732A54

Big Data Analytics II. DRNZRSI

UNIVERSITY

Introduction to
Parallel Computing

Christoph Kessler
IDA, Linképing University

Christoph Kessler, DA,
Link8pings niversitet.

Traditional Use of Parallel Computing: "%

Large-Scale HPC Applications

m High Performance Computing (HPC)

o Much computational work
(in FLOPs, floatingpoint operations)

e Often, large data sets

e E.g. climate simulations, particle physics, engineering, sequence]
matching or proteine docking in bioinformatics, ...

m Single-CPU computers and even today’s
multicore processors cannot provide such
massive computation power

m Aggregate LOTS of computers > Clusters
o Need scalable parallel algorithms
o Need to exploit multiple levels of parallelism

S.Kessler, IDA_Linkspings universitet.

More Recent Use of Parallel Computing: ™|

Big-Data Analytics Applications

m Big Data Analytics
e Data access intensive (disk I/O, memory accesses)
» Typically, very large data sets (GB ... TB ... PB ... EB ...)
e Also some computational work for combining/aggregating data

e E.g. data center applications, business analytics, click stream
analysis, scientific data analysis, machine learning, ...

o Soft real-time requirements on interactive querys.t

m Single-CPU and multicore processors cannot
provide such massive computation power
and I/O bandwidth+capacity

m Aggregate LOTS of computers > Clusters
o Need scalable parallel algorithms
o Need to exploit multiple levels of parallelism

o Fault tolerance
C.Kesslor, IDA. L inGopings urlveraiict

| (TR

HPC vs Big-Data Computing

m Both need parallel computing

m Same kind of hardware — Clusters of (multicore) servers
m Same OS family (Linux)

m Different programming models, languages, and tools

HPC application
HPC prog. languages:
Fortran, C/C++ (Python)

Big-Data application

Big-Data prog. languages:

Java, Scala, Python, ...

Programming models:
MapReduce, Spark, ...

Scientific computing Big-data storage/access:
libraries: BLAS, ... HDFS, ...
OS: Linux OS: Linux
HW: Cluster HW: Cluster

-> Let us start with the common basis: Parallel computer architecture

C. Kessler, IDA, Linkspings universitet.

| [T |
Parallel Computer
A parallel computer is a computer consisting of

+ two or more processors
that can cooperate and communicate
to solve a large problem faster,

+ one or more memory modules,

+ an interconnection network
that connects processors with each other
and/or with the memory modules.

Multiprocessor: tightly connected processors, e.g. shared memory

Multicomputer: more loosely connected, e.g. distributed memory

C.Kessler, IDA_ Linkspings universitet. s

| [T
Parallel Computer Architecture Concepts

Classification of parallel computer architectures:
m by control structure
e SISD, SIMD, MIMD
® by memory organization
e in particular, Distributed memory vs. Shared memory
m by interconnection network topology

C.Kessler, DA, Linkspings universitet. 3

Classification by Control Structure ,
[Flynn'72]
SISD single instruction stream, single data stream
+ sequential. OK where performance is not an issue.

SIMD single instruction stream, multiple data streams
Common clock, common program memory, common program counter.
+ VLIW processors m -
+ traditional vector processors
+ traditional array computers
+ SIMD instructions on wide data words (e.g. Altivec, SSE, M.

op

MIMD multiple instruction streams, multiple data stregms

Classification by Memory Organization

'
E Network e.g. bus

Distributed memory system Shared memory system

e.g. (traditional) HPC cluster e.g. multiprocessor (SMP) or compute]
with a standard multicore CPU

Interconnection Network

Most common today in HPC and Data centers:

; Hybrid Memory System
Each pr rh n program nter. T T
ach processor has its own program counte « Cluster (distributed memory)
Hybrid forms op, op; op; op; of hundreds, thousands of
shared-memory servers
™ each containing one or several multi-core CPUs
C_Kessler IDA_Linkopings universitet Z C_Kessler IDA_Linkopings universitet.
Hybrid (Distributed + Shared) Memory Interconnection Networks (1)
1 m Network
= physical interconnection medium (wires, switches)
+ communication protocol
(a) connecting cluster nodes with each other (DMS)
System (b) connecting processors with memory modules (SMS)
Nodes Classification
m Direct / static interconnection networks
Processor chips [+ I [+ J m&‘? e connecting nodes directly to each other
e Hardware routers (communication coprocessors)
M /N A /l\ can be used to offload processors from most communication work
Cores e -0 -0 -0 - o -0 -0 -0 m Switched / dynamic interconnection networks
C. Kessler, IDA, Linkspings universitet, 9 C. Kessler, IDA, Linkspings universitet, 101

