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Abstract. This paper presents a new approach to the problem of
building a global map from laser range data, utilizing shape based
object recognition techniques originally developed for tasks in com-
puter vision. In contrast to classical approaches, the perceived en-
vironment is represented by polygonal curves (polylines), possibly
containing rich shape information yet consisting of a relatively small
number of vertices. The main task, besides segmentation of the raw
scan point data into polylines and denoising, is to find corresponding
environmental features in consecutive scans to merge the polyline-
data to a global map. The correspondence problem is solved using
shape similarity between the polylines. The approach does not re-
quire any odometry data and is robust to discontinuities in robot po-
sition, e.g., when the robot slips. Since higher order objects in the
form of polylines and their shape similarity are present in our ap-
proach, it provides a link between the necessary low-level and the
desired high-level information in robot navigation. The presented in-
tegration of spatial arrangement information, illustrates the fact that
high level spatial information can be easily integrated in our frame-
work.

1 INTRODUCTION

The problems of self-localization and robot mapping are of high im-
portance to the field of mobile robotics. Robot mapping describes
the process of acquiring spatial models of physical environments
through mobile robots. Self-localization is the method of determin-
ing the robot’s position with the robot’s internal spatial representa-
tion. The central method required is a matching of sensor data, which
- in the typical case of a laser range finder as the robot’s sensor -
is called scan matching. Whenever a robot needs to cope with un-
known or changing environments, localization and mapping have to
be carried out simultaneously, this technique is called SLAM (Si-
multaneous Localization and Mapping). To attack the problem of
mapping and/or localization, mainly statistical techniques are used
(Thrun [15], Dissanayake et al. [3]), e.g., the extended Kalman filter,
a linear recursive estimator for systems described by non-linear pro-
cess models and/or observation models, are the basis for most current
SLAM algorithms. Bayesian rules build the foundation of the models
employed. For localization, often partially observable Markov deci-
sion processes (POMDP) are utilized.

The robot’s internal geometric representation forms the basis for
these techniques. It is build atop of the perceptual data read from
the laser range finder (LRF). Typically, either the planar location of
reflection points read from the LRF is used directly as the geomet-
ric representation, or simple features in the form of line segments

�
Temple University, Philadelphia, USA, email: latecki@temple.edu�
email: lakamper@temple.edu�
email: xysun@euclid.math.temple.edu�
University of Bremen, Bremen, Germany email: dwolter@informatik.uni-
bremen.de

or corner points are extracted (Cox [2]; Gutmann and Schlegel [5];
Gutmann [7]; Röfer [14]). Although robot mapping and localization
techniques are very sophisticated they do not yield the desired per-
formance. We observe that these systems use only a very primitive
geometric representation. As the internal geometric representation is
a foundation for the sophisticated techniques in localization and map-
ping, shortcomings on the level of the geometric representation affect
the overall performance. The main goal of this paper is the introduc-
tion of an elaborate and cognitively motivated geometric represen-
tation and a reasoning formalism for robot mapping. A successful
geometric representation must result in a much more compact repre-
sentation than uninterrupted perceptual data, but must neither discard
valuable information nor imply any loss of generality. We claim that
the representation proposed in this paper, namely polygonal curves or
polylines, representing parts of object surfaces being obtained from
segmented scans, fulfills these demands. The relation among the ob-
jects is based on shape similarity and on qualitative arrangement in-
formation. Representing the passable space explicitly by means of
shape is not only adequate for mapping applications but also helps to
bridge the gap from metric information needed to topological knowl-
edge due to the object centered perspective offered. Moreover, an
object-centered representation is a crucial building block in dealing
with changing environments, as such a representation allows us to
separate the partial changes from the unchanged parts. In this paper
we focus on incremental building of the object representation.

There exist approaches to map building that apply more sophis-
ticated geometric method to scan data, e.g., Forsberg et al. [4] and
Jensfelt and Christensen [9]. However, they focus on extraction of
linear structures only, why we not only consider extraction of polyg-
onal structures but also on similarity of polygonal structures. The
similarity of polygonal structures is a driving force of our approach.

