
1

Christoph Kessler, IDA,
Linköpings universitet.

Introduction to Spark

Christoph Kessler
IDA, Linköping University

732A54
Big Data Analytics

2C. Kessler, IDA, Linköpings universitet.

Recall: MapReduce Programming Model
n Designed to operate on LARGE distributed input data sets

stored e.g. in HDFS nodes
n Abstracts from parallelism, data distribution, load balancing, data

transfer, fault tolerance
n Implemented in Hadoop and other frameworks
n Provides a high-level parallel programming construct (= a skeleton)

called MapReduce
l A generalization of the data-parallel MapReduce skeleton of

Lect. 1
l Covers the following algorithmic design pattern:

Map Phase Shuffle Phase Reduce Phase

M Mapper (+combiner) tasks R Reducer (+shuffle) tasks

3C. Kessler, IDA, Linköpings universitet.

From MapReduce to Spark
MapReduce
n is for large-scale computations matching the MapReduce pattern,
n with input, intermediate and output data stored in secondary storage

Limitations
n For complex computations composed of multiple MapReduce steps

l E.g. iterative computations
4e.g. parameter optimization by gradient search

à Much unnecessary disk I/O – data for next MapReduce step
could remain in main memory or even cache memory

à Data blocks used multiple times are read multiple times from disk
à Bad data locality across subsequent Mapreduce phases

n Sharing of data only in secondary storage
l Latency can be too long for interactive analytics

n Fault tolerance by replication of data – more I/O to store copiesà slow

…

By chaining multiple MapReduce steps, we
can emulate any distributed computation.

4C. Kessler, IDA, Linköpings universitet.

Spark Idea: Data Flow Computing in Memory
Instead of calling subsequent rigid MapReduce steps, the
Spark programmer describes the overall data flow graph of
how to compute all intermediate and final results from the
initial input data

l And then ”pushes the button” for computing
(= materializing the results) according to the data flow
graph à Lazy evaluation

l More like declarative, functional programming
l Gives more flexibility to the scheduler

4Better data locality
4Keep data in memory as capacity permits, can

skip unnecessary disk storage of temporary data
l No replication of data blocks for fault tolerance - in

case of task failure (worker failure), recompute it
from available, earlier computed data blocks
according to the data flow graph
4Needs a container data structure for operand data

that ”knows” how its data blocks are to be
computed: the RDD

5C. Kessler, IDA, Linköpings universitet.

Resilient Distributed Datasets (RDDs)
n Containers for operand data passed between parallel operations

l Read-only (after construction) collection of data objects
l Partitioned and distributed across workers (cluster nodes)
l Materialized on demand from construction description
l Can be rebuilt if a partition (data block) is lost
l By default, cached in main memory –

not persistent (in secondary storage) until written back

n Construction of new RDDs:
l By reading in from a file e.g. in HDFS
l By partitioning and distributing a non-distributed collection

(e.g., array) previously residing on one node (”scatter”)
l By a Map operation: Aà List(B)

(elementwise transformation, filtering, …) applied on another RDD

l Changing persistence state of a RDD:
4 By a caching hint for data to be reused – if enough space in memory
4 By materializing (persisting, saving) to a file

(and discarding its copy in memory)

Partition/block

data = [1, 2, 3, 4, 5]
distData = sc.parallelize(data)

cachedData = distdata.cache()

distdata.saveAsTextFile(...) 6C. Kessler, IDA, Linköpings universitet.

Parallel Operations on RDDs
Spark execution model:
n Driver program (sequential) runs on host / master
n Operations on RDDs run on workers
n Collect data from workers to driver program on demand:

Parallel Collect Operations on RDDs:
n Reduce

l Combine RDD elements using an associative binary function to
produce a (scalar) result at the driver program

l Key-value pairs to reduce over are grouped by key, as in MapReduce
l Initially no shuffle&sort phaseà no grouped reduction as in MapReduce

n Collect
l Send all elements of the RDD to the driver program (”gather”)

n Foreach
l Pass each RDD element through a user-provided function
l Not producing another RDD (difference from Map/Filter)
l Might be used e.g. for copying data to another system

distData = sc.parallelize(data)
distData.collect()

2

7C. Kessler, IDA, Linköpings universitet.

Classification of RDD Operations
n Transformations: Lazy, parallelizable

l Mostly variants of Map and reading from file
n Actions: Materialization points (”push the button”)

l Mostly variants of Reduce and writing back to file/master

RDD transformations and actions available in Spark. Seq[T] denotes a sequence of elements of type T.
Table source: Zaharia et al.: Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing. 8C. Kessler, IDA, Linköpings universitet.

