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Abstract. In this paper, I explore the idea that there are “patterns”,
analogous to software design patterns, in the kind of task procedures
that frequently form the reactive component of architectures for in-
telligent autonomous systems. The investigation is carried out mainly
within the context of the WITAS UAV project.

1 Introduction

A current trend in AI research is the focus on autonomous systems:
robotic, or “softbotic”, systems capable of acting independently and
intelligently, in uncertain, varied and dynamic environments. The
wish to make agents act intelligently and the requirements imposed
by the dynamic nature of the environment combine to create compet-
ing needs for deliberation and reaction, and much attention has been
given to the design of system architectures that somehow mediate
between these needs. The solutions that have, to date, appeared most
successful are variants of so called “layered architectures”, where
deliberative, reactive and low-level process components run and ex-
change information asynchronously, e.g. [10, 1, 13].

Part of every layered architecture variant is a reactive system, con-
sisting of a base of procedural knowledge, rules that prescribe reac-
tions to standard situations or flexible “scripts” for enacting standard
tasks, and a mechanism that translates the encoded knowledge into
action (i.e. commands to low-level system processes), contingent on
the state of the environment as perceived via the systems sensors.
The core of any reactive system is the procedural knowledge base,
and there have been many proposals for languages to express such
knowledge. Less attention has been devoted to the problem of how
to fill the procedural knowledge base with content. The task of writ-
ing the actual rules or programs that the reactive layer will execute is
often an ardous one, and there are few principles or guidelines to help
the programmer who must in the end perform it2 (notable exceptions
are discussed in section 6).

By contrast, principles of programming and design have since long
been studied and developed in other areas of computer science, often
without reference to the particulars of any implementation language.
It may be worthwhile to look likewise at the problem of writing reac-
tive programs. This paper presents a tentative step in this direction:
By examining examples of reactive programs, from the literature and
from experiences in the WITAS autonomous UAV project, I try to
find something akin to “design patterns” [7] for reactive layer proce-
dures. Whether the things found actually qualify as design patterns
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Some systems, e.g. CIRCA [14] or the situated automata of Kaelbling and
Rosenschein [9], synthesize the reactive procedures from a specification of
the task to be achieved and a model of the environment. This, for better
or worse, moves the problem from programming to specification and mod-
elling, but at the same time leads to some restrictions on the expressivity
of the task specifications, environment model, and the procedures that the
system is able to generate, to make the synthesis problem decidable.

(or, indeed, have any value or meaning at all) is debatable. This lit-
tle effort should perhaps be viewed more as a sign that something
is missing, rather than a definitive answer to what that something
should be.

The next three sections provide brief background on languages
for programming reactive procedures (section 2), the WITAS project
and system architecture currently employed within it (section 3) and
design patterns (section 4). Section 5 describes and illustrate some
reactive design patterns, while section 6 contains some concluding
discussion.

2 Rule and Reactive Procedure Languages

A large class of reactive programming languages consist of condition
– action (or event – condition – action) rules. Such rules prescribe an
action to be taken whenever the corresponding condition on the sys-
tems view of the environment holds. As the complexity of tasks and
environment grows, two problems with rule-based programs arise: In
a given situation, the condition part of several rules, advising conflict-
ing actions, may hold, or no rules condition may be fulfilled, leaving
the system without a response.

A common solution to the first problem is to introduce an arbitra-
tion mechanism that decides which rule takes precedence in each sit-
uation. An example of this approach is the context-dependent blend-
ing method developed by Saffiotti et al. [15]. In this system, the an-
tecedent of a rule is a combination of (fuzzy) predicates, while the
consequent specifies for each possible action how desirable that ac-
tion is, from the point of view of the rule. Collections of rules are
grouped into behaviors, associated with a (fuzzy) context conditions.
The desirability assigned to each action by a rule is modified by the
degree to which the conditions of the rule and the behavior it belongs
to are satisfied, and the action that receives the most support, overall,
is the one taken. A different solution, examplified by Lin [11], is to
perform a static analysis on the rule base and verify that a conflict
can not occur.