Interconnection Networks (2): E

Simple Topologies

bus ® LF] 1 wire - bus saturation with many processors
e.g. Ethernet

linear array pl{pH{p}{p] ring {PH{PI-{P}-PL, e.g. Token Ring

2D grid | \‘]

H
Log

3D grid

root processor
is bottleneck

tree N PLig
N\ 7w

[p] [p] [P] [P]]] [P [
C._Kessler IDA, Linkopings universitet. 11

koG]

Interconnection Networks (3): [ree - | i
Fat-Tree Network f

m Tree network extended for higher bandwidth (more switches,
more links) closer to the root

e avoids bandwidth bottleneck

Level 2 Routers

T Cabls,

Level|
Routers

m Example: Infiniband network
(www.mellanox.com)

C. Kessler, IDA, Linkspings universitet.

| TR
More about Interconnection Networks

m Hypercube, Crossbar, Butterfly, Hybrid networks... - TDDC78
m Switching and routing algorithms

m Discussion of interconnection network properties
o Cost (#switches, #lines)
e Scalability
(asymptotically, cost grows not much faster than #nodes)
o Node degree
e Longest path (= latency)
o Accumulated bandwidth

e Fault tolerance (worst-case impact of node or switch failure)

[
CKesdler DA Linkspings universitet,

| (TR
Example: Beowulf-class PC Clusters

Interconnection Network

Characteristics:
off-the-shelf (PC) nodes
with off-the-shelf CPUs Distributed memory system i
(Xeon, Opteron, ...)
commodity interconnect

G-Ethernet, Myrinet, Infiniband, SCI

Open Source Unix
Linux, BSD

Advantages:

+ best price-performance ratio

+ low entry-level cost

Message passing computin
MPI ngl\z o puling + vendor independent
+ scalable

+ rapid technology tracking

T. Sterling: The scientific workstation of the future may be a pile of PCs.
. Communications of the ACM 39(9), Sep. 1996
e oL

Ssier lpn Linkopings universi

Cluster Example:
Triolith (NSC, 2012 /2013)

A so-called Capability cluster

(fast network for parallel applications,
not for just lots of independent
sequential jobs)

1200 HP SL230 servers (compute
nodes), each equipped with

2 Intel E5-2660 (2.2 GHz Sandybridge)
processors with 8 cores each

- 19200 cores in total

- Theoretical peak performance
of 338 Tflops/s

Mellanox Infiniband network
(Fat-tree topology)

C. Kessler, IDA, Linkspings universitet.

| (TR

The Challenge

m Today, basically all computers are parallel computers!
o Single-thread performance stagnating
e Dozens of cores and hundreds of HW threads available per server
e May even be heterogeneous (core types, accelerators)
e Data locality matters
o Large clusters for HPC and Data centers, require message passing
m Utilizing more than one CPU core requires thread-level parallelism
® One of the biggest software challenges: Exploiting parallelism

o Need LOTS of (mostly, independent) tasks to keep cores/HW threads
busy and overlap waiting times (cache misses, I/O accesses)

e All application areas, not only traditional HPC
» General-purpose, data mining, graphics, games, embedded, DSP, ...

o Affects HW/SW system architecture, programming languages,
algorithms, data structures ...

o Parallel programming is more error-prone
(deadlocks, races, further sources of inefficiencies)

» And thus more expensive and time-consuming

| (TR
Can’t the compiler fix it for us?

m Automatic parallelization?
e at compile time:

» Requires static analysis — not effective for pointer-based
languages

inherently limited — missing runtime information
» needs programmer hints / rewriting ...

» ok only for few benign special cases:
loop vectorization
extraction of instruction-level parallelism

e at run time (e.g. speculative multithreading)
» High overheads, not scalable

C, Kessler, IDA, Linkspings universitet.

| (TR

Insight

m Design of efficient/ scalable parallel algorithms is,
in general, a creative task that is not automatizable

m But some good recipes exist ...
o Parallel algorithmic design patterns >

C. Kessler, IDA, Linkspings universitet.

The remaining solution ...

® Manual parallelization!
e using a parallel programming language / framework,
» .. MPI message passing interface for distributed memory;
» Pthreads, OpenMP, TBB, ... for shared-memory

o Generally harder, more error-prone than sequential
programming,

» requires special programming expertise to exploit the HW
resources effectively

e Promising approach:
Domain-specific languages/frameworks,

» Restricted set of predefined constructs
doing most of the low-level stuff under the hood

» e.g. MapReduce, Spark, ... for big-data computing

| (TR

S.Kessler, IDA_Linkspings universitet.

