
1

Programming Models for

Big-Graph Analytics

PhD course
Big Data Analytics

Christoph Kessler, IDA,
Linköpings universitet.

Bulk-Synchronous Parallel Computing,
Pregel, Giraph, Hama

Christoph Kessler

IDA, Linköping University

March 2017

Bulk-Synchronous Parallel (BSP) Computing

 Bulk-Synchronous Parallel (BSP) Model [Valiant’90]

 A Bridging Model between abstract PRAM model and real-world
parallel computers, to support algorithm development

BSP computation: sequence of supersteps
Global Concep-

time

2C. Kessler, IDA, Linköpings universitet.

BSP:

superstep

Parallelism

Local computation

…

BSP machine model:
Distributed memory

Global
communi

cation

Concep-
tual

barrier

BSP-Model

3C. Kessler, IDA, Linköpings universitet.

BSP Example:
Global Maximum (NB: non-optimal algorithm)

4C. Kessler, IDA, Linköpings universitet.

BSP Remarks

 Local variables of BSP processes persist to next superstep

 In superstep s, contents of messages sent (and received) in
step s-1 are accessible

 Two-sided and/or one-sided message passing possible

 BSP implementations in the 1990s include

5C. Kessler, IDA, Linköpings universitet.

 BSP implementations in the 1990s include

 BSPlib – library for C atop MPI [Hill et al. ’98]

One-sided communication (put, get)

 PUB – library for C atop MPI [Bonorden et al.’03]

One-sided communication

 NestStep [K. 2000, 2004]

Partitioned global address space (PGAS) language
extension of C

Graphs

 G=(V,E)

 V: set of nodes

 E: set of edges (directed or undirected)

Storage:

– Adjacency matrix – random access but too inefficient for sparse
graphs

a

b

c

d

6C. Kessler, IDA, Linköpings universitet.

– Adjacency list – each node holds a list of its neighbors

 Graph examples

 WWW

 Social network graphs

 Transportation networks

 Similarity of documents

 Citation relationships

 …

2

Graphs

 Graph algorithms

 Depth-first search, Breadth-first search

 Single-source shortest paths

 All-pairs shortest paths

 Clustering

 Page rank

Minimum cut / Maximum flow

a

b

c

d

7C. Kessler, IDA, Linköpings universitet.

 Minimum cut / Maximum flow

 Connected components

 Strongly connected components

 Hamiltonian, Euler Tour, Traveling Salesman Problem

 …

 Typical properties

 Poor locality of memory accesses

 Little work per vertex

 Changing degree of parallelism

Graphs

 Today, many graphs are very large

 How to distribute a graph?

a

b

c

d

8C. Kessler, IDA, Linköpings universitet.

 How to distribute a graph?

 Usually, partition and distribute the array of vertices
(each vertex with a local value
and its adjacency list of outgoing edges)

 If locality matters in partitioning?

Replace default partitioning with a user-defined partitioning

Graph partitioner
e.g. METIS (used in HPC e.g. for FEM meshes)

Example

0

1

4

9C. Kessler, IDA, Linköpings universitet.

2

3

5

6

Example

0

1

4

Server 0 Server 1

10C. Kessler, IDA, Linköpings universitet.

2

3

5

6

Ex.: S servers, N vertices, hashfn = id, B = ceil(N/S):
• owner(i) = i div B
• local index(i) = i mod B

Hash vertices over servers.

Graph Traversal

 Exploration starts at some vertex

 For each vertex,
consider all its neighbors

 Visit each vertex once and traverse each edge once

 Sequential algorithms:
Depth first search, Breadth first search

a

b

c

d

11C. Kessler, IDA, Linköpings universitet.

Depth first search, Breadth first search
Special case: Tree traversals

 Much (dynamic) parallelism
(unless graph has very special structure)

 Little/no data locality
(unless graph has very special structure)

 History of exploration (i.e., recursive call stack, visited vertices)
must be kept
 dependences / communication for visiting a remote vertex when
calculating on a distributed system

Graph Analytics

 Global analysis of a graph

 Consider each vertex and each edge

 2 flavors:

 Compute one value over all vertices / edges

E.g. sum-up/maximize/… attribute values over all vertices

 Compute one value for each vertex / each edge

12C. Kessler, IDA, Linköpings universitet.

 Compute one value for each vertex / each edge

E.g. page rank for each vertex (web page)

 Often, iterative

 multiple sweeps over the graph

 Suitable for massively parallel and distributed computation

 Requires a global view (random access) of the graph

 How to address huge graphs?

3

Pregel

Pregel

Kneiphof
island

13C. Kessler, IDA, Linköpings universitet.

