach timestamp (ts) of system clock to each

```
event e \rightarrow ts(e)
```

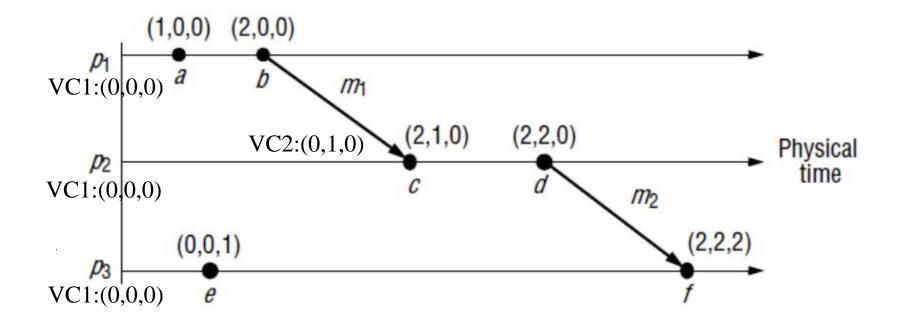
- → error-prone, as clocks will never be fully synchronized
- → insufficient, as we cannot catch causalities (needed to detect conflicts)



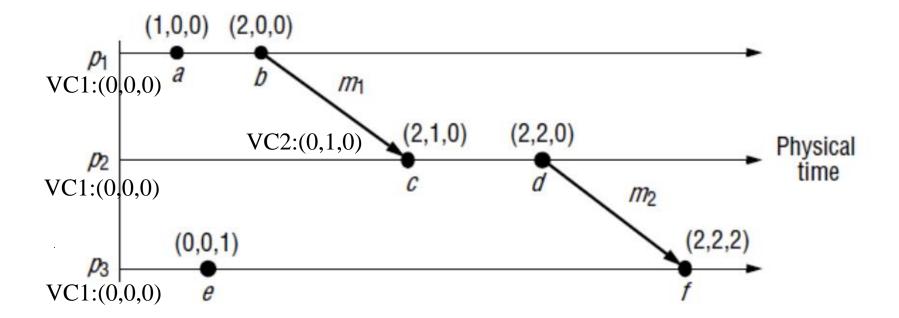
- A vector clock for a system of N nodes is an array of N integers.
- Each process keeps its own vector clock,  $V_i$ , which it uses to timestamp local events.
- Processes piggyback vector timestamps on the messages they send to one another, and there are simple rules for updating the clocks:
  - VC1: Initially,  $V_i[j] = 0$ , for i, j = 1, 2, ... N
  - VC2: Just before  $p_i$  timestamps an event, it sets  $V_i$  [i] :=  $V_i$  [i] + 1
  - VC3:  $p_i$  includes the value  $t = V_i$  in every message it sends
  - VC4: When  $p_i$  receives a timestamp t in a message, it sets  $V_i[j] := max(V_i[j]; t[j])$ , for j = 1, 2, ... N



- VC1: Initially,  $V_i[j] = 0$ , for i, j = 1, 2, ... N
- VC2: Just before p<sub>i</sub> timestamps an event,
   it sets V<sub>i</sub> [i] := V<sub>i</sub> [i] + 1

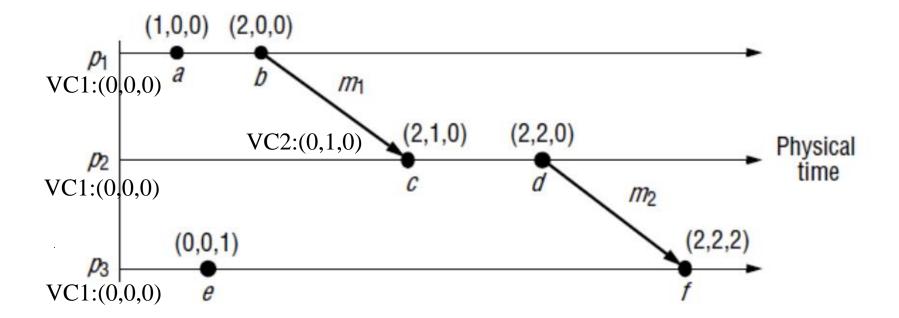


- VC3: p<sub>i</sub> includes the value t = V<sub>i</sub> in every message it sends
- VC4: When p<sub>i</sub> receives a timestamp t in a message,
   it sets V<sub>i</sub> [j] := max(V<sub>i</sub> [j]; t [j]), for j = 1, 2, ... N