Shared Variables
n Broadcast Variables

l Replicated shared variables – 1 copy on each worker
l Read-only for workers
l For global data needed by all workers,

e.g. filtering parameters, lookup table

n Accumulator Variables
l Residing on driver program process
l Workers can not read,

only add their contributions using an associative operation
l Good for implementing counters and for global sum

9C. Kessler, IDA, Linköpings universitet.

Example: Text Search
n Count lines containing errors in a large log file stored in HDFS

n RDDs errs and ones are lazy RDDs that are never materialized to
secondary storage.

n Call to reduce triggers computation of ones, which triggers
computation of errs, which triggers reading blocks from the file.

// Create a RDD from file:
file = sc.textFile("hdfs://...")

// Filter operation to create RDD containing lines with ”ERROR”:
errs = file.filter(lambda line: line.find("ERROR”)>=0)

// Map each line to a 1:
ones = errs.map(lambda word: (word, 1))

// Add up the 1’s using Reduce:
count = ones.reduce(lambda x, y: x+y)

Python code adapted from Zaharia et al. 2010

The ”lineage”
of RDDs leading
to the result count

10C. Kessler, IDA, Linköpings universitet.

Example: Text Search, with reuse of errs
n Count lines containing errors in a large log file stored in HDFS

// Create a RDD from file:
file = sc.textFile("hdfs://...")

// Filter operation to create RDD containing lines with ”ERROR”:
errs = file.filter(lambda line: line.find("ERROR”)>=0)

// Cache hint that errs will be reused in another operation:
cachedErrs = errs.cache();

// Map each line to a 1:
ones = cachedErrs.map(lambda word: (word, 1))

// Add up the 1’s using Reduce:
count = ones.reduce(lambda x, y: x+y)

Python pseudocode

11C. Kessler, IDA, Linköpings universitet.

Example: Pi Calculation
n Stochastic approximation of Pi:

l A random point (x,y) in [0,1]x[0,1]
is located within quarter unit cycle
iff x2 + y2 < 1

def sample(p):
x, y = random(), random()
return 1 if x*x + y*y < 1 else 0

count = sc.parallelize(xrange(0, NUM_SAMPLES)) \
.map(sample) \
.reduce(lambda a, b: a + b)

print "Pi is roughly %f" % (4.0 * count / NUM_SAMPLES)

1

1

Create a RDD containing
all indexes
0, …, NUM_SAMPLES-1

12C. Kessler, IDA, Linköpings universitet.

Example: Logistic Regression
n Iterative classification algorithm to find a hyperplane that best

separates 2 sets of data points
n Gradient descent method:

l Start at a random normal-vector (hyperplane) w
l In each iteration, add to w an error-correction term (based on the

gradient) that is a function of w and the data points, to improve w
// Read points from a text file and cache them:
points = sc.textFile(...).map(parsePoint).cache()
// Initialize w to random D-dimensional vector:
w = Vector.random(D)
// Run multiple iterations to update w:
for (i <- 1 to NUMBER_OF_ITERATIONS) {

grad = sc.accumulator(new Vector(D))
for (p <- points) { // Runs in parallel:

val s = (1/(1+exp(-p.y*(w dot p.x)))-1) * p.y
grad += s * p.x // remotely add contribution to gradient value

}
w -= grad.value // correction of w

}

Scala pseudocode, adapted from
Zaharia et al., 2010

3

13C. Kessler, IDA, Linköpings universitet.

Spark Execution Model
n Depending on the kind of operations,

the data dependences between RDDs in the lineage graph
can be local (elementwise) or global (shuffle-like)

n When a user runs an action on an RDD,
the Spark scheduler builds a DAG of stages
from the RDD lineage graph.

n A stage contains a contiguous subDAG of as many as possible
operations with local (element-wise) dependencies between RDDs
l The boundary of a stage is thus defined by

4Operations with global dependencies
4Already computed (materialized) RDD partitions.

n Execution of the operations within a stage is pipelined
l intermediate results forwarded in memory

n The scheduler launches tasks to workers (cluster nodes) to compute
missing partitions from each stage until it computes the target RDD.

n Tasks are assigned to nodes based on data locality.
l If a task needs a partition that is available in the memory of a

node, the task is sent to that node.

Local
dep.

Global
dep.

14C. Kessler, IDA, Linköpings universitet.

Spark Performance

Results from original paper on Spark 2010:
n Spark can outperform Hadoop by 10x in iterative machine

learning jobs
n Interactive query of a 39GB data set in < 1s

Image source:
M. Zaharia et al.,
2010. © ACM

15C. Kessler, IDA, Linköpings universitet.