Reactive procedures were introduced into AI circles mainly with
the PRS system [8]. The RAPS [5] system is similar, and serves as
an illustrative example of the approach. A task procedure in RAPS
has a “signature”, consisting of name and arguments, a context con-
dition, a success condition and a procedure body which is a partially
ordered set of steps that may be calls to subtasks, primitive actions,
or “wait for condition” statements. RAPS allows having several dif-
ferent procedures for the same task and this is what lends flexibility
to their execution: When a call for a particular procedure signature
is made, the context conditions of all matching procedures are eval-
uated against the systems current knowledge state, and among those
whose conditions are satisfied, one is chosen for execution. Eventu-
ally, the procedure either finishes successfully (its success condition
becomes satisfied) or fails. If the chosen procedure failed, the system



may re-evaluate context conditions to choose another procedure (or
even to try the same procedure again) or the call as a whole may fail.

3 The WITAS Project and Architecture

The WITAS project aims to develop architechtures and technolo-
gies for intelligent autonomous systems in general, and for an au-
tonomous Unmanned Airial Vehicle (UAV) for traffic surveillance
in particular3. This choice of platform and application area leads to
many challenges, but also to a problem that, overall, is in the realm
of the possible.

The current WITAS system architecture is the result of many
development iterations. Two important characteristics that have
emerged are that it is distributed, and that the reactive system plays a
central and “driving” role. A distributed architecture is advantageous
for several reasons:

� Different system components have different needs: The UAV con-
troller operates under hard real-time constraints, parts of the im-
age processing system may need to run on specialized hardware
to achieve acceptable performance, etc. In addition, the limited
power and payload capacity of the UAV may force some compo-
nents to reside in a ground-side part of the system, while still in-
teroperating smothly with those components that reside on-board
the UAV.

� Distribution lends a certain fault-tolerance, since separate system
components can be restarted (or even rebooted) in case of failure,
without the need to bring the whole system down.

� An interesting area for future research is the integration of sev-
eral UAVs, and possibly also other actors such as ground stations
(manned or unmanned), into a system capable of acting coher-
ently and efficiently. A distributed architecture leaves many more
“hooks” for development in this direction.

To minimize the extra complexity introduced by distribution, a
choice has been made to use a CORBA infrastructure4. The use of
CORBA carries some additional advantages, such as for instance
simplifying the transition from a simulated to a real environment.

The “reactive-centric” nature of the architecture is in part an effect
of the fact that is distributed, and of the use of CORBA: At the level
of interfaces, there is simply not that much difference between e.g.
the UAV flight control system and a high-level deliberative function
such as prediction or a GIS database, and thus the different compo-
nents are naturally viewed as a collection of “services” for the reac-
tive systems use.

3.1 The Modular Task Architecture

The reactive system, like the rest of the WITAS architecture, has
been through a number of iterations. The current version, tentatively
named the Modular Task Architecture (MTA), is, also like the rest
of the WITAS system, distributed, and for pretty much the same rea-
sons.
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For a more detailed description of the project, see Doherty et al. [4] or
http://www.ida.liu.se/ext/witas/�

The Common Object Request Broker Architecture (CORBA) is
an object-oriented middelware standard laid down by the OMG
(http://www.omg.org/gettingstarted/corbafaq.htm).
The interfaces of CORBA objects are specified in the Interface Definition
Language (IDL), which maps to whatever language is used to implement
the object.

The common denominator shared by all MTA task procedures is
a CORBA interface and a few behavioral restrictions. The task inter-
face is rather basic, containing only operations such as passing argu-
ments, starting and canceling a task. Asynchronous messages are sent
from a task to its caller via event channels5, and a few message types,
e.g. those signalling task completion or failure, are standardized. This
simplicity, however, should not be mistaken for a limitation. Beyond
the requirements that MTA places on a task, each task procedure is
free to react to events in any form and interact with any component
of the WITAS system that is accessible through an interface.

Because the MTA is, in essence, only a standard, task proce-
dures can be implemented in any language (for which there exists
CORBA support). Indeed, they have to. As it has turned out that
large parts of most task implementations tend to be routine excer-
cises in CORBA programming, we have developed a simple macro
language and translator to make writing tasks easier and less prone
to cut-and-paste errors6.

