
1/23

732A54 Big Data Analytics
Lecture 11: Machine Learning with Spark

Jose M. Peña
IDA, Linköping University, Sweden

2/23

Contents

▸ Spark Framework

▸ Machine Learning with Spark

▸ Algorithms
▸ Pipelines
▸ Cross-Validation
▸ Lab

▸ Summary

3/23

Literature

▸ Main sources

▸ Zaharia, M. et al. Resilient Distributed Datasets: A Fault-Tolerant
Abstraction for In-Memory Cluster Computing. In Proceedings of the 9th
USENIX Symposium on Networked Systems Design and Implementation,
15-28, 2012.

▸ Meng, X. et al. MLlib: Machine Learning in Apache Spark. Journal of
Machine Learning Research, 17(34):17, 2016.

▸ MLlib manual available at
http://spark.apache.org/docs/latest/ml-guide.html

▸ Additional sources

▸ Zaharia, M. et al. Apache Spark: A Unified Engine for Big Data Processing.
Communications of the ACM, 59(11):56-65, 2016.

▸ Slides for 732A95 Introduction to Machine Learning.

4/23

Spark Framework
▸ Recall from the previous lecture that MapReduce can emulate any

distributed computation, since this can be divided into a sequence of
MapReduce calls.

▸ However, the emulation may be inefficient since the message exchange
relies on external storage, e.g. disk.

▸ This is a major problem for iterative machine learning algorithms.
▸ Apache Spark is a framework to process large amounts of data by

parallelizing computations across a cluster of nodes.
▸ It builds on MapReduce’s ability to emulate any distributed computation

but makes it more efficiently by emulating in-memory data sharing across
MapReduce calls.

▸ It includes MLlib, a library for machine learning that uses linear algebra
libraries on each node.

5/23

Spark Framework

▸ Data sharing is achieved via resilient distributed datasets (RDDs).

▸ RDD is a read-only, partitioned collection of records that can only be
created through transformations applied to external storage or to other
RDDs.

6/23

Spark Framework

7/23

Spark Framework

▸ Data sharing is achieved via resilient distributed datasets (RDDs).

▸ RDD is a read-only, partitioned collection of records that can only be
created through transformations applied to external storage or to other
RDDs.

▸ The sequence of transformations that creates a RDD is called its lineage.
It is used to rebuild it in case of failure.

▸ Users can indicate which RDDs to store in memory, e.g. because they will
be reused.

▸ RDDs do not materialize (and are stored in memory) until an action is
executed.

8/23

Spark Framework

▸ Example in Scala to find error lines in a log file:

1.lines=spark.textFile("hdfs://...")
2.errors=lines.filter(.startsWith("ERROR"))
3.errors.persist() //Store in memory
4.errors.count() //Materialize
5.errors.filter(.contains("HDFS")).map(.split(’/t’)(3)).collect()

▸ Note that:

▸ Line 3 indicates to store the error lines in memory.
▸ However, this does not happen until line 4, when the RDDs materialize.
▸ The rest of the RDDs are discarded after being used.
▸ Line 5 does not access disk because the data are in memory.
▸ If any partition of the in-memory data has gone lost, it can be rebuilt with

the help of the lineage graph.

9/23

Spark Framework

▸ The lineage graph is also used by the master to schedule jobs similarly to
MapReduce, with the exception that as many transformations as possible
are pipelined and assigned to the same worker.

10/23

Machine Learning with Spark: Algorithms
▸ Consider regressing a binary random variable y on a D-dimensional

continuous random variable xxx .
▸ Classical formulation of logistic regression: y(xxx) = 1/(1 + exp(wwwTxxx))

together with the cross-entropy loss function

L(www) = −∑
n

log p(yn∣www) = −∑
n

[yn log y(xxxn) + (1 − yn) log(1 − y(xxxn))]

▸ Alternative formulation: Predict with the classical but fit y(xxx) = wwwTxxx
using the logistic loss function

L(www) = ∑
n

log(1 + exp(−yny(xxxn)))

whose gradient is given by

−∑
n

yn(1 − 1/(1 + exp(−ynwww
Txxxn)))xxxn

▸ Logistic regression in Scala (note the use of persist, map and reduce):

11/23

Machine Learning with Spark: Algorithms

▸ Logistic regression in Python:

12/23

Machine Learning with Spark: Algorithms

▸ K -Means in Python:

13/23

Machine Learning with Spark: Algorithms

▸ Many machine learning methods are already implemented in MLlib, i.e.
the user does not need to specify the map and reduce functions.