Parallel Programming Model

Programmer’s view of
the underlying system
(Lang. constructs, API, ...)
- Programming model

Message passing

Mapping(s) performed by l

programming toolchain = = =
(compiler, runtime system,
library, OS, ...)

Interconnection Network

ololn

Distributed memory system

Underlying parallel
computer architecture

S.Kessler, IDA_Linkspings universitet.

m System-software-enabled programmer’s view of the underlying hardware
m Abstracts from details of the underlying architecture, e.g. network topolog
m Focuses on a few characteristic properties, e.g. memory model

-> Portability of algorithms/programs across a family of parallel architectures

| (TR

Shared Memory.

-y
Network e.g. bus

Shared memory system|

LINKOPING
UNIVERSITY

Design and Analysis
of Parallel Algorithms

Programs ("PCAM”)

)
+ SYNCHRONIZATIO o Ooo (o)

Foster’s Method for Design of Parallel v

PROBLEM PARALLEL
*algorithmic. 5\ o rroNING ALGORITHM
approach \ ° DESIGN
0o_.0
0 00,0
COMMUNICATION OO 0500 0, Somentary

_Texg)_ooh—slyle
parallel algorithm

-
Introduction ﬁo
2= \ PARALLEL
- MAPPING ALGORITHM
+ SCHEDULING, ENGINEERING
P1 P (Implementation and
L adaptation for a specific
(type of) parallel
@V\ computer)
Christoph Kessler, DA, ~
Linkdpings universitet. e ‘ . 2l
. | TR
Parallel Computation Model

= Programming Model + Cost Model

+ abstract from hardware and technology
+ specify basic operations, when applicable

+ specify how data can be stored

— analyze algorithms before implementation — T = f(n,p,...)
independent of a particular parallel computer
— focus on most characteristic (w.r.t. influence on exec. time)
features of a broader class of parallel machines
Programming model Cost model
e shared memory /
message passing,
o degree of synchronous execution
f

o key parameters
e cost functions for basic operations
e constraints

LINKOPING
UNIVERSITY

Parallel Cost Models

A Quantitative Basis for the

Design of Parallel Algorithms

Christoph Kessler, DA,
Link8pings niversitet.

Cost Model

Cost model: should

+ explain available observations

+ predict future behaviour

+ abstract from unimportant details — generalization
Simplifications to reduce model complexity:

o use idealized multicomputer model

e use scale analysis
drop insignificant effects

ignore hardware details: memory hierarchies, network topology,

| (TR

. : | (T
How to analyze sequential algorithms:

The RAM (von Neumann) model for sequential computing
RAM (Random Access Machine)

programming and cost model for the analysis of sequential algorithm{
data memory

Basic operations (instructions):

- Arithmetic (add, mul, ...) on registers

- Load

- Store

- Branch

M[3]
M[2J
M1
M[0]

load Simplifying assumptions
for time analysis:

- All of these take 1 time unit

clock store

o2

N
1 =l1oad~+store+ 3, (2Moad + Ladd + Lstore + toranci) = SN—3 € O(N)

")

| < Data flow graph,

| showing dependences
(precedence constraints)
between operations

\“u‘\“\‘

Pt Lo
|aro1]larai|lar21]lar31 |larer |latsi ate Jarma

. — arithmetic circuit model, directed acyclic graph (DAG) model

s = s + d[i]

shared memory

program memon cru ,\u;// - Serial composition adds time costs
» use empirical studies register | T(op1;0p2) = T(op1)+T(0p2)
calibrate simple models with empirical data current “““““““’R\ ‘ register 2 |
. rather than developing more complex models 2z . [LPC
Analysis of sequential algorithms:] s
. The PRAM Model — a Parallel RAM

RAM model (Random Access Machine)

Parallel Random Access Machine [Fortune/Wyllie'78]
Algorithm analysis: Counting instructions s d[o0]

for (i=1; i<N; i++) p processors

Example: Computing the global sum of N elements

MIMD

common clock signal

arithm./jump: 1 clock cycle ‘ Shared Memory ‘

uniform memory access time
latency: 1 clock cycle (!)

concurrent memory accesses
sequential consistency

PRAM variants - TDDD56, TDDC7

ko]

Remark

PRAM model is very idealized,
extremely simplifying / abstracting from real parallel architectures:

unbounded number of processors:

abstracts from scheduling overhead eh CEER L]

X . X parameter:
local operations cost 1 unit of time
every processor has unit time memory access
to any shared memory location:
abstracts from communication time, bandwidth limitation,
memory latency, memory hierarchy, and locality

— focus on pure, fine-grained parallelism

-> Good for early analysis of parallel algorithm designs:

A parallel algorithm that does not scale underthe PRAM model
does not scale well anywhere else!

