
Christoph Kessler, IDA,
Linköpings universitet.

Introduction to MapReduce

Christoph Kessler
IDA, Linköping University

732A54
Big Data Analytics

2C. Kessler, IDA, Linköpings universitet.

Towards Parallel Processing of Big-Data
Big Data …
n too large to be read+processed in reasonable time by 1 server only
n too large to fit in main memory at a time
n Usually residing on secondary storage

(local or remote)
l Storage on a single hard disk

(sequential access) would
prevent parallel processing

l Use lots of servers with lots of hard disks
4i.e., standard server nodes in a cluster

l Distribute the data across nodes
to allow for parallel access

3C. Kessler, IDA, Linköpings universitet.

Distributed File System
MapReduce works atop a distributed file system
n Large files are distributed (”sharded” = split into blocks of

e.g. 64MB (shards) and spread out across cluster nodes)
l Parallel access possible
l Faster access to local chunks

(higher bandwidth, lower latency)
n Also, replicas for

fault tolerance
l E.g. 3 copies of each

block on different servers
l Examples:

Google GFS, Hadoop HDFS
n May need to first copy the data from

ordinary (host) file system to HDFS
4C. Kessler, IDA, Linköpings universitet.

MapReduce Programming Model
n Designed to operate on LARGE distributed input data sets

stored e.g. in HDFS nodes
n Abstracts from parallelism, data distribution, load balancing, data

transfer, fault tolerance
n Implemented in Hadoop and other frameworks
n Provides a high-level parallel programming construct (= a skeleton)

called MapReduce
l A generalization of the data-parallel MapReduce skeleton of

Lect. 1
l Covers the following algorithmic design pattern:

Map Phase Shuffle Phase Reduce Phase

M Mapper (+combiner) tasks R Reducer (+shuffle) tasks

5C. Kessler, IDA, Linköpings universitet.

Reduce Phase

- Reduce
- Output formatter

Shuffle Phase

- Shuffle
and sort

MapReduce Programming Model
n Designed to operate on LARGE input data sets

stored e.g. in HDFS nodes
n Abstracts from parallelism, data distribution, load balancing, data

transfer, fault tolerance
n Implemented in Hadoop and other frameworks
n Provides a high-level parallel programming construct (= a skeleton)

called MapReduce
l A generalization of the data-parallel MapReduce skeleton of

Lect. 1
l Covers the following algorithmic design pattern:

Map Phase

- Record reader
- Mapper
- Combiner
- Partitioner

6C. Kessler, IDA, Linköpings universitet.

MapReduce Programming Model
n Designed to operate on LARGE distributed input data sets

stored e.g. in HDFS nodes
n Abstracts from parallelism, data distribution, load balancing, data

transfer, fault tolerance
n Implemented in Hadoop and other frameworks
n Provides a high-level parallel programming construct (= a skeleton)

called MapReduce
l A generalization of the data-parallel MapReduce skeleton of

Lect. 1
l Covers the following algorithmic design pattern:

Map Phase Shuffle Phase Reduce Phase

Data elements:
Key-value pairs

M Mapper (+combiner) tasks R Reducer (+shuffle) tasks

7C. Kessler, IDA, Linköpings universitet.

MapReduce Programming Model
n Designed to operate on LARGE distributed input data sets

stored e.g. in HDFS nodes
n Abstracts from parallelism, data distribution, load balancing, data

transfer, fault tolerance
n Implemented in Hadoop and other frameworks
n Provides a high-level parallel programming construct (= a skeleton)

called MapReduce
l A generalization of the data-parallel MapReduce skeleton of

Lect. 1
l Covers the following algorithmic design pattern:

Map Phase Shuffle Phase Reduce Phase

M Mapper (+combiner) tasks R Reducer (+shuffle) tasks

Reduce function:
K2 x List(K2 x V2) à List(V2)

Map function:
K1 x V1 à List(K2 x V2)

8C. Kessler, IDA, Linköpings universitet.

Record Reader
n Parses an input file block from stdin

into key-value pairs that define input data records
l Key in K1 is typically positional information (location in file)
l Value in V1 = chunk of input data that composes a record

9C. Kessler, IDA, Linköpings universitet.

Mapper

n Applies a user-defined function to each element (i.e.,
key/value pair coming from the Record reader).
l Examples:

4Filter function – drop elements that do not fulfill a
constraint

4Transformation function – calculation on each element
n Produces a list of zero or more new key/value pairs

= intermediate elements
l Key in K2: index for grouping of data
l Value in V2: Data to be forwarded to reducer
l Buffered in memory

10C. Kessler, IDA, Linköpings universitet.

Combiner

n An optional local reducer
run in the mapper task as postprocessor

n Applies a user-provided function to aggregate values in the
intermediate elements of one mapper task

n Reduction/aggregation could also be done by the reducer,
but local reduction can improve performance considerably
l Data locality – key/value pairs still in cache resp. memory

of same node
l Data reduction – aggregated information is often smaller

n Applicable if the user-defined Reduce function is commutative
and associative

n Recommended if there is significant repetition of intermediate
keys produced by each Mapper task

11C. Kessler, IDA, Linköpings universitet.