By Bogdan Giuşcă - Public
domain (PD), based on the
image, CC BY-SA 3.0,
https://commons.wikimedia.org
/w/index.php?curid=112920

Leonhard Euler
(1707-1783),
Swiss
mathematician

Source: Wikipedia

1736: There is no Eulertour
(path traversing each bridge
exactly once) for Königsberg
nor any other topology with
>2 nodes having odd degree.

N

E

S

K

A multigraph

Pregel [Malevicz et al. 2010]

 A framework to process/query large distributed graphs

 Proprietary (by Google)

 Pregel is the ”MapReduce” for graphs

 Iterative computations

Sequence of BSP supersteps

14C. Kessler, IDA, Linköpings universitet.

Sequence of BSP supersteps

 Each BSP superstep is basically a composition of the
MapReduce phases (Map, Combine, Sort, Reduce)

 Attempts to utilize all servers available
by partitioning and distributing the graph

 Good for computations touching all vertices / edges

 Bad for computations touching only few vertices / edges

Pregel
Programming Model

 Graph Vertices

 Each with unique identifier (String)

 Each with a user-defined value

 Each with a state in { Active, Inactive }

 Initially (before superstep 1), every vertex is active

 Graph Edges

 Each edge can have a user-defined value (e.g., weight)

Active Inactive

Vote to halt

Message received

States of a vertex

15C. Kessler, IDA, Linköpings universitet.

 One (conceptual) BSP process assigned to each vertex

 Not to the edges, by the way…

 Iteratively executing supersteps while active

 Two-sided communication with send() and receive() calls

 Graph can be dynamic

 Vertices and/or edges can be added or removed in each superstep

 Algorithm termination

 When all vertices are simultaneously inactive
and there are no messages in transit

 Otherwise, go for another superstep

Example: Maximum vertex value

a b c d

4 5 3 2Initial states / values

Superstep 0:
send my value to all neighbors;
receive from all neighbors

For now, assume 1 BSP
processing node per vertex

16C. Kessler, IDA, Linköpings universitet.

5 5 3 5

Superstep 1:
maximize over all received values;
if larger than my value,

update it and
send new value to all neighbors;
receive from neighbors;

else vote for halt;

Superstep 2:
…

Superstep 3:
…

5 5 5 5

5 5 5 5

Example: Maximum vertex value

a b c d

4 5 3 2Initial states / values

Superstep 0:
send my value to all neighbors;
receive from all neighbors

Now: multiple BSP processes
per server node
 message aggregation,

local combining

17C. Kessler, IDA, Linköpings universitet.

5 5 3 5

Superstep 1:
maximize over all received values;
if larger than my value,

update it and
send new value to all neighbors;
receive from neighbors;

else vote for halt;

Superstep 2:
…

Superstep 3:
…

5 5 5 5

5 5 5 5

Exercise: Connected Components
based on Maximum (with local accumulation)

0

1

4

Server 0 Server 1

4
0

18C. Kessler, IDA, Linköpings universitet.

2

3

5

6

2

3
6

1

5

Initialization

4

Exercise: Connected Components
based on Maximum (with local accumulation)

0

1

4

Server 0 Server 1

5
5

19C. Kessler, IDA, Linköpings universitet.

2

3

5

6

6

6
6

5

5

Final values CC ID’s

Pregel C++ API (1)

 Vertex<VertexValue,EdgeValue,MessageValue> class

 User overrides virtual Compute() method
for superstep behavior

 vertex_id() returns vertex identifier (string)

 VertexValue: user-specified datatype for value

 Get_value() reads, Mutable_value() sets the value

20C. Kessler, IDA, Linköpings universitet.

 GetOutEdgeIterator() get an OutEdgeIterator

 int64 superstep() queries the superstep number.

 Vertex and edge values are the only values that persist to the
next superstep

 All messages sent to vertex in previous superstep are available

 Each message contains a value of type MessageValue

 void SendMessageTo(dest_vertex_id, msg_value)

 void VoteToHalt()

Example: PageRank

class PageRankVertex : public Vertex<double, void, double>
{

public:
virtual void Compute (MessageIterator* msgs)
{

if (superstep() >= 1) {
double sum = 0;
for (; ! msgs->Done(); msgs->Next())

sum += msgs->Value();

21C. Kessler, IDA, Linköpings universitet.

sum += msgs->Value();
*MutableValue() = 0.15 / NumVertices() + 0.85 * sum;

}
if (superstep() < 30) {

const int64 n = GetOutEdgeIterator().size();
SendMessageToAllNeighbors(GetValue() / n);

}
else

VoteToHalt();
}

};

Pregel C++ API (2)

 Combiners

 For reductions (e.g. maximization, sum, …)
of values going to same receiver

 Local accumulation before sending off accumulated value to
destination residing on remote server

 Fewer inter-node messages,
fast node-local combining

22C. Kessler, IDA, Linköpings universitet.

fast node-local combining

 Aggregators

 are global All-Reductions (every vertex gets the global
sum/maximum/… over all vertices in the graph)

 Could be generalized to histogramming

For MPI programmers known from MPI_Allreduce

 Needs only 1 superstep instead of possibly many

Pregel C++ API (3)

Graph topology modifications

 Superstep execution can add or remove vertices or edges

 Could lead to conflicts across parallel BSP processes, e.g.