2 MAP BUILDING PROCESS

Map Building is the process of memorizing perceived objects and
features the robot has passed by, merging corresponding objects in
consecutive scans of the local environment. The robot’s internal spa-
tial representation is referred to as a map, in the case of a feature
based spatial representation it is commonly referred to as a feature
map [15]. A key challenge in map building is to match a local sen-
sor reading against the global map. Multiple problems occur, e.g.,
the noise of the data perceived must be filtered in a way to obtain
the required features, and the correspondence between perceived ob-
jects must be found on the basis of the filtered (visual) features, since
additional information, i.e., odometry, has proven to be inaccurate.
This excludes the possibility of simply superimposing consecutive
scans on top of one another, as can be seen in the example shown
in Figure 1(a). It shows the effects of accumulated errors in rotation
and distance measure, because the geometrical properties of the envi-



ronment indicated by the LRF purely interpreted in connection with
odometry increasingly differ from reality, resulting in large displace-
ments of the perceived objects and block-like representations in the
global map. Odometry is designed to record the distance the robot
has traveled and the rotational angle the robot has turned with re-
spect to the starting position. However, odometry makes unreliable
recording on a large scale.

Using alignment based on shape similarity, we can construct a sig-
nificantly better map by correcting the errors of the odometry or even
discarding the recording of the odometry completely. The alignment
is computed using stable objects in the map to calculate the current
position of the robot. Assuming that some objects in two consecutive
scans are not moving, we align the stationary objects in the second
scan to the corresponding objects in the first scan. The robot’s move-
ment and its position defining the global position of the scanned envi-
ronment is achieved by the resulting movement and rotational angle
computed by the alignment. An example global map computed us-
ing our alignment algorithm is shown in Figure 1(c). The scans are
aligned iteratively, then superimposed on each other without any in-
formation from the odometry. The row scan data alignment based on
robot’s odometry is shown in Figure 1(a). The quality of the map in
(c) is much better, and the objects can be easily identified. To have a
fair comparison, the map in (c) should be compared to the map in (b).
The map (b) is obtained from (a) with a simple algorithm that cor-
rects significant rotation errors of the odometry by finding rotation
angles that maximize the proximity of long lines and rotated accord-
ing the scans accordingly. Although the improvement from (b) to (c)
is significant, we can still find some fuzziness in certain areas of (c).
This is due to the nature of the perceived data, which introduces noise
in several ways:

1. Scanning an object with a fractal or nonrigid shape. An example
of such can be a plant in any office building. The locations of the
scan points on such objects are mostly random, and the record-
ings of the scan points are not going to provide us useful position
information, even if the robot is not moving.

2. Scanning objects too far away. Scanning objects far away in-
evitably will create more error than scanning objects close by, due
to uneven ground or other movement/vibration effects. Aligning
all objects in the scans, the error introduced by this defective data
will accumulate and propagate.

3. Scanning moving objects. Objects are aligned under the assump-
tion that only the robot moves, being the only source of change of
the distance between them. But once there is a moving object in
the scan, such an assumption is no longer true, and the alignment
will not be reliable, especially when the moving object is near the
scanner.

In the following we will address these problems, and discuss their
solutions in our framework.

One shortcoming of the recursive alignment process is that when
errors occur, they will not be corrected nor eliminated. In fact, they
are most likely to be accumulated and propagated as show in Fig-
ure 1(c). Another drawback is that each scan still exists indepen-
dently of the others, i.e., we are not creating a global map composed
of objects in the common sense of the word, but composed of a set of
unrelated polylines. Hundreds of laser scans are printed on paper and
human eyes can easily identify objects from the printout, but these
scans cannot be used by robot localization because these objects are
not present in the internal robot representation.

Hence a process is needed that can deal with these problems, and
that can create a global map composed of just a few objects. We

propose such a process that we call merging in this paper. In order to
describe it, we need to introduce some notation.

A global map is built iteratively as the robot moves. We denote the
scan and the global map at time � by ��� and ��� respectively. Each
scan ��� and the global map ��� is composed of polylines. We assume
that the range data is mapped to locations of reflection points in the
Euclidean plane, using a local coordinate system. These points are
segmented into individual polylines with a simple heuristic: Travers-
ing the reflection points following the order of the LRF, an object
transition is said to be present wherever two consecutive points are
further apart than a given distance threshold (20 cm in the case of our
example map). The precise choice of the threshold is not crucial as
subsequent processing accounts for differences. The obtained polyg-
onal objects are further simplified to reduce the influence of noise
(Section 3.1). We apply discrete curve evolution (DCE, described
below) followed by least square fitting of line segments to obtain the
simplified polyline objects.

