
1

Programming Models for

Big-Graph Analytics

PhD course
Big Data Analytics

Christoph Kessler, IDA,
Linköpings universitet.

Bulk-Synchronous Parallel Computing,
Pregel, Giraph, Hama

Christoph Kessler

IDA, Linköping University

March 2017

Bulk-Synchronous Parallel (BSP) Computing

 Bulk-Synchronous Parallel (BSP) Model [Valiant’90]

 A Bridging Model between abstract PRAM model and real-world
parallel computers, to support algorithm development

BSP computation: sequence of supersteps
Global Concep-

time

2C. Kessler, IDA, Linköpings universitet.

BSP:

superstep

Parallelism

Local computation

…

BSP machine model:
Distributed memory

Global
communi

cation

Concep-
tual

barrier

BSP-Model

3C. Kessler, IDA, Linköpings universitet.

BSP Example:
Global Maximum (NB: non-optimal algorithm)

4C. Kessler, IDA, Linköpings universitet.

BSP Remarks

 Local variables of BSP processes persist to next superstep

 In superstep s, contents of messages sent (and received) in
step s-1 are accessible

 Two-sided and/or one-sided message passing possible

 BSP implementations in the 1990s include

5C. Kessler, IDA, Linköpings universitet.

 BSP implementations in the 1990s include

 BSPlib – library for C atop MPI [Hill et al. ’98]

One-sided communication (put, get)

 PUB – library for C atop MPI [Bonorden et al.’03]

One-sided communication

 NestStep [K. 2000, 2004]

Partitioned global address space (PGAS) language
extension of C

Graphs

 G=(V,E)

 V: set of nodes

 E: set of edges (directed or undirected)

Storage:

– Adjacency matrix – random access but too inefficient for sparse
graphs

a

b

c

d

6C. Kessler, IDA, Linköpings universitet.

– Adjacency list – each node holds a list of its neighbors

 Graph examples

 WWW

 Social network graphs

 Transportation networks

 Similarity of documents

 Citation relationships

 …

2

Graphs

 Graph algorithms

 Depth-first search, Breadth-first search

 Single-source shortest paths

 All-pairs shortest paths

 Clustering

 Page rank

Minimum cut / Maximum flow

a

b

c

d

7C. Kessler, IDA, Linköpings universitet.

 Minimum cut / Maximum flow

 Connected components

 Strongly connected components

 Hamiltonian, Euler Tour, Traveling Salesman Problem

 …

 Typical properties

 Poor locality of memory accesses

 Little work per vertex

 Changing degree of parallelism

Graphs

 Today, many graphs are very large

 How to distribute a graph?

a

b

c

d

8C. Kessler, IDA, Linköpings universitet.

 How to distribute a graph?

 Usually, partition and distribute the array of vertices
(each vertex with a local value
and its adjacency list of outgoing edges)

 If locality matters in partitioning?

Replace default partitioning with a user-defined partitioning

Graph partitioner
e.g. METIS (used in HPC e.g. for FEM meshes)

Example

0

1

4

9C. Kessler, IDA, Linköpings universitet.

2

3

5

6

Example

0

1

4

Server 0 Server 1

10C. Kessler, IDA, Linköpings universitet.

2

3

5

6

Ex.: S servers, N vertices, hashfn = id, B = ceil(N/S):
• owner(i) = i div B
• local index(i) = i mod B

Hash vertices over servers.

Graph Traversal

 Exploration starts at some vertex

 For each vertex,
consider all its neighbors

 Visit each vertex once and traverse each edge once

 Sequential algorithms:
Depth first search, Breadth first search

a

b

c

d

11C. Kessler, IDA, Linköpings universitet.

Depth first search, Breadth first search
Special case: Tree traversals

 Much (dynamic) parallelism
(unless graph has very special structure)

 Little/no data locality
(unless graph has very special structure)

 History of exploration (i.e., recursive call stack, visited vertices)
must be kept
 dependences / communication for visiting a remote vertex when
calculating on a distributed system

Graph Analytics

 Global analysis of a graph

 Consider each vertex and each edge

 2 flavors:

 Compute one value over all vertices / edges

E.g. sum-up/maximize/… attribute values over all vertices

 Compute one value for each vertex / each edge

12C. Kessler, IDA, Linköpings universitet.

 Compute one value for each vertex / each edge

E.g. page rank for each vertex (web page)

 Often, iterative

 multiple sweeps over the graph

 Suitable for massively parallel and distributed computation

 Requires a global view (random access) of the graph

 How to address huge graphs?

3

Pregel

Pregel

Kneiphof
island

13C. Kessler, IDA, Linköpings universitet.