C, Kessler, IDA, Linkspings universitet.

has only 1 machine-specific

the number of processors

Universt

time

A first parallel sum algorithm ...

Keep the sequential sum algorithm’s structure / data flow graph.
Giving each processor one task (load, add) does not help much
—All nloads could be done in parallel, but

— Processor i needs to wait for partial result from processor i-1, for i=1,...,n-1

Pt Lo
|aro1]larai|lar21]lar31 larer Jlatsi Jate Jarma

-> Still O(n) time steps!

I. UnkopIG |
Universt

| < Data flow graph,

| showing dependences
(precedence constraints)
between operations

Divide&Conquer Parallel Sum Algorithm sz
in the PRAM / Circuit (DAG) cost model

Given n numbers xo, x1,...,x, | stored in an array.

The global sum 2 x; can be computed in [log, n| time steps
on an EREW PRAM with n processors.

Divide&Conquer Parallel Sum Algorithm s
in the PRAM / Circuit (DAG) cost model

Given n numbers xo, x1,...,x, | stored in an array.

The global sum 2 x; can be computed in [log, n| time steps
on an EREW PRAM with n processors.

Parallel algorithmic paradigm used: Parallel Divide-and-Conquer

| | [aror]araiflarz1]larsiflarar st Jaren Jar7r |
ParSum(n): —1 L1 1

ParSum(n/2) | | ParSum(n/2)

il

Divide phase: trivial, time O(1)
Recursive calls: parallel time 7'(n/2)
with base case: load operation, time O(1 [:> «{
Combine phase: addition, time O(1) s

Recurrence equation for
parallel execution time

n)=T(n/2)+0(1)
1 =0(1)

Use induction or the master theorem [Cormen+'90 Ch.4] — T(n) € O(logn)

ko]

Recursive formulation of DC parallel sum™***
algorithm in some programming model

Implementation e.g. in Cilk: (shared memory) parSum):

ParSum(n/2) || ParSum(n/2)

cilk int parsum (int *d, int from, intto)

{ —
int mid, sumleft, sumright; @
if (from == to) return d[from]; // base case
else {

mid = (from + to) / 2;

sumleft = spawn parsum (d, from, mid);
sumright = parsum(d, mid+1, to);
sync; /I The main program:

return sumleft + sumright; .
main()

{

Fork-Join execution style:

single task starts, parsum (data, 0, n-1);

tasks spawn child tasks for
independent subtasks, and
synchronize with them

23

| (TR

Circuit / DAG model

® Independent of how the parallel computation is expressed,
the resulting (unfolded) task graph looks the same.

t

idle idle idle idle idle idle idle

\

idle idle idle 8 idle idle idle

™~ [~

o iate B8 e ©&) iae @ idle
a(l) a(2) a(3) a(4) a(5) a(6) a(7) a(8)
m Task graph is a directed acyclic graph (DAG) G=(V,E)
e Set Vof vertices: elementary tasks (taking time 1 resp. O(1) each)

e Set E of directed edges: dependences (partial order on tasks)
(v4,v5) in E > v4 must be finished before v, can start

| Critical path = longest path from an entry to an exit node

e Length of critical path is a lower bound for parallel time complexity
m Parallel time can be longer if number of processors is limited

- schedule tasks to processors such that dependences are preserved

b 4>

N LIglk)a)élnpg)ﬁruo"%ergrenmer(SPMD execution) or run-time system (fork-join exec.)) 4

| (TR
For a fixed number of processors ... ?

m Usually, p<<n
m Requires scheduling the work to p processors

(A) manually, at algorithm design time:

m Requires algorithm engineering

m E.g. stop the parallel divide-and-conquer e.g. at subproblem size n/g
and switch to sequential divide-and-conquer (= task agglomeration)
For parallel sum:

e Step 0. Partition the array of n elements in p slices of n/p
elements each (= domain decomposition)

e Step 1. Each processor calculates a local sum for one slice,
using the sequential sum algorithm,
resulting in p partial sums (intermediate values)

e Step 2. The p processors run the parallel algorithm
to sum up the intermediate values to the global sum.