To create the global map � , we start with the first global map
� � being equal to the first scan � � . Assuming we have created the
global map ����� � at time �
	�� , we use ����� � and �
� to create ��� in
the following steps:

� We extract a virtual scan ������ � from the global map ����� � . ������ �

is the part of the global map to which the previous scan ����� � was
merged. The virtual scan �� ��� � is a corrected version of the actual
scan � ��� � . The noise correction was achieved by merging in the
previous step of �
��� � to the global map ����� � .

� We use shape similarity (described in Section 3) to find the corre-
spondence between objects in � � and �� ��� � , which can be a many-
to-many correspondence. Since �� ��� � is part of the global map
����� � , we obtain the correspondence between ��� and parts of the
global map.

� We align polylines in � � to the corresponding polylines in � ��� � .
We repeatedly apply the least squares method to find the optimal
translation and rotation. The main difference in comparison to the
standard approaches is that the corresponding points are limited to
polylines with similar shape. Thus, we greatly reduce the problem
of local minimum. This allows us to align ��� to ����� � even if the
robot displacment is large (see Figure 3).

� Finally, we merge the aligned scan � � to � ��� � to create � � . Merg-
ing an aligned new scan to the global map adds newly detected
polylines in the surrounding area to the global map while not dis-
carding the existing polylines no longer seen by the robot. The
goal is to produce a global map composed of a few polylines. The
details of merging are presented in Section 4.

Repeating this procedure iteratively for each new scan, we are able
to create a global map that remembers all the objects and features
along the path the robot has traveled. The result can be seen in Fig-
ure 1(d), which displays the final global map as a set of polylines.
We used exactly the same raw input data for all four maps in Figure
1. This feature-based approach yields a compact representation, and
most importantly, it represents the robot’s surroundings by a single
set of non-overlapping polylines that can be easily recognized and
compared using shape similarity.

3 STRUCTURAL REPRESENTATION OF
SHAPE

A first step in the presented approach is to extract shape information
from data acquired by a laser range finder (LRF). Polygonal lines,
termed polylines, serve in our approach as a fundamental building
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Figure 1. (a) A global map built using the information from odometry only. (b) A global map with significant rotation errors corrected. (c) A global map built
using the proposed alignment only. (d) A real global map built using the proposed merging approach.

3



block. They already capture more context than other features typi-
cally employed in scan matching approaches (e.g., simple line seg-
ments or even uninterpreted data). The richness of perceivable shapes
in a regular indoor scenario yields a more reliable matching than
other feature-based approaches, as mixups in determining features
are more unlikely to occur. At the same time, we are able to construct
a compact representation for an arbitrary environment. However, we
exploit even more context information than represented by a single
polyline considering shape as a structure of polylines. This allows us
with basically no extra effort to cope with environments displaying
mostly simple shapes.

3.1 Grouping and Simplification of Polylines

Polylines extracted from raw scan data still carry all the informa-
tion (and noise) retrieved by the sensor. To make the representation
more compact and to cancel out noise, we employ a technique called
Discrete Curve Evolution (DCE) introduced by Latecki & Lakämper
[11, 12] which achieves these goals without losing valuable shape
information. DCE is a context-sensitive process that proceeds itera-
tively. Though the process is context-sensitive, it is based on a local
relevance measure for a vertex � and its two neighbor vertices ����� 5:

��� ���	�
���
����� � � ���	������� � �
����� 	�� � �����
���
Hereby, � denotes the Euclidean distance. The process of DCE is
very simple and proceeds in a straightforward manner. The least rel-
evant vertex is removed until this relevance measure exceeds a given
threshold, thereby defining the level of polygon simplification. Con-
sequently, as no relevance measure is assigned to end-points, they
remain fixed. The choice of a specific simplification threshold is not
crucial, refer to Figure 2 for results. Implementation of DCE can
benefit from the observation that a polyline can be represented si-
multaneously as a double-linked list and a self-balancing tree which
reflects the order of relevance measures. Thus, the overall complex-
ity is � ����� �"!#� � . Proceeding this way we obtain a cyclic, ordered
vector of polylines.