4 Design Patterns
There are numerous definitions of what constitutes a design pattern
(or just “pattern”). The term was originally used by architect Cristo-
pher Alexander, who has written several books to explain what is
meant by it. Gamma, Helm, Johnson & Vlissides, whose book on
object-oriented design patterns has probably done most to popular-
ize its use in software engineering, write: “A design pattern names,
abstracts, and identifies the key aspects of a common design struc-
ture that make it useful for creating a reusable object-oriented de-
sign. [...] Each design pattern focuses on a particular object-oriented
design problem or issue. It describes when it applies, whether or not
in can be applied in view of other design constraints, and the conse-
quences and trade-offs of its use.” [7]. A shorter, less object-oriented,
description is “A pattern is a named nugget of insight that conveys the
essence of a proven solution to a recurring problem within a certain
context amidst competing concerns” [2]. Patterns have been recog-
nized at an “application” (or “architectural”) level, at the design level,
and at the “language” level, i.e. in program constructs (where they are
often called “idioms”) [2].

5 Patterns in Reactive Programs
This section describes five different patterns that I have seen in reac-
tive task procedures. The first two examples presented here are more
“architectural” in flavour, describing what is essentially structures in
the procedural knowledge found in an application domain, while the
remaining examples are more design oriented. The first two are also
found in the structure of a single task procedure, while the other con-
cern the interplay between two or more tasks.

5.1 Scripts
In the introduction, task procedures were described as “flexible
scripts”. This is a frequently occuring form, the task procedure con-
sisting of a set of steps to be carried out, in sequence or just in partial
order, interspersed with waiting for events or conditions.

�

Channels are specified in the CORBA Event Service stan-
dard (http://www.omg.org/technology/documents/
corbaservices spec catalog.htm), and allow decoupled passing
of arbitrary data from one or more senders to one or more receivers.�

The language, called TSL, is based on XML. The translator consists basi-
cally of an XSLT processor and a library of templates for each implemen-
tation language used.
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Figure 1. The NavToPoint Task Procedure

Figure 2. The follow and cross behaviors combined into a script.
Reprinted from Saffiotti et al. (1995).

Figure 1 shows a schematic of a task procedure for safely navi-
gating the WITAS UAV to a goal position. The normal execution of
this task forms sequence of three steps, corresponding to the three
states: First, the UAV is stabilized (locked onto its current position),
then a request for a safe trajectory from this position to the goal is
made to the pathplanning service, and finally a subtask, FlyPath,
is invoked to execute the trajectory returned by the pathplanner. The
possible exception to this normal case is if any of the steps fails, e.g.
if the pathplanner can not find a flyable trajectory, or if the FlyPath
task fails. In most cases, this leads to the task as a whole failing, but in
one certain case, when FlyPath fails because the UAV has drifted
too far off course, it only causes the task to “back up” and try again
(the reason why it does not back up all the way to the first state is that
the FlyPath task locks the UAV into a stable hovering mode when
failing in this way).

Script-like task procedures can appear also in rule-based systems,
though they may be less obvious. The following example of a script
implemented by fuzzy behaviors (due to Saffiotti et al. [15]), in-
volves a mobile robot navigating in an office environment: The robots
goal is to enter a certain room, which it may achieve by a behavior
cross(doorway). The context of applicability of this behavior,
however, is limited to the close vicinity of the doorway. Another be-
havior, follow(corridor) is applicable in any part of the corri-
dor, and will when effected lead the robot down the corridor, even-
tually to reach the doorway. A procedure to achieve the goal from
the wider context is created by conjoining to the context of follow
the negation of the context condition for cross, and applying the
context-dependent blending method to the two behaviors. The result
acts like a script, applying first the follow behavior until a situation
within the context of cross is reached, then the cross behavior.
This is illustrated in figure 2.

Search Track Reaquire

new object found tracked object lost

object found

interrupt!

object not found

Figure 3. The FindTrack Task Procedure

5.2 Mode Switchers

While many task procedures take the form of scripts (though in some
cases more elaborate, e.g. with alternate branches for different con-
ditions), some are very definitely not of this kind. Another common
cathegory are “mode switchers”: tasks that continuously change be-
tween a set of different working modes, depending on circumstances,
and that often do not have any wired-in terminating condition but
carry on indefinitely, until interrupted from without.

Figure 3 shows an example of such a task procedure for the
WITAS UAV, which uses the image processing system to alternatly
search for objects (defined either by motion or by color) in the cam-
era image, and tracking an object for as long as possible. It has three
modes: Searching for an object, tracking the object once found, and
“reaquire”, which is entered immediately upon losing track and in
which the task searches for an object similar to the one just lost
near the objects last known image position, for a (short) limited time.
While in the tracking mode, an interrupt command causes the task to
drop the currently tracked object and resume search (a different ex-
ternal command causes the task to terminate, but this is not illustrated
in the figure).