▸ Logistic regression in Python:
lr = LogisticRegression(maxIter=10, regParam=0.3, elasticNetParam=0.8)

lrModel = lr.fit(training)

▸ SVMs in Python:
model = SVMWithSGD.train(parsedData, iterations=100)

▸ NNs in Python:
layers = [4, 5, 4, 3]

trainer = MultilayerPerceptronClassifier(maxIter=100, layers=layers,

blockSize=128, seed=1234)

model = trainer.fit(train)

▸ MMs in Python:
gmm = GaussianMixture().setK(2)

model = gmm.fit(dataset)

▸ K -Means in Python:
kmeans = KMeans().setK(2).setSeed(1)

model = kmeans.fit(dataset)

14/23

Machine Learning with Spark: Algorithms

15/23

Machine Learning with Spark: Pipelines

▸ A pipeline is a sequence of stages, where each stage is of one of two types:
▸ Transformer: It transforms a dataset into another dataset, e.g. tokenizing a

dataset into words is a transformer.
▸ Estimator: It fits a model to a dataset. The model becomes a transformer,

since it transforms a dataset into predictions.

▸ A pipeline typically contains estimators and, thus, the pipeline is an
estimator itself.

▸ By fitting the pipeline, the estimators in it become transformers. Then,
the pipeline becomes a transformer itself (called pipeline model), which is
ready to be used.

16/23

Machine Learning with Spark: Pipelines

17/23

Machine Learning with Spark: Cross-Validation

▸ Cross-validation is a technique to estimate the prediction error of a model.

▸ If the training set contains N points, note that cross-validation estimates
the prediction error when the model is trained on N −N/K points.

▸ Note that the model returned is trained on N points. So, cross-validation
overestimates the prediction error of the model returned.

▸ This seems to suggest that a large K should be preferred. However, this
typically implies a large variance of the error estimate, since there are only
N/K test points.

▸ Typically, K = 5,10 works well.

18/23

Machine Learning with Spark: Cross-Validation

19/23

Machine Learning with Spark: Cross-Validation

▸ Note that CrossValidator requires an estimator as input and, recall, that
a pipeline is an estimator.

▸ Likewise, a pipeline can be used as estimator in another pipeline. This can
be used to implement nested cross-validation.

20/23

Machine Learning with Spark: Lab

▸ Implement a kernel model to predict the hourly temperatures for a date
and place in Sweden. To do so, you are provided with the files
stations.csv and temps.csv. These files contain information about
weather stations and temperature measurements for the stations at
different days and times. The data have been kindly provided by the
Swedish Meteorological and Hydrological Institute (SMHI) and processed
by Zlatan Dragisic.

▸ You are asked to provide a temperature forecast for a date and place in
Sweden. The forecast should consist of the predicted temperatures from 4
am to 24 pm in an interval of 2 hours. Use a kernel that is the sum of
three Gaussian kernels:

▸ The first to account for the distance from a station to the point of interest.
▸ The second to account for the distance between the day a temperature

measurement was made and the day of interest.
▸ The third to account for the distance between the hour of the day a

temperature measurement was made and the hour of interest.

21/23

Machine Learning with Spark: Lab
▸ Consider regressing an unidimensional continuous random variable y on a
D-dimensional continuous random variable xxx .

▸ The best regression function under the squared error loss function is
y∗(xxx) = EY [y ∣xxx].

▸ Since xxx may not appear in the finite training set {(xxxn, yn)} available, then
we output a weighted average over all the training points. That is

y(xxx) =
∑n k(

xxx−xxxn
h

) yn

∑n k(
xxx−xxxn
h

)

where k ∶ RD
→ R is a kernel function, which is usually non-negative and

monotone decreasing along rays starting from the origin. The parameter h
is called smoothing factor or width.

▸ Gaussian kernel: k(u) = exp(−∣∣u∣∣2) where ∣∣ ⋅ ∣∣ is the Euclidean norm.

22/23

Machine Learning with Spark: Lab

▸ Bear in mind that a join operation may trigger a shuffle operation, which
is time and memory consuming.

▸ Instead, broadcast one of the RDDs to join, if small. This sends a copy of
the RDD to each node, and the join can be performed locally (or even
skipped).

rdd = rdd.collectAsMap()

bc = sc.broadcast(rdd)

bc.value[i]

23/23

Summary

▸ Spark is a framework to process large datasets by parallelizing
computations.

▸ It is particularly suitable for iterative distributed computations, since data
can be store in memory.

▸ It includes MLlib, a machine learning library.