3.2 Similarity of Polylines

Matching scans against the global map within the context of a shape
based representation is naturally based on shape matching. This
somehow revives a notion in Lu and Milos’ fundamental work [13]
”scan matching is similar to model-based shape matching” that so
far has not received much attention. In the presented approach we
adopt a shape matching originated from computer vision that has
proven successful in the context of shape retrieval [12]. It may eas-
ily be adapted to our needs. The property of invariance to change of
scale as often desired in computer vision approaches is not adequate
in our domain and must be excluded.

To compute the similarity measure between two polygonal curves,
we establish the best possible correspondence of maximal convex
arcs, where a convex arc is a left- or right-arcuated arc. To achieve
this, we first decompose the polygonal curves into maximal subarcs
that are likewise bent. Since a simple one-to-one comparison of max-
imal arcs of two polylines is of little use, due to the fact that the
curves may consist of a different number of such arcs and even sim-
ilar shapes may have different small features, we allow for 1-to-1, 1-
to-many, and many-to-1 correspondences of maximal arcs. The main$

Context is respected in the course of simplification as vertices’ neighbor-
hood changes.

idea here is that we have at least on one of the contours a maxi-
mal convex arc that corresponds to a part of the other contour com-
posed of adjacent maximal arcs. The best correspondence, i.e., the
one yielding the lowest similarity measure, can be computed using
dynamic programming, where the similarity of the corresponding vi-
sual parts is as defined below. Using dynamic programming, the sim-
ilarity between corresponding parts is computed and aggregated. The
computation is described extensively in [12]. The similarity induced
from the optimal correspondence of polylines % and & will be de-
noted � � %
��&'� .

Basic similarity of arcs is defined in tangent space, a multi-valued
step function representing angular directions of line-segments only.
This representation was previously used in computer vision, in par-
ticular in [1]. Denoting the mapping function by ( , the similarity
gets defined as follows:

�*) � %
��&'�+� � �,� �.-/� %�� 	 -0� &'��� � � 1 �

2 � (43 �65 � 	
(47 �65 ���98�3;: 7<� � � 5
where

-/� %�� denotes the arc length of % , and the whole integral is over
arc length. The constant 8 3;: 7 is chosen to minimize the integral (cp.
[12]). Obviously, the similarity measure is a rather a dissimilarity
measure as the identical curves yield = , the lowest possible measure.
This measure differs from the original work in that it is affected by an
absolute change of size rather than a relative one (cp. [12]). It should
be noted that this measure is based on shape information only, neither
the arcs’ position nor orientation are considered. This is possible due
to the large context information of polylines; position and orientation
will be accounted for when computing the actual matching.

3.3 Matching of Polylines

Computing the actual matching of two structural shape representa-
tions extracted from scan and map is performed by finding the best
correspondence of polylines which respects the cyclic order. We must
also take into account that (a) not all polylines may get matched as
the features’ visibility changes and (b) that due to segmentation noise
(cp. section 3.1) it is not necessarily a one-to-one correspondence.
Furthermore, any correspondence of polylines induces an alignment
of the polylines which constraints the scan’s origin. For example,
matching a polyline perceived in front of the robot to a polyline that
is based on the estimated position of the robot to its right, the robot
must have turned right. Hence, we demand all induced alignments
to be alike. To enable efficient computation of the matching, an esti-
mation of the induced alignment is required. It can either be derived
from odometry (if available) or simply reflect the assumption that the
robot has not moved. We stress that we do not use any odometry data
in our approach.

Let us assume that >? � �.?
� � ?

� �A@B@�@�� ?DC � and >?FE ��.? E
� � ? E

� ��@�@B@�� ? EC0G � are two cyclic ordered vectors of polylines. De-
noting correspondence of

?�H
and

? EI by relation J , the task can be
formulated as minimization as follows.K

L"MN*O : MN GQPSR6T,U � � >?�H � >? E I �;�V%XW �6Y �.J�� 	Z� >? � 	[� >? E � ��\� min

Hereby, % denotes a penalty for not matching a polyline. This is nec-
essary, as not establishing any correspondence would otherwise yield
the lowest possible similarity = . The similarity measure � is com-
posed of the shape similarity measure presented in Section 3.2 and
the alignment measure considering the difference between the align-
ment induced by the corresponding polylines’ and the estimated one.
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Figure 2. The process of extracting polygonal features from a scan. Raw scan points (a) are grouped to polylines (b), then simplification by means of DCE is
performed. Figures (c) to (f) show various simplification levels (1,5,10, and 15 respectively) highlighting that the precise choice the simplification level is not

critical for shape information obtained. The grid denotes 1 meter distance.