5.3 Fail and Retry

Reactive procedures are typically designed to accomplish a particular
task, in a limited range of operational circumstances. This limitation
is key to keeping the complexity of individual procedures managable.
Were we to try to deal with every imaginable contingency that may
arise in carrying out a desired task, procedures would quickly be-
come unwieldingly complex. Also, the appropriate response to an
abnormal situation may vary depending on the overall plan that the
task is part of. For this reason, most reactive systems have a notion of
task procedures failing. In e.g. RAPS or the WITAS system, failures
are signalled explicitly, while in Saffiotti et al’s system a behavior
may be defined as “failing” when the degree of satisfaction of its
context condition becomes too low.

A pattern related to failing is “catch and retry”. It involves two
task procedures, one of which (“the caller”) has invoked the other
(“the callee”) and is waiting for it complete. There are many reasons
that may cause the callee to fail, but for some of them, the caller
can take measures to repair the failure, appropriate to the purpose
that the caller called the callee for. Thus, if the callee fails, the caller
determines the reason for the failure, and if it is of a kind that the
caller knows how to deal with, it takes some action to remedy the
problem and restarts, or calls again, the callee. If the failure is of any
other kind, the caller itself fails.

An example of this pattern has already been shown, in the
NavToPoint task procedure: If the FlyPath task fails due to the



UAV drifting off course, the procedure solves the problem (by asking
the pathplanner for a new path, from the current position and invok-
ing FlyPath again). Note that, again, this may not be the right way
to deal with the problem in all contexts. If, for example, a prepro-
grammed path was flown to record sensor data, the flight may have
to be started over from the beginning.

5.4 Supervision
Task failures is only one half of a two-sided problem. In some situa-
tions, a task procedure may be acting inappropriately without realis-
ing it, thus not failing when in fact it should.

A way of dealing with this situation is supervision. Again, this
involves two task procedures, a “caller” and a “callee”. The callee,
during execution, sends “status reports” to its caller, who through
monitoring these and the state of the environment may detect when
the callee is responding incorrectly. The caller may then interrupt the
callee, or send to it some corrective commands.

The FindTrack task described above frequently acts as callee
in this kind of pattern. When it is invoked, it is for a purpose, e.g. to
find and track a particular vehicle, but the FindTrack task can not
discriminate the vehicle of interest from others that may be found,
or even discriminate vehicles from other moving things. Therefore,
the task reports to its caller whenever it changes from searching to
tracking the identity of the tracked object. The calling task may then
retrieve information about this object and apply more sophisticated
reasoning to determine if it is one that should actually be tracked (e.g.
matching the movement of the object with information about the road
network in the area to determine if it follows the road or not). If it is
not, the FindTrack task can be commanded to drop the object and
switch back to searching.

The same result could, of course, be obtained by implementing
the FindTrack functionality in its caller, adapted to the task that
the caller performs, but separating the two confers several advan-
tages: It avoids code duplication (i.e. writing and debugging the same
program twice), since the FindTrack task procedure can be used
by many different tasks. It keeps the calling task procedure simpler,
since it does not have to handle the idiosyncracies of interfacing to
the image processing module and since the tracking of an object
operates concurrently with the (possibly time-consuming) reasoning
performed by the calling task, without the need to write this concur-
rent handling into the calling task explicitly.

5.5 Higher-Order Task Procedures
In more complex task procedures, there is often a heirarchical struc-
ture: the task decomposes into a series (or set) of subtasks, with some
coordinating or “bridging” activity between them. Sometimes, for a
group of tasks this bridging part may be the similar, or even identical,
even though the tasks in the group are applicationwise unrelated. For
example, two potential tasks for the WITAS UAV are surveying a col-
lection of buildings (or other structures of interest) scattered through-
out an area, and searching an area for a particular vehicle. Both these
tasks involve navigating the UAV to a series of positions in turn (po-
sitions of the buildings in the first case, positions where the sought
vehicle is likely to appear in the second), and performing some data-
gathering activity at each position (taking photographs from different
angles in the first case, image/video analysis in the second).

A single task procedure could be written to handle both tasks (as
well as other tasks with similar structure), by using enough parame-
ters to define the data-gathering activity that has to be done at each

position. However, this procedure will grow very complex and diffi-
cult to maintain as the set of possible data-gathering subtasks grows.
But, since the navigation part of the overall task is (mostly) inde-
pendent of the activity carried out at each position, an alternative is
to write a “higher-order” task procedure, DoAtPositions, which
takes as argument a set of positions and an arbitrary task to carry out
at each position7. Again, this both simplifies the writing of the task
procedures involved and improves the potential for reuse.