By Bogdan Giuşcă - Public
domain (PD), based on the
image, CC BY-SA 3.0,
https://commons.wikimedia.org
/w/index.php?curid=112920

Leonhard Euler
(1707-1783),
Swiss
mathematician

Source: Wikipedia

1736: There is no Eulertour
(path traversing each bridge
exactly once) for Königsberg
nor any other topology with
>2 nodes having odd degree.

N

E

S

K

A multigraph

Pregel [Malevicz et al. 2010]

 A framework to process/query large distributed graphs

 Proprietary (by Google)

 Pregel is the ”MapReduce” for graphs

 Iterative computations

Sequence of BSP supersteps

14C. Kessler, IDA, Linköpings universitet.

Sequence of BSP supersteps

 Each BSP superstep is basically a composition of the
MapReduce phases (Map, Combine, Sort, Reduce)

 Attempts to utilize all servers available
by partitioning and distributing the graph

 Good for computations touching all vertices / edges

 Bad for computations touching only few vertices / edges

Pregel
Programming Model

 Graph Vertices

 Each with unique identifier (String)

 Each with a user-defined value

 Each with a state in { Active, Inactive }

 Initially (before superstep 1), every vertex is active

 Graph Edges

 Each edge can have a user-defined value (e.g., weight)

Active Inactive

Vote to halt

Message received

States of a vertex

15C. Kessler, IDA, Linköpings universitet.

 One (conceptual) BSP process assigned to each vertex

 Not to the edges, by the way…

 Iteratively executing supersteps while active

 Two-sided communication with send() and receive() calls

 Graph can be dynamic

 Vertices and/or edges can be added or removed in each superstep

 Algorithm termination

 When all vertices are simultaneously inactive
and there are no messages in transit

 Otherwise, go for another superstep

Example: Maximum vertex value

a b c d

4 5 3 2Initial states / values

Superstep 0:
send my value to all neighbors;
receive from all neighbors

For now, assume 1 BSP
processing node per vertex

16C. Kessler, IDA, Linköpings universitet.

5 5 3 5

Superstep 1:
maximize over all received values;
if larger than my value,

update it and
send new value to all neighbors;
receive from neighbors;

else vote for halt;

Superstep 2:
…

Superstep 3:
…

5 5 5 5

5 5 5 5

Example: Maximum vertex value

a b c d

4 5 3 2Initial states / values

Superstep 0:
send my value to all neighbors;
receive from all neighbors

Now: multiple BSP processes
per server node
 message aggregation,

local combining

17C. Kessler, IDA, Linköpings universitet.

5 5 3 5

Superstep 1:
maximize over all received values;
if larger than my value,

update it and
send new value to all neighbors;
receive from neighbors;

else vote for halt;

Superstep 2:
…

Superstep 3:
…

5 5 5 5

5 5 5 5

Exercise: Connected Components
based on Maximum (with local accumulation)

0

1

4

Server 0 Server 1

4
0

18C. Kessler, IDA, Linköpings universitet.

2

3

5

6

2

3
6

1

5

Initialization

4

Exercise: Connected Components
based on Maximum (with local accumulation)

0

1

4

Server 0 Server 1

5
5

19C. Kessler, IDA, Linköpings universitet.

2

3

5

6

6

6
6

5

5

Final values CC ID’s

Pregel C++ API (1)

 Vertex<VertexValue,EdgeValue,MessageValue> class

 User overrides virtual Compute() method
for superstep behavior

 vertex_id() returns vertex identifier (string)

 VertexValue: user-specified datatype for value

 Get_value() reads, Mutable_value() sets the value

20C. Kessler, IDA, Linköpings universitet.

 GetOutEdgeIterator() get an OutEdgeIterator

 int64 superstep() queries the superstep number.

 Vertex and edge values are the only values that persist to the
next superstep

 All messages sent to vertex in previous superstep are available

 Each message contains a value of type MessageValue

 void SendMessageTo(dest_vertex_id, msg_value)

 void VoteToHalt()

Example: PageRank

class PageRankVertex : public Vertex<double, void, double>
{

public:
virtual void Compute (MessageIterator* msgs)
{

if (superstep() >= 1) {
double sum = 0;
for (; ! msgs->Done(); msgs->Next())

sum += msgs->Value();

21C. Kessler, IDA, Linköpings universitet.

sum += msgs->Value();
*MutableValue() = 0.15 / NumVertices() + 0.85 * sum;

}
if (superstep() < 30) {

const int64 n = GetOutEdgeIterator().size();
SendMessageToAllNeighbors(GetValue() / n);

}
else

VoteToHalt();
}

};

Pregel C++ API (2)

 Combiners

 For reductions (e.g. maximization, sum, …)
of values going to same receiver

 Local accumulation before sending off accumulated value to
destination residing on remote server

 Fewer inter-node messages,
fast node-local combining

22C. Kessler, IDA, Linköpings universitet.

fast node-local combining

 Aggregators

 are global All-Reductions (every vertex gets the global
sum/maximum/… over all vertices in the graph)

 Could be generalized to histogramming

For MPI programmers known from MPI_Allreduce

 Needs only 1 superstep instead of possibly many

Pregel C++ API (3)

Graph topology modifications

 Superstep execution can add or remove vertices or edges

 Could lead to conflicts across parallel BSP processes, e.g.