C, Kessler, IDA, Linkspings universitet. 25l

| (TR
For a fixed number of processors ... ?

m Usually, p<<n
m Requires scheduling the work to p processors

(B) automatically, at run time:

m Requires a task-based runtime system
with dynamic scheduler

e Each newly created task is dispatched
at runtime to an available worker processor. Run time

. h dul
e Load balancing (overhead) R
» Central task queue where idle workers
fetch next task to execute
» Local task queues + Work stealing —
idle workers steal a task from
some other processor
Worker threads

C._Kessler, IDA, Linkspings universitet. inned to cores 261

Il LINKOPING
o UNIVERSITY

Analysis of Parallel Algorithms

| (T
Analysis of Parallel Algorithms

Performance metrics of parallel programs
u Parallel execution time

o Counted from the start time of the earliest task
to the finishing time of the latest task

® Work - the total number of performed elementary operations
m Cost - the product of parallel execution time and #processors
u Speed-up

o the factor by how much faster we can solve a problem with p
processors than with 1 processor, usually in range (0...p)

m Parallel efficiency = Speed-up / #processors, usually in (0...1)

® Throughput = #operations finished per second fien ‘a‘e""'y*
igh
m Scalability oanidn
o does speedup keep growing well o
Christoph Kessler, IDA, also when #processors grows large?
Linkdpings universitet.
C_Kessler IDA_Linkdpings universitet e ¥:1

| (TR | (TR
Analysis of Parallel Algorithms Parallel Time, Work, Cost
o i me] g8
- - roblem size n B ¢ parallel sum algorithm
Asymptotic Analysis : s
X i X . # processors p ‘\, pars
m Estimation based on a cost model and algorithm idea time ¢(p,n) -
(pseudocode operations) ’,’ [ae
. . . work w(p,n) 3
m Discuss behavior for large problem sizes, large #processors i B e o
cos C(P‘”) 7"/7 3 :‘" l‘”“ idle idle idle idle idle idle
[aw y ey
Empirical AnaIySiS Example:) r;(” r\\ul/c“m;’:[/ idle T: ‘“n:r”””::m idle
. . seq. sum algorithm + D e B owe @ e B e
® Implement in a concrete parallel programming langauge {‘;m w e \j”’,‘,’m N‘*:’I’”""’”
s = d[0] N N N
m Measure time on a concrete parallell computer for (i-L; iauirs | | 50 —
s = s + d[i]
e Vary number of processors used, as far as possible 1(1,n) = tseq(n) = O(n) 1(n,n) = O(logn)
m More precise n— 1 additions w(l,n) = O(n) w(n,n) = O(n)
- " ‘,Oads c(l,n)=t(1,n)-1 c(n,n) = O(nlogn)
m More work, and fixing bad designs at this stage is expensive O(n) other
=0(n) par. sum alg. not cost-effective!
C_iesser, IDA Linkepings universet. 2 | G s vz, s
| (TR | (TR
Parallel work, time, cost Speedup

parallel work w,(n) of algorithm A on an input of size n

= max. number of instructions performed by all procs during execution of A,
where in each (parallel) time step as many processors are available
as needed to execute the step in constant time.

parallel time 14(n) of algorithm A on input of size n
= max. number of parallel time steps required under the same circumstances

parallel cost ca(n) = ta(n) = pa(n) — ca(n) > wa(n)
where pa(n) = max;p;(n) = max. number of processors used in a step of A

Work, time, cost are thus worst-case measures.

1a(n) is sometimes called the depth of A
(cf. circuit model of (parallel) computation)

pi(n) = number of processors needed in time step i, 0 <i < 74(n), o
'Aln)

to execute the step in constant time. Then, wu(n) = 3 pi(n)
=0

Consider problem 2, parallel algorithm A for P

T; = time to execute the best serial algorithm for 7
on one processor of the parallel machine]

T(1) = time to execute parallel algorithm A on 1 processor
T(p) = time to execute parallel algorithm A on p processors

Absolute speedup S, = %}))
Relative speedup S,,; = ;E;’% Savs < Srel

Speedup S(p) with p processors is usually in the range (0...p)

C.Kessler, DA, Linkspings universitet. A2

| (TR

Amdahl’s Law: Upper bound on Speedup

Consider execution (trace) of parallel algorithm A:
sequential part A* where only 1 processor is active
parallel part A? that can be sped up perfectly by p processors

Tw

— total work wa(n) = was(n) +wap(n), time T = Tys + 5

Amdahl’s Law

If the sequential part of A is a fixed fraction of the total work

irrespective of the problem size n, that is, if there is a constant § with
was(n)
wa(n)

the relative speedup of A with p processors is limited by

p
rap - P

Amdahl’s Law

| (TR

/7
S0 = P

S.Kessler, IDA_Linkspings universitet.