 Multiple processes try to create a vertex with same name in
same superstep

 .. Or: with same name but different initial values

 One wants to add an edge from/to a vertex that another wants to

23C. Kessler, IDA, Linköpings universitet.

 One wants to add an edge from/to a vertex that another wants to
remove

 …

 Conflict resolution policy:

 Edge removals always done first, then vertex removals

 Then do vertex additions, then edge additions

 Then do Compute() for the vertex

 Purely vertex-local modifications (e.g. adding/removing own
outgoing edges) are conflict-free

Pregel Implementation

 Proprietary (Google)

 Atop Google cluster architecture [Barroso et al. 2003]

 Persistent data stored as files on a distributed file system
e.g. in Google File System GFS

 with a name service for file location lookup

 Graph partitioning: vertices hashed over the p cluster nodes:
owner(v) = hashfunction(v) mod p

 Default distribution is not transparent to the programmer

24C. Kessler, IDA, Linköpings universitet.

 Default distribution is not transparent to the programmer

 Master process (e.g. BSP process 0)

 coordinates workers and decides about termination

 Worker processes

 Number can be controlled by the user

 Call Compute() for each vertex in local partition

 (Combine and) Aggregate messages to vertices on each other node

 Tell the master how many local vertices remain active for next
superstep

 Fault tolerance through checkpointing, master reassigns lost partitions

5

Giraph

 Pregel-like, Java-based API
atop Hadoop

 Open-source

 Giraph.apache.org

25C. Kessler, IDA, Linköpings universitet.

Hama

 BSP computing over Hadoop

 https://hama.apache.org/

 Includes
embedded DSLs
for graph computing,
deep learning…

Hadoop Hama

Pure BSP
computing

Graph computing
embedded DSL

Deep learning
embedded DSL …

26C. Kessler, IDA, Linköpings universitet.

deep learning…

 Java-based API

Hadoop HDFS

public abstract class Vertex<V extends Writable,
E extends Writable,
M extends Writable>

implements VertexInterface<V, E, M>
{

public void compute (Iterator<M> messages) throws IOException;
...

};

References

BSP:

 L. Valiant: A bridging model for parallel computation. Comm. ACM 33(8), 103-111, 1990

 L. Valiant: A bridging model for multi-core computing. J. Comp. and Syst. Sciences
77(1), 154-166, 2011.

 D.B. Skillicorn, Jonathan M.D. Hill, and W.F. McColl: Questions and Answers about
BSP. Scientific Programming, vol. 6, no. 3, pp. 249-274, 1997.
doi:10.1155/1997/532130

Pregel:

27C. Kessler, IDA, Linköpings universitet.

Pregel

 Grzegorz Malewicz, Matthew H. Austern, Aart J. C. Bik, James C. Dehnert, Ilan Horn,
Naty Leiser, and Grzegorz Czajkowski:
Pregel: A System for Large-Scale Graph Processing.
Proc. SIGMOD’10, June 6–11, 2010, pp. 135-145, ACM.

BSP on Hadoop / Cloud:

 Apache HAMA: https://hama.apache.org/

 K. Siddique et al.: Apache Hama: An Emerging Bulk Synchronous Parallel Computing
Framework for Big Data Applications. IEEE Access 4:8879 - 8887, Nov. 2016.
http://ieeexplore.ieee.org/document/7752866/

 Redekopp, M., Simmhan, Y., Prasanna, V.K.: Optimizations and analysis of BSP graph
processing models on public clouds. IPDPS 2013

Questions for Reflection

 Consider the simple (not time-optimal) BSP maximization example.
Design an asymptotically time-optimal BSP solution. How many
supersteps are required?
(assuming that no Aggregator construct is available)

 Why does (parallel) Depth-first-search not fit so well for distributed
graph computing with Pregel?

 Run the Connected Components algorithm example (with 7 nodes
and 2 server nodes) as shown in the image.

28C. Kessler, IDA, Linköpings universitet.

and 2 server nodes) as shown in the image.
Show where local accumulation by a combiner is applied.

 For the Pregel vertex value maximization algorithm, how many
supersteps would you need in the best / worst / average case
(assuming no Aggregator construct were available)? What is the
best / worst case here?

 How could Aggregators be implemented in a Pregel cluster?

 How could removals of edges speed up the vertex value
maximization algorithm for large distributed graphs?

 Find further graph algorithms that are similar in structure to
distributed connected components or PageRank.