Considering alignments becomes necessary when many featureless
shapes, e.g., chairs’ legs, need to be tracked.

We use an adequate extension of the dynamic programming
scheme to compute the best correspondence. The extension regards
the ability to detect even 1-to-many and many-to-1 correspondences
of polylines and results in a linear extra effort such that the over-
all complexity is � ��� � � . Observe that

�
is very low, it was around

10 for our example map, since this is the number of polylines in
a scan. The outlined matching is powerful enough to track shapes
even if no odometry information is available and the robot has trav-
eled a remarkable distance between two consecutive scans. Figure 3
shows the polyline correspondence computed by our method, where
the corresponding polylines from two different scans are connected
by dashed lines. As can be observed, approaches based on the nearest
point rule fail in this case.

Figure 3. Exemplary results of the shape based matching for two scans
(green and blue polylines; the grid denotes 1m distance).

4 MERGING

Merging an aligned new scan to the global map adds newly detected
features in the surrounding area to the global map while not discard-

ing the existing features no longer seen by the robot. It produces a
global map composed of polylines.

It is common that portions of the same object may be perceived
as several independent objects in a single scan. Such a phenomenon
can happen when there is another object blocking the view, or sim-
ply because of the angle and the distance from which the object is
viewed. During the merging process, we need to accurately identify
objects in each scan, look for their corresponding objects in the exist-
ing global map, calculate the updated position of the object, remove
moving objects, remove areas where there are objects with nonrigid
shape, and more importantly, merge several objects into a single ob-
ject whenever possible.

The main idea of the presented merging process is to simulate the
robot laser scanner to merge the aligned scan � � to the global map
� ��� � . As output we obtain an updated global map � � . The simu-
lated laser rays emanate from the current robot pose and follow the
parameters of the robot scan device. This means for our data that the
simulated rays move counter-clockwise in steps of =�@ ��� and cover
the angle of ���"=�� . If a ray intersects a polyline in � � , we select the
closest intersection point to the robot pose, which is called a simu-
lated scan point (ssp). We are creating at most 361 ssps. Furthermore,
we add all end points of polylines in � � to the list of newly created
scan points with proper ordering (since we know between which scan
rays they lie). From each ssp ��� in ��� , we find the closest point �	� on
� ��� � . If the distance from � � to � � is below a certain threshold, then
we take a weighted average of the two points to create a new point
for the new global map ��� . We use a larger weight for the point �	� in
����� � , since we have more confidence about its position. If the closet
point cannot be found within a certain distance, the ssp � � will be a
new point on the new global map.

Since we want every polyline vertex in a global map � ��� � to have
a corresponding point in the new global map, we have the following
rule. If two consecutive ssps � ��
 and � �
� have two corresponding
closest points � ��
 and � ��� in � ��� � , and there is a vertex � between
����
 and ����� , we create a new ssp �	�
� in ��� that is the closest point
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to � in the part of ��� between �	��
 and �	� � . Then we take a weighted
average of the two points � � � and � to create a new point for the new
global map � � . This step is illustrated in Figure 4.
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Figure 4. � is a vertex of a polyline
� � of the global map � ��� � . � is

between the closest points � ��
 and � ��� to two consecutive simulated scan
points (ssps) � ��
 and � �
� on polyline

� � in � � . In such case, we create a
new ssp � � � in the scan � � as the closest point to � on a polyline

� � of the
scan � � . Then we take a weighted average of the two points � �
� and � to

create a new point for the new global map � � .

The next step is to create a set of ordered polylines from the newly
created points (ncps) in the global map ��� . The following facts guide
this process:

1. All ncps in the global map ��� are ordered. They either inherited
their order from the simulated scan rays or where sorted in be-
tween two ssps (who inherited their order from the simulated scan
rays).

2. All consecutive ncps whose predecessors belonged to the same
polyline either in � ��� � or in � � are classified as belonging to the
same polyline.