< 1/B

Al

| (TR
Proof of Amdahl’s Law Il. UNKOPIG.
o T _ T
T T(p) T TetTw(p)
Assume perfect parallelizability of the parallel part A”, . .
thatis, Tu(p) = (1—B)T(p) = (1 B)T(1)/p: Towards More Realistic
(1) » 5 Cost Models
Sret = = <1
Br()+(=B)7(1)/p) Pp+1-5
o0 I \ Modeling the cost of
AT | /T communication and data access
PO !
P1
P2 r
P3 v
(IB)T(1ip
Christoph Kessler, IDA,
Link&pings universitet.
C.Kesslor, IDA, Link3pings universitet, 4sl
| (TR M f
. i emory Hierarch
Modeling Communication Cost: Delay Model And Thergeal Cost of D{,ta Access |
Idealized multicomputer: point-to-point communication costs overhead 7. . Processor/ CPU cores Gapacity T:.Zif:r . ;’;cdc;?:m LAicéss
i each containing few (~32) Bl Size(s] (GBS atency
| general-purpose data registers ns]
! and L1 cache Small o Aver
____________ (~10KB) Very || fas
1y, word transfer time L2 cache (on-chip) - ~1MB small [Migh (Cf:)
L3 cache (on-chip) — ~64MB (~10.
100B)
. . . Computer’s main
Cost of communicating a larger block of n bytes: Primary Storage memory (off-chip) >
(DRAM) ~64 GB 100
time 1,,,(n) = sender overhead + latency + receiver overhead + n/bandwidth ce
= Ityarup + N liransfer =
Assumption: network not overloaded; no conflicts occur at routing Secondary Storage :.:ég)e
. . (Hard Disk, SSD) Network High \S/TW
fyarp = Startup time (time to send a 0-byte message) (E.g. other nodes (TB) :‘::’:e (m"s
accounts for hardware and software overhead. [ina cluster; to .8
. S ; Tertiary Storage M o) fow
twansser = transfer rate, send time per word sent. (Tapes, ...) v 4
’ Cloud storage
. depends on the network bandwidth. e T AT g 2l

| (TR

Data Locality

m Memory hierarchy rationale: Try to amortize the high access cost
of lower levels (DRAM, disk, ...) by caching data in higher levels for
faster subsequent accesses

o Cache miss — stall the computation. fetch the block of data containing
the accessed address from next lower level, then resume

o More reuse of cached data (cache hits) > better performance

m Working set = the set of memory addresses accessed together in
a period of computation
m Data locality = property of a computation: keeping the working set
small during a computation
o Temporal locality — re-access same data element multiple times
within a short time interval
o Spatial locality — re-access neighbored memory addresses multiple
times within a short time interval
® High latency favors larger transfer block sizes (cache lines, memory
pages, file blocks, messages) for amortization over many
subsequent accesses

C.Kessier, IDA Linkbpings universitel, 4al

| (T
Memory-bound vs. CPU-bound computation

m Arithmetic intensity of a computation
= #arithmetic instructions (computational work) executed
per accessed element of data in memory (after cache miss)

m A computation is CPU-bound

if its arithmetic intensity is >> 1.

e The performance bottleneck is the CPU’s arithmetic throughput
m A computation is memory-access bound otherwise.

e The performance bottleneck is memory accesses,
CPU is not fully utilized

m Examples:
o Matrix-matrix-multiply (if properly implemented) is CPU-bound.
o Array global sum is memory-bound on most architectures.

S.Kessler, IDA_Linkspings universitet. 50

Il LINKOPING
o UNIVERSITY

Some Parallel Algorithmic
Design Patterns

Christoph Kessler, DA,
Linképings universitet.

. TR
Data Parallelism

Given:

« One (or several) data containers x, z, ... with n elements each,
e.g. array(s) X =(Xy,..X,), Z=(Z4,...,2,), ...

« An operation fon individual elements of x, z, ...
(e.g. incr, sqrt, mult, ...)

Compute: y =1(x) = (f(xy), ... fx,))

Parallelizability: Each data element defines a task
« Fine grained parallelism

map(fab) —I L
O LT S

C.Kessler, IDA_ Linkspings universitet. Lv]

. Easily partitioned into independent tasks,
fits very well on all parallel architectures

Notation with higher-order function:
- y=map (f x)

| (TR
Data-parallel Reduction

Given:

« A data container x with n elements,
e.g. array X =(Xy,...X,)

. A binary, associative operation op on individual elements of x
(e.g. add, max, bitwise-or, ...)