Using Spark

n Spark can run atop HDFS, but other implementations also exist
n Language bindings exist for Scala, Java, Python (PySpark)

l Some minor restrictions for Python
n Spark Context object

l The main entry point to Spark functionality
l Represents connection to a Spark cluster
l PySpark context sc is up and running from start
l Create your own Spark context object for stand-alone applications

4 sc = new pyspark.SparkContext(master, applName, [sparkHome], […])

local
local[k]
spark://host:port
mesos://host:port

16C. Kessler, IDA, Linköpings universitet.

Spark Streaming
n Extension of the core Spark API

for scalable, high-throughput, fault-tolerant stream processing
of live data streams.

n Discretized stream or DStream
l High-level abstraction representing a continuous stream of

data.
l Internally: A continuous series of RDDs

Spark
Streaming

Spark

Input data
stream

Batches of
input data

Batches of
processed data

17C. Kessler, IDA, Linköpings universitet.

Transformations on DStreams

n map(func), flatMap(func), filter(func) – return a new DStream
with map etc. applied to all its elements

n repartition(), union(other_stream)
n count() – returns a new DStream of single-element RDDs

containing the number of elements in each RDD of the source
DStream

n reduce(func), reduceByKey() – aggregate each RDD of the
soruce Dstream and return a new Dstream of single-element RDDs

n join (other_stream) – joins 2 streams of (K,V) and (K,W) pairs to a
stream of (K,(V,W)) pairs

n transform(func) – apply arbitrary RDD-to-RDD function to each
RDD in the source DStream

n …

18C. Kessler, IDA, Linköpings universitet.

Spark Streaming Example
from pyspark import SparkContext
from pyspark.streaming import StreamingContext

Create a local StreamingContext with two working threads and batch interval of 1 second:
sc = SparkContext("local[2]", "NetworkWordCount")
ssc = StreamingContext(sc, 1)

Create a DStream that will connect to TCP hostname:port, like localhost:9999, as source:
lines = ssc.socketTextStream("localhost", 9999)

Split each line into words:
words = lines.flatMap(lambda line: line.split(" "))
Count each word in each batch:
pairs = words.map(lambda word: (word, 1))
wordCounts = pairs.reduceByKey(lambda x, y: x + y)
Print the first ten elements of each RDD generated in this DStream to the console:
wordCounts.pprint()

ssc.start() # Start the computation
ssc.awaitTermination() # Wait for the computation to terminate

DStream of lines

Run on local host, alt. cluster name

4

19C. Kessler, IDA, Linköpings universitet.

Spark Streaming: Windowing

n Can define a sliding window over a source DStream
time 1 time 4time 2 time 3 time 5

Window
at time 3

Window
at time 5

Window length (here 3)
Slide length (here 2)
à Overlap size (here 1)

Every time the window slides over a source
DStream, the source RDDs that fall within the
window are combined and operated upon to
produce the RDDs of the windowed DStream.

Example: Reduce last 30 seconds of data, every 10 seconds:
windowedWordCounts = \

pairs.reduceByKeyAndWindow(lambda x, y: x + y, lambda x, y: x - y, 30, 10) 20C. Kessler, IDA, Linköpings universitet.

References

n M. Zaharia, M. Chowdhury, M. Franklin, S. Shenker, I. Stoica:
Spark: Cluster Computing with Working Sets.
Proceedings of the 2nd USENIX conference on Hot topics in
cloud computing (HotCloud'10), 2010, ACM.
l See also: M. Zaharia et al.: Apache Spark: A Unified

Engine for Big Data Processing. Communications of the
ACM, 59(11):56-65, Nov. 2016.

n Apache Spark: http://spark.apache.org

n A. Nandi: Spark for Python Developers. Packt Publishing,
2015.

21C. Kessler, IDA, Linköpings universitet.

Questions for Reflection
n Why can MapReduce emulate any distributed computation?
n For a Spark program consisting of 2 subsequent Map computations,

show how Spark execution differs from Hadoop/MapReduce execution.
n Given is a file containing just integer numbers.

Write a Spark program that adds them up.

n Write a wordcount program for Spark.
l Solution proposal (from spark.apache.org):

l Note – there exist many variants for formulating this.

n Modify the wordcount program by only considering words
with at least 4 characters.

text_file = sc.textFile("hdfs://...")
counts = text_file.flatMap(lambda line: line.split(" ")) \

.map(lambda word: (word, 1)) \

.reduceByKey(lambda a, b: a + b)

counts.saveAsTextFile("hdfs://...")