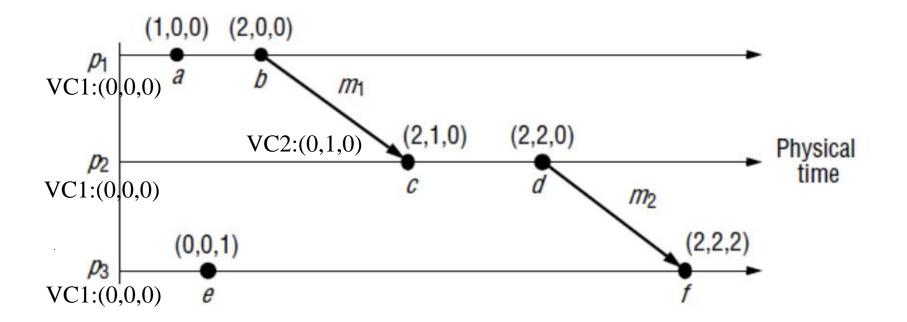
#### Properties:

- V = V' iff V[j] = V'[j] for j = 1, 2, ... N
- $V \le V'$  iff  $V[j] \le V'[j]$  for j = 1, 2, ... N
- V < V' iff  $V \le V'$  and  $V \ne V'$

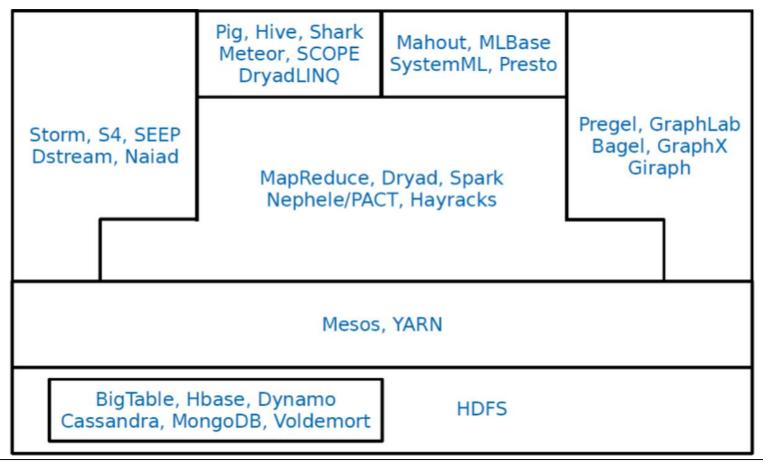


#### Two events:

- e & e' are connected with *happen-before* ( $\rightarrow$ ) relation: e  $\rightarrow$  e' iff V(e) < V(e') Example: a  $\rightarrow$  b; b  $\rightarrow$  c; b  $\rightarrow$  d
- e & e' are concurrent (e  $\parallel$  e') when neither V(e)  $\leq$  V(e') nor V(e')  $\leq$  V(e) Example: c  $\parallel$  e, d  $\parallel$  e



# Big Data Analytics Stack





# HDFS<sup>[Hadoop][HDFS][HDFSpaper]</sup> Hadoop Distributed File System





# Compute Nodes<sup>[Massive]</sup>

- Compute node processor, main memory, cache and local disk
- Organized into racks
- Intra-rack connection typically gigabit speed
- Inter-rack connection slower by a small factor



# HDFS (Hadoop Distributed File System)

- Runs on top of the native file system
  - Files are very large divided into 128 MB chunks/blocks
    - To minimize the cost of seeks
  - Caching blocks is possible
  - Single writer, multiple readers
  - Exposes the locations of file blocks via API
  - Fault tolerance and availability to address disk/node failures
    - Usually replicated three times on different nodes
- Based on GFS (Google File System proprietary)