Compute: y = OP;.; ,X = X; 0P X, 0P ... Op X,

Parallelizability: Exploit associativity of op

[I | [aroi][apu]farz1]facsi Jfacar s Jerer Jaor |
ParSum(n): 1L L T1 I

ParSum(n/2) | | ParSum(n/2)

Notation with higher-order function:

. y=reduce (op, x)

C.Kessler, IDA_ Linkspings universitet. 23

| (TR
MapReduce (pattern)
m A Map operation with operation f
on one or several input data containers x, ...,
producing a temporary output data container w,

directly followed by a Reduce with operation g on w
producing result y

m y = MapReduce (f, g, X, ...)

m Example:
Dot product of two vectors x,z. y = 2, X; * z;
f = scalar multiplication,
g = scalar addition

C.Kessler, DA, Linkspings universitet. 24

I. unkopm}
Universt

Task Farming

Independent subcomputations £, f,, ..., f,
could be done in parallel and/or in arbitrary
order, e.g.

. independent loop iterations
. independent function calls

Scheduling (mapping) problem time

. m tasks onto p processors

. static (before running) or dynamic

« Load balancing is important:
most loaded processor determines
the parallel execution time

Notation with higher-order function:

o farm (f, ..., f,) (X,....x,)

C.Kessier, IDA Linkbpings universitel, 4 |

I. UnkopIG |
Universt

Task Farming

Independent subcomputations £, f,, ..., f,
could be done in parallel and/or in arbitrary
order, e.g.

. independent loop iterations

. independent function calls

Scheduling (mapping) problem time

. m tasks onto p processors

. static (before running) or dynamic

« Load balancing is important:
most loaded processor determines
the parallel execution time

Notation with higher-order function:
o farm (f, ..., f,) (X4,....x,)

C.Kessior, IDA Linképings universitel, A |

| (TR
Parallel Divide-and-Conquer
(Sequential) Divide-and-conquer:
. If given problem instance P is trivial, solve it directly. Otherwise:

« Divide: Decompose problem instance P in one or several smaller

independent instances of the same problem, P, ..., P
. Foreach i: solve P; by recursion.

. Combine the solutions of the P; into an overall solution for P

Parallel Divide-and-Conquer:
« Recursive calls can be done in parallel.
. Parallelize, if possible, also the divide and combine phase.

. Switch to sequential divide-and-conquer when enough parallel tasks
have been created.

Notation with higher-order function:
« solution = DC (divide, combine, istrivial, solvedirectly, n, P)

| (TR
Example: Parallel Divide-and-Conquer

[aroy][arty][arz1 Jfarz1 Jlarar Jas: el Jarmr]

ParSumin): 1 LI I

ParSum(n/2) | | ParSum{n/2)

Example: Parallel Sum over integer-array x

Exploit associativity:
Sum(Xq,....X,) = SUM(Xq,...X0) + SUM(Xpjp4q,--1Xp)

Divide: trivial, split array x in place
Combine is just an addition.

y = DC (split, add, nisSmall, addFewinSeq, n, x)

- Data parallel reductions are an important special case of DC.

C.Kesslor, IDA, Link3pings universitet, v C.Kesslor, IDA, Link3pings universitet, 31 |
| (TR | (T
Pipelining Streaming
applies a sequence of dependent computations/tasks (fy, f,, ..., fy) 3 = Streaming applies pipelining to processing 3
elementwise to data sequence x = (X4,X5,X3,...,X,)

« For fixed x, must compute f(x) before f,4(x) x2
« ... and f(x) before f(x,,) if the tasks f, have a run-time state

x1
Parallelizability: Overlap execution of all f; for k subsequent x; g
. time=1: compute f;(x;)
. time=2: compute fi(x,) and fy(x;)
. time=3: compute fi(x3) and fy(x;) and fy(x;)
. Total time: O ((n+k) max; (time(f))) with k processors
. Still, requires good mapping of the tasks f; to the processors

for even load balancing — often, static mapping (done before runnin

Notation with higher-order function:
o Vaeou¥n) = pipe ((fr, ..), (Xg,-oXn))

C, Kessler, IDA, Linkspings universitet. 5a]

of large (possibly, infinite) data streams

from or to memory, network or devices, x2
usually partitioned in fixed-sized data packets, x1
e in order to overlap the processing of 1k

each packet of data in time with
access of subsequent units of data
and/or processing of preceding packets
of data.