6 Conclusions
These ideas, although grounded in some experience, are speculative.
Here are some objections that can reasonably be made:

6.1 “This is all very interesting, but hardly new.”
Although the concept of design patterns in software was introduced
not so many years ago [7], there has been an almost explosive devel-
opment in “pattern recognition” since8, and there are even collections
of patterns specifically aimed at the kind of concurrent, distributed
programming that is typical of MTA task implementations [16, 12].
Shouldn’t the simple observations found in the preceeding section al-
ready have been made, many times over? Indeed, they have. But this
lack of novelty is not a fault, since one of the hallmarks of a good
pattern is recurrence, in varying contexts.

Also, a few AI researchers have discussed reactive programming
practice: Firby [6] describes a collection of RAPS task procedures
written for an in-door mobile service robot, and atempts to structure
it into modular, reusable subtasks. His conclusion is that heirarchical
task decomposition, while a powerful structuring principle, alone is
not enough. Some tasks need to spawn subtasks whose execution is
tied to a condition on the state of the robot or its environment, and
thus streches beyond that of the spawning task (this is perhaps also
a candidate for a pattern). Beetz [3] analyzes reactive plans (pro-
grams) for mobile robot navigation tasks and designs a representa-
tion language specific to this application by introducing constructs
that match patterns of use. Examples of at least two of the pat-
terns discussed in the preceeding section can be found among those:
supervision (expressed as augmenting default plans with context-
triggered subplans) and higher-order tasks (expressed by the “at lo-
cation” macro, which specifies that a particular part of the plan needs
to be executed at a certain position, abstracting the details of how to
get the robot to the position from the task to be carried out there).
Beetz also introduces the notion of a task procedure being “embed-
dable” (meaning it can be safely run concurrently with other tasks,
even in the presence of conflicting resource needs), “interruptible”
(meaning it can be interrupted/resumed at arbitrary points without
compromising the procedures ability to complete its task) and “trans-
parent” (meaning the procedure accomplishes one and only one goal,
and that this goal is explicitly indicated), and argues that these are all
desirable properites to form a library of reusable task procedures.

6.2 “This is all very interesting, but what’s the
point?”

There are several:
�

The mechanism used for passing subtasks as arguments depends on the
language used to implement the task procedure. In the MTA framework, a
task can be passed as a CORBA object, or a specification of the task (name
and arguments) can be passed as a data structure definable in IDL.	

As evidenced by pattern catalogs, e.g. at
http://hillside.net/patterns/.



Patterns suggest good practices: A task procedure that provides
information on the reason for failures is more reusable than one that
does not, since it can be combined with other tasks in a catch-and-
retry fashion. Likewise, a mode-switching task procedure that pro-
vides meaningful status reports and “hooks” to force mode changes
can be supervised, and therefore more useful as a subtask. A common
theme in all the three design-oriented patterns in the preceeding sec-
tion is that they aim towards increasing the potential for reuse, which
is a cornerstone of efficient (or economic) software construction.

Patterns of use motivate features of task procedure languages in
existence, and suggest potentially useful features missing from lan-
guages of today. Beetz design of a representation for robot navigation
tasks [3] is an example of this approach. In creating the reactive layer
of a layered architecture, looking for patterns in the intended appli-
cation domain(s) may also guide the choice of implementation tech-
nology. In the WITAS UAV project, we have found a mode-switching
structure to be more common than a script-like one, at least among
basic tasks having to do with control of the UAV platform and its
sensors. In an early phase of the project, the reactive layer was im-
plemented using the RAPS language, and one of the lessons learned
from this was that although it is certainly possible to implement a
mode switching task using the constructs of this language, it is not
very convenient.

6.3 “This is all very interesting, but it should be
formalized.”

Probably the most important function served by patterns is as an edu-
cational resource: They communicate experience, insight, and some-
times inspiration, between people faced with similar problems (pro-
grammers, in the case of software patterns). Thus, it is more impor-
tant for a pattern description to be human-readable than machine-
readable. However, recurrent patterns in reactive programs possibly
also point towards mechanisms for automatically synthesizing such
programs, for example in the form of search spaces or search control
knowledge for automated planners (this is also advocated by Beetz
[3]).
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