Partitioner

n Splits the intermediate elements from the mapper/combiner
into shards (64MB blocks stored in local files)
l one shard per reducer
l Default: element to hashCode(element.key) modulo R

for even (round-robin) distribution of elements
4Usually good for load balancing

n Writes the shards to the local file system

12C. Kessler, IDA, Linköpings universitet.

Shuffle-and-sort

n Downloads the needed files written by the partitioners
to the node on which the reducer is running

n Sort the received (key,value) pairs by key into one list
l Pairs with equivalent keys will now be next to each other

(groups)
l To be handled by the reducer

n No customization here beyond how to sort and group by keys

13C. Kessler, IDA, Linköpings universitet.

Reducer
n Run a user-defined reduce function once per key grouping
l Can aggregate, filter, and combine data
l Output: 0 or more key/value pairs sent to output formatter.

14C. Kessler, IDA, Linköpings universitet.

Output Formatter
n Translates the final (key,value) pair from the reduce function

and writes it to stdout à to a file in HDFS
l Default formatting (key <TAB> value <NEWLINE>)

can be customized

15C. Kessler, IDA, Linköpings universitet.

Example: Word Count

n Python code for the Mapper task:

import sys
for line in sys.stdin:

remove leading and trailing whitespace:
line = line.strip()
split the line into words:
words = line.split()
increase counters:
for word in words:

print '%s\t%s' % (word, 1)
Python code adapted from
MapReduce tutorial, Princeton U., 2015

ABC DEF.
- GHI ABC?

DEF
…

ABC<tab>1
DEF<tab>1
GHI<tab>1
ABC<tab>1
DEF<tab>1
…

ABC DEF.
- GHI ABC?

DEF
…

ABC DEF.
- GHI ABC?

DEF
…

ABC<tab>1
DEF<tab>1
GHI<tab>1
ABC<tab>1
DEF<tab>1
…

ABC<tab>1
DEF<tab>1
GHI<tab>1
ABC<tab>1
DEF<tab>1
… 16C. Kessler, IDA, Linköpings universitet.

Example: Word Count

n Python code for the Combiner task:
import sys
for line in sys.stdin:

for each document create dictionary of words:
wordcounts = dict()
line = line.strip()
words = line.split()
for word in words:

if word not in wordcounts.keys(): wordcounts[word] = 1
else: wordcounts[word] += 1

emit key-value pairs only for distinct words per document
for w in wordcounts.keys():

print '%s\t%s' % (w, wordcounts[w])
ABC<tab>1
DEF<tab>1
GHI<tab>1
ABC<tab>1
DEF<tab>1

ABC<tab>2
DEF<tab>2
GHI<tab>1

17C. Kessler, IDA, Linköpings universitet.

Example: Word Count

n Effect of Shuffle-And-Sort:

ABC<tab>2
DEF<tab>2
GHI<tab>1

PQR<tab>1
DEF<tab>1
GHI<tab>3
UVW<tab>2

ABC<tab>2
DEF<tab>2
DEF<tab>1
GHI<tab>1
GHI<tab>3
UVW<tab>2
PQR<tab>1

18C. Kessler, IDA, Linköpings universitet.

Example: Word Count
n Python code for the Reducer task:

import sys
current_word = None
current_count = 0
word = None
for line in sys.stdin:

remove leading and trailing whitespace
line = line.strip()
parse the input we got from mapper:
word, count = line.split('\t', 1)
convert count from string to int:
try:

count = int(count)
except ValueError:

silently ignore invalid line
continue

….

….
if current_word == word:

current_count += count
else:

new word – print tuple for
the previous one to stdout:
if current_word:

print '%s\t%s' %
(current_word,
current_count)

current_count = count
current_word = word

loop done, write the last tuple:
if current_word == word:

print '%s\t%s' % (current_word,
current_count)

NB words come in
sorted order – if word
is same as the last one,
just add its count

19C. Kessler, IDA, Linköpings universitet.

Example: Word Count
n Effect of Reducer:

ABC<tab>2
DEF<tab>2
DEF<tab>1
GHI<tab>1
GHI<tab>3
UVW<tab>2
PQR<tab>1

ABC<tab>2
DEF<tab>3
GHI<tab>4
UVW<tab>2
PQR<tab>1

20C. Kessler, IDA, Linköpings universitet.

Special Cases of MapReduce
Map only (Reduce is identity function)
n Data Filtering

l E.g. distributed grep
n Data Transformation

Shuffle-and-sort only:
n Sorting values by key

l Mapper extracts key from record and forms <key, record> pairs
l Shuffle-and-sort phase does the sorting by key

Reduce only: (Map is identity function, Combiner for local reduce)
n Reductions (summarizations):

l Find global maximum/minimum, global sum,
average, median, standard deviation, …

l Find top-10

21C. Kessler, IDA, Linköpings universitet.