Read a f
packet of
stream data []
Process
a packet l
Process
it more g
Write
result ls

o Network data processing e.g. deep packet inspection

C. Kessler, IDA, Linkspings universitet. I |

m Examples
o Video streaming from network to display
o Surveillance camera, face recognition

10

I. unkopm}
Universt

Stream Farming

x3
Combining streaming and task farming patterns x2

x1
Independent streaming - -@- -
subcomputations f;, £, ..., f, <. t;‘lispatche[A

on each data packet

I. UnkopIG |
Universt

(Algorithmic) Skeletons

Skeletons are reusable, parameterizable SW components with well defined
semantics for which efficient parallel implementations may be available.

Inspired by higher-order functions in functional programming

One or very few skeletons per parallel algorithmic paradigm

. map, farm, DC, reduce, pipe, scan ...
wp
Parameterised in user code

Speed up the pipeline G @ . Customization by instantiating a skeleton template
by parallel processing of in a user-provided function
subsequent data packets ~ — T MapReduce
Al
< Eo_ﬂfc_t_of - Composition of skeleton instances in program code
- 4 normally by sequencing+data flow
In most cases, the original order of packets) Forf ‘ pinati
must be kept after processing . e.g. squaresum(x)can be defined by d:f'in':g‘észnz‘e’gnsge':’;:sv ”e‘ag’
tmp = map(sqr, x);
return reduce(add, tmp); mapreduce(sqr, add, x)
C.Kessler DA Linkspinge universitet. 61 Cosserion i})] 52
K EXCESS SCRC I ﬂqﬂ;pl = - e
~ e High-Level Parallel Programming v

SkePU [Enmyren, K. 2010]

m Skeleton programming library for heterogeneous multicore systems,)
based on C++

m Example: Global sum in SkePU-2 [Emstsson 2016]

int add(int a, int b m
&
i

return a + b;
3

N
auto vec_sum = Map<2>(add);

2
£

with Skeletons

m Skeletons (constructs) implement (parallel) algorithmic design patterns
© Abstraction, hiding complexity (parallelism and low-level programming)

© Enforces structuring, restricted set of constructs

© Parallelization for free

© Easier to analyze and transform

® Requires complete understanding and rewriting of a computation

® Available skeleton set does not always fit

® May lose some efficiency compared to manual parallelization

m |dea developed in HPC (mostly in Europe) since the late 1980s.
® Many (esp., academic) frameworks exist, mostly as libraries
B Industry (also beyond HPC domain) has adopted skeletons
e map, reduce, scan in many modern parallel programming APls

E » e.g., Intel Threading Building Blocks (TBB): par. for, par. reduce, pip
vec_sum(result, vi, v2); — » NVIDIA Thrust
b o Google MapReduce (for distributed data mining applications)
C. Kessler. - £3) C.Kessler. IDA, Link&pings universitet. £4)
| (TR | (TR

Further Reading

C. Kessler, J. Keller: Models for Parallel Computing: Review and Perspectives.
PARS-Mitteilungen 24, Gesellschaft fir Informatik, Dec. 2007, ISSN 0177-0454

On PRAM model and Design and Analysis of Parallel Algorithms

m J. Keller, C. Kessler, J. Traff: Practical PRAM Programming. Wiley
Interscience, New York, 2001.

m J. JaJa: An introduction to parallel algorithms. Addison-Wesley, 1992.

m D. Cormen, C. Leiserson, R. Rivest: Introduction to Algorithms, Chapter
30. MIT press, 1989, or a later edition.

® H. Jordan, G. Alaghband: Fundamentals of Parallel Processing.
Prentice Hall, 2003.

m A Grama, G. Karypis, V. Kumar, A. Gupta: Introduction to Parallel
Computing, 2nd Edition. Addison-Wesley, 2003.

On skeleton programming, see e.g. our publications on SkePU:
m http://www.ida.liu.se/labs/pelab/skepu

C, Kessler, IDA, Linkspings universitet. I |

Questions for Reflection

® Model the overall cost of a streaming computation with a very large number N
of input data elements on a single processor
(a) ifimplemented as a loop over the data elements
running on an ordinary memory hierarchy
with hardware caches (see above)
(b) if overlapping computation for a data packet
with transfer/access of the next data packet
(b1) if the computation is CPU-bound
(b2) if the computation is memory-bound

® Which property of streaming computations makes it possible to overlap
computation with data transfer?

® Can each dataparallel computation be streamed?

® Whatare the performance advantages and disadvantages of large vs. small
packet sizes in streaming?

® Why should servers in datacenters running I/O-intensive tasks (such as
disk/DB accesses) get many more tasks to run than they have cores?

® How would you extend the skeleton programming approach for computations
that operate on secondary storage (file/DB accesses)?

C. Kessler, IDA, Linkspings universitet. [|

11