3. The parts of polylines in ����� � that are not predecessors of any
ncps are integrated in � � as separate polylines.

First we connect all consecutive (in scan order) ncps in the new
global map that belong to the same polyline. We further merge con-
secutive polylines � � and � � to a single polyline � if the last vertex
of � � and the first vertex of � � had predecessors in the same polyline
either in ��� or in ����� � . The motivation for this step is that the poly-
line � is likely to represent a single object in � � (created from � �
and � ��� � ), since whenever two consecutive points are in the same
object either in �
� or in ����� � , they can be classified as belonging to
the same object. This rule implies that separate portions of the same
object will be connected if they are ever detected as points of the
same object. The only exception to this rule is a bifurcation, which
may be caused by dynamic object, e.g., a moving door. To resolve
bifurcations, we create two disjoint polylines in a global map.

The created polylines in the new global map � � may not be
properly ordered. A polyline � is properly ordered if the order of
its vertices is constant with the arc length distance to its first ver-
tex � i.e., vertex � proceeds � if the arc length distances satisfy�
	 � ���/����� �
	 � �*����� . We apply recursively the following simple
rule to obtain properly ordered polylines: Let �4���
�	� be three con-
secutive vertices in a polyline � , if the inner angle at � is less then
a certain threshold (which is

Y =�
 in our case), then vertex � is re-
moved. This rule not only makes polylines properly ordered, but also

removes scan artifacts due to sensor noise or due to objects with fine
shape features like plants. This rule is justified by the fact that sharp
inner angles cannot be created by three consecutive laser rays unless
they hit an object with fine shape.

For objects with fine shape, we obtain a dense sequence of sharp
inner angles. Since this rule would remove them completely, these
kind of objects requires a special treatment. Such objects have dif-
ferent reflections patters for different scans, thus, their shape may
change from scan to scan. These object are not considered in the
merging process, but they are placed on the global map after merg-
ing. To (temporarily) remove objects, we use a bounding box around
them, called “eraser box”, to erase the areas where the perceived data
is highly unreliable. We create an eraser box in a scan by creating a
bounding rectangle containing all consecutive vertices in each poly-
line of � � with inner angles that are less than

Y =�� . If such a sharp
angle is span by three consecutive scan points, it is very unlikely that
these points result from scan readings of a real object with a stable
shape. Thus, such sharp angles indicate either noisy readings or an
object with fuzzy shape, like plants. The processing of eraser boxes
is composed of three main steps: (1) for each scan we identify eraser
boxes, (2) we transfer the eraser boxes to the global map, and (3) we
merge overlapping eraser boxes in the global map to a single eraser
box that contain them. We need these three steps, because the data
in a small area may appear to be reliable in a given scan, but ap-
pears highly unreliable in most of the other scans. Thus, we mark
the whole area unreliable regardless of the quality of any single scan.
The data inside the eraser boxes on the global map is not used for
further iterations of building the global map.

In order to create stable global maps, we can only merge perceived
stationary objects, i.e., we need to detect moving objects and remove
them from actual scans before merging. To remove moving objects,
we use the result of shape matching to identify corresponding objects
in scan � ��� � and � � , say � ��� � is matched to � � . We can also easily
remember in the process of merging that � ��� � is merged into the
object � ��� � in ����� � . Since � � and � ��� � represent the same real
object, their distance after alignment should be very small. If this
is not the case, the object � � is moving, in which case we need to
backtrack to its first appearance in the scans, remove it, and redo the
merging process again to remove any unwanted effects it may have
caused.

Finally, we apply DCE and least square fitting to create a new set
of simplified polylines. An example result is shown in Fig. 1(d).

5 CONCLUSIONS

We have presented a comprehensive geometric model for robot map-
ping based on shape information. Shape matching has been tailored
to the domain of scan matching. The matching is powerful enough
to disregard pose information and cope with significantly differ-
ing scans. This improves performance of today’s scan matching ap-
proaches dramatically. In this paper we concentrate on solving geo-
metric problems related to global map building, and do not include
any statistical methods, to demonstrate the power of the proposed ge-
ometric approach. However, we are aware that statistical methods are
needed to guarantee robust performance. A suitable extension of our
approach to include statistical methods will be presented in a separate
paper.
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