#### HDFS is Good for ...

- Store very large files GBs and TBs
- Streaming access
  - Write-once, read many times
  - Time to read the entire dataset is more important than the latency in reading the first record.
- Commodity hardware
  - Clusters are built from commonly available hardware
  - Designed to continue working without a noticeable interruption in case of failure



# HDFS is currently Not Good for ...

- Low-latency data access
  - HDFS is optimized for delivering high throughput of data
- Lots of small files
  - the amount of files is limited by the memory of the namenode; blocks location is stored in memory
- Multiple writers and arbitrary file modifications
  - HDFS files are append only write always at the end of the file



#### **HDFS** Organization

- Namenode (master)
  - Manages the filesystem namespace and metadata
  - Stores in memory the location of all blocks for a given file
- Datanodes (workers)
  - Store and retrieve blocks
  - Send heartbeat to the namenode
- Secondary namenode
  - Periodically merges the namespace image with the edit log
  - Not a backup for a namenode, only a checkpoint



## HDFS – High Availability

- The namenode is single point of failure:
  - If a namenode crashes the cluster is down
- Secondary node
  - periodically merges the namespace image with the edit log to prevent the edit log from becoming too large.
  - lags the state of the primary prevents data loss but does not provide high availability
  - time for cold start 30 minutes
- In practice, the case for planned downtime is more important



# HDFS – High Availability

- Pair of namenodes in an active stand-by configuration:
  - Highly available shared storage for the shared edit log
  - Datanodes send block reports to all namenodes
  - Clients must provide transparent to the user mechanism to handle failover
  - The standby node takes checkpoints of the active namenode namespace instead of the secondary node



# Block Placement and Replication

- Aim improve data reliability, availability and network bandwidth utilization
- Default replica placement policy
  - No Datanode contains more than one replica
  - No rack contains more than two replicas of the same block
- Namenode ensures the number of replicas is reached
- Balancer tool balances the disk space usage
- Block scanner periodically verifies checksums



#### HDFS – File Reads

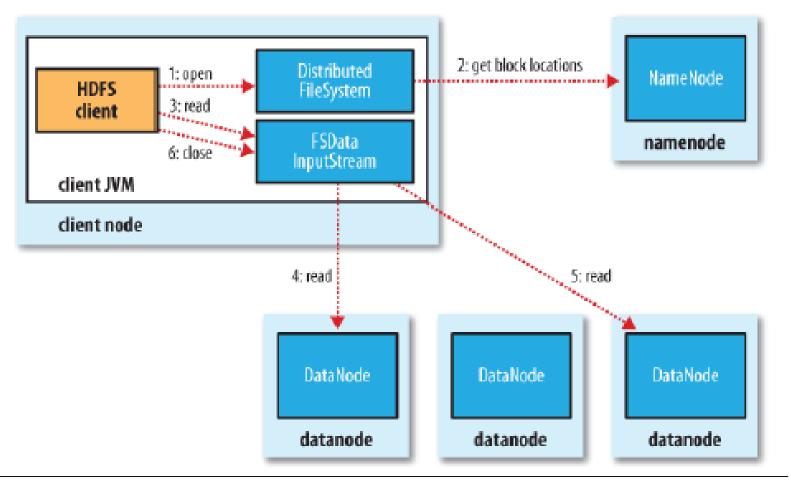
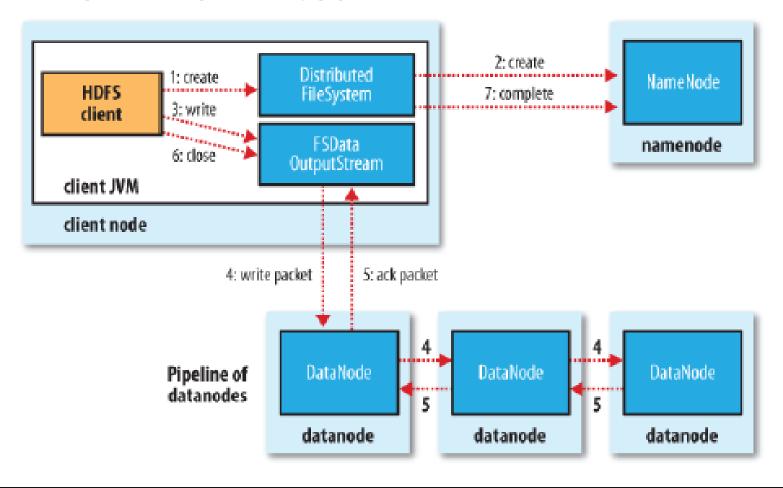