 Multiple processes try to create a vertex with same name in
same superstep

 .. Or: with same name but different initial values

 One wants to add an edge from/to a vertex that another wants to

23C. Kessler, IDA, Linköpings universitet.

 One wants to add an edge from/to a vertex that another wants to
remove

 …

 Conflict resolution policy:

 Edge removals always done first, then vertex removals

 Then do vertex additions, then edge additions

 Then do Compute() for the vertex

 Purely vertex-local modifications (e.g. adding/removing own
outgoing edges) are conflict-free

Pregel Implementation

 Proprietary (Google)

 Atop Google cluster architecture [Barroso et al. 2003]

 Persistent data stored as files on a distributed file system
e.g. in Google File System GFS

 with a name service for file location lookup

 Graph partitioning: vertices hashed over the p cluster nodes:
owner(v) = hashfunction(v) mod p

 Default distribution is not transparent to the programmer

24C. Kessler, IDA, Linköpings universitet.

 Default distribution is not transparent to the programmer

 Master process (e.g. BSP process 0)

 coordinates workers and decides about termination

 Worker processes

 Number can be controlled by the user

 Call Compute() for each vertex in local partition

 (Combine and) Aggregate messages to vertices on each other node

 Tell the master how many local vertices remain active for next
superstep

 Fault tolerance through checkpointing, master reassigns lost partitions

5

Giraph

 Pregel-like, Java-based API
atop Hadoop

 Open-source

 Giraph.apache.org

25C. Kessler, IDA, Linköpings universitet.

Hama

 BSP computing over Hadoop

 https://hama.apache.org/

 Includes
embedded DSLs
for graph computing,
deep learning…

Hadoop Hama

Pure BSP
computing

Graph computing
embedded DSL

Deep learning
embedded DSL …

26C. Kessler, IDA, Linköpings universitet.

deep learning…

 Java-based API

Hadoop HDFS

public abstract class Vertex<V extends Writable,
E extends Writable,
M extends Writable>

implements VertexInterface<V, E, M>
{

public void compute (Iterator<M> messages) throws IOException;
...

};

References

BSP:

 L. Valiant: A bridging model for parallel computation. Comm. ACM 33(8), 103-111, 1990

 L. Valiant: A bridging model for multi-core computing. J. Comp. and Syst. Sciences
77(1), 154-166, 2011.

 D.B. Skillicorn, Jonathan M.D. Hill, and W.F. McColl: Questions and Answers about
BSP. Scientific Programming, vol. 6, no. 3, pp. 249-274, 1997.
doi:10.1155/1997/532130

Pregel:

27C. Kessler, IDA, Linköpings universitet.

Pregel

 Grzegorz Malewicz, Matthew H. Austern, Aart J. C. Bik, James C. Dehnert, Ilan Horn,
Naty Leiser, and Grzegorz Czajkowski:
Pregel: A System for Large-Scale Graph Processing.
Proc. SIGMOD’10, June 6–11, 2010, pp. 135-145, ACM.

BSP on Hadoop / Cloud:

 Apache HAMA: https://hama.apache.org/

 K. Siddique et al.: Apache Hama: An Emerging Bulk Synchronous Parallel Computing
Framework for Big Data Applications. IEEE Access 4:8879 - 8887, Nov. 2016.
http://ieeexplore.ieee.org/document/7752866/

 Redekopp, M., Simmhan, Y., Prasanna, V.K.: Optimizations and analysis of BSP graph
processing models on public clouds. IPDPS 2013

Questions for Reflection

 Consider the simple (not time-optimal) BSP maximization example.
Design an asymptotically time-optimal BSP solution. How many
supersteps are required?
(assuming that no Aggregator construct is available)

 Why does (parallel) Depth-first-search not fit so well for distributed
graph computing with Pregel?

 Run the Connected Components algorithm example (with 7 nodes
and 2 server nodes) as shown in the image.

28C. Kessler, IDA, Linköpings universitet.

and 2 server nodes) as shown in the image.
Show where local accumulation by a combiner is applied.

 For the Pregel vertex value maximization algorithm, how many
supersteps would you need in the best / worst / average case
(assuming no Aggregator construct were available)? What is the
best / worst case here?

 How could Aggregators be implemented in a Pregel cluster?

 How could removals of edges speed up the vertex value
maximization algorithm for large distributed graphs?

 Find further graph algorithms that are similar in structure to
distributed connected components or PageRank.

