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Abstract
Many of the deep learning models currently driving the advance-
ments in computer vision, expected to transform our society, require
extensive training data. However, privacy regulations require ex-
plicit consent or anonymization of personal data, and traditional
anonymization methods degrade data quality, thus hindering model
performance. To address this challenge, we introduce the Realis-
tic Anonymization using Diffusion (RAD) framework, which uses
Stable Diffusion and ControlNet to produce high-quality synthetic
images. RAD’s three-step pipeline maintains contextual integrity
and data utility, achieving superior image quality compared to previ-
ous GAN-based methods. We evaluated RAD’s privacy preservation
and data utility through face recognition accuracy, a segmentation
task, and human assessment. RAD anonymized faces in 95.5% of
cases, with high photo-realism ratings from human evaluators. Seg-
mentation tasks on both original and anonymized images showed
minimal performance drop, confirming RAD’s high utility. Our
analysis also identifies the strengths and weaknesses of using Sta-
ble Diffusion for full-body anonymization in various conditions.
In summary, our work advances the understanding of high-utility
anonymized data generation, and demonstrates that RAD can ef-
fectively balance privacy and utility.
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1 Introduction
Recent advancements in deep learning have revolutionized com-
puter vision, enabling sophisticated applications across industries
like security, transportation, manufacturing, and healthcare. How-
ever, despite the promising potential of these models, their effective-
ness is limited by the lack of realistic anonymization techniques