figure from [Hadoop]

#### HDFS – File Writes





71

#### HDFS commands

- List all options for the hdfs dfs
  - hdfs dfs -help
  - dfs run a filesystem command
- Create a new folder
  - hdfs dfs -mkdir /BigDataAnalytics
- Upload a file from the local file system to the HDFS
  - hdfs dfs -put bigdata /BigDataAnalytics



72

#### HDFS commands

- List the files in a folder
  - hdfs dfs -ls /BigDataAnalytics
- Determine the size of a file
  - hdfs dfs -du -h /BigDataAnalytics/bigdata
- Print the first 5 lines from a file
  - hdfs dfs -cat /BigDataAnalytics/bigdata |
    head -n 5
- Copy a file to another folder
  - hdfs dfs -cp /BigDataAnalytics/bigdata
    /BigDataAnalytics/AnotherFolder



73

#### HDFS commands

- Copy a file to a local filesystem and rename it
  - hdfs dfs -get /BigDataAnalytics/bigdata bigdata localcopy
- Scan the entire HDFS for problems
  - hdfs fsck /
- Delete a file from HDFS
  - hdfs dfs -rm /BigDataAnalytics/bigdata
- Delete a folder from HDFS
  - hdfs dfs -rm -r /BigDataAnalytics



#### References

- A comparison between several NoSQL databases with comments and notes by Bogdan George Tudorica, Cristian Bucur
- nosql-databases.org
- Scalable SQL and NoSQL data stores by Rick Cattel
- [Brewer] Towards Robust Distributed Systems @ACM PODC'2000
- [12 years later] CAP Twelve Years Later: How the "Rules" Have Changed, Eric A. Brewer, @Computer Magazine 2012. https://www.infoq.com/articles/captwelve-years-later-how-the-rules-have-changed
- [Fox et al.] Cluster-Based Scalable Network Services @SOSP'1997
- [Karger et al.] Consistent Hashing and Random Trees @ACM STOC'1997
- [Coulouris et al.] Distributed Systems: Concepts and Design, Chapter: Time & Global States, 5th Edition
- [DataMan] Data Management in cloud environments: NoSQL and NewSQL data stores.



#### References

- NoSQL Databases Christof Strauch University of Stuttgart
- The Beckman Report on Database Research
- [Vogels] Eventually Consistent by Werner Vogels, doi:10.1145/1435417.1435432
- [Hadoop] Hadoop The Definitive Guide, Tom White, 2011
- [Hive] Hive a petabyte scale data warehouse using Hadoop
- https://github.com/Prokopp/the-free-hive-book
- [Massive] Mining of Massive Datasets
- [HiveManual] https://cwiki.apache.org/confluence/display/Hive/LanguageManual
- [Shark] Shark: SQL and Rich Analytics at Scale
- [SparkSQLHistory] https://databricks.com/blog/2014/07/01/shark-spark-sql-hive-on-spark-and-the-future-of-sql-on-spark.html



#### References

- [HDFS] The Hadoop Distributed File System
- [Dynamo] Dynamo: Amazon's Highly Available Key-value Store, 2007
- [HBaseInFacebook] Apache hadoop goes realtime at Facebook
- [HBase] HBase The Definitive Guide, 2011
- [HDFSpaper] The Hadoop Distributed File System @MSST2010