Further Examples for MapReduce
n Count URL frequencies (a variant of wordcount)

l Input: logs of web page requests <URL, 1>
l Reduce function adds together all values for same URL

n Construct reverse web-link graph
l Input: <sourceURL, targetURL> pairs
l Mapper reverses: <targetURL, sourceURL>
l Shuffle-and-sort à

<targetURL, list of all URLs pointing to targetURL>
l no reduction à Reduce function is identity function

n Indexing web documents
l Input: list of documents (e.g. web pages)
l Mapper parses documents and builds sequences <word, documentID>*
l Shuffle-and-sort produces for each word a list of all documentIDs where

word occurs (Reduce function is identity)
22C. Kessler, IDA, Linköpings universitet.

MapReduce Implementation / Execution Flow
n User application calls MapReduce and waits.
n MapReduce library implementation splits the input data (if

not already done) in M blocks (of e.g. 64MB) and creates
P MapReduce processes on different cluster nodes:
1 master and P-1 workers.

n Master creates M mapper tasks and R reducer tasks, and
dispatches them to idle workers (dynamic scheduling)
l Worker executing a Mapper task reads its block of

input, applies the Map (and local Combine) function,
and buffers (key,value) pairs in memory.
Buffered pairs are periodically written to local disk,
locations of these files are sent to Master.

l Worker executing a Reducer task is notified by Master
about locations of intermediate data to shuffle+sort and
fetches them by remote memory access request, then
sorts them by key (K2).
It applies the Reduce function to the sorted data and
appends its output to a local file.

n When all mapper and reducer tasks have completed,
the master wakes up the user program and returns the
locations of the R output files.

Run-time
scheduler

…

Worker processes
on different cluster nodes

23C. Kessler, IDA, Linköpings universitet.

MapReduce Implementation: Fault Tolerance
n Worker failure

l Master pings every worker periodically.
l Master marks a dead worker’s tasks for re-

execution à eventually reassigned to other
workers
4Completed map tasks (as their local files with

intermediate data are no longer accessible)
and unfinished map and reduce tasks

4Reducer tasks using data from a failed map
task are informed by master about the new
worker

n Master failure
l Less likely (1 Master, P-1 Workers)
l Use checkpointing, a new master can restart

from latest checkpoint

Run-time
scheduler

…

Worker processes
on different cluster nodes 24C. Kessler, IDA, Linköpings universitet.

MapReduce Implementation: Data Locality

n For data storage fault tolerance,
have 3 copies of each 64MB data block,
each stored on a different cluster node

n Master uses Locality-aware scheduling:
l Schedule a mapper task to a worker node

holding one copy of its input data block
l Or on a node that is near a copy holder

(e.g. a neighbor node in the network
topology)

Run-time
scheduler

…

Worker processes
on different cluster nodes

25C. Kessler, IDA, Linköpings universitet.

MapReduce Implementation: Granularity

Numbers M, R and work of tasks (block size)
might be tuned
n Default: M = input file size / block size
l User can set other value

n M, R should be >> P
l For flexibility in dynamic load balancing
l Hadoop recommends ~10…100 mappers

per cluster node, or more if lightweight
n Not too large, though…
l ~ M+R scheduling decisions by master
l Block size should be reasonably large

(e.g. 64MB) to keep relative impact of
communication and task overhead low

Run-time
scheduler

…

Worker processes
on different cluster nodes 26C. Kessler, IDA, Linköpings universitet.

References
n J. Dean, S. Ghemawat: MapReduce: Simplified Data

Processing on Large Clusters. Proc. OSDI 2004.
Also in: Communications of the ACM 51(1), 2008.

n D. Miner, A. Shook: MapReduce Design Patterns. O’Reilly,
2012.

n Apache Hadoop: https://hadoop.apache.org

27C. Kessler, IDA, Linköpings universitet.

Questions for Reflection
n A MapReduce computation should process 12.8 TB of data in a distributed file

with block (shard) size 64MB. How many mapper tasks will be created,
by default? (Hint: 1 TB (Terabyte) = 1012 byte)

n Discuss the design decision to offer just one MapReduce construct that covers
both mapping, shuffle+sort and reducing. Wouldn’t it be easier to provide one
separate construct for each phase? What would be the performance
implications of such a design operating on distributed files?

n Reformulate the wordcount example program to use no Combiner.
n Consider the local reduction performed by a Combiner:

Why should the user-defined Reduce function be associative and
commutative? Give examples for reduce functions that are associative and
commutative, and such that are not.

n Extend the wordcount program to discard words shorter than 4 characters.
n Write a wordcount program to only count all words of odd and of even length.

There are several possibilities.
n Show how to calculate a database join with MapReduce.
n Sometimes, workers might be temporarily slowed down (e.g. repeated disk

read errors) without being broken. Such workers could delay the completion of
an entire MapReduce computation considerably.
How could the master speed up the overall MapReduce processing
if it observes that some worker is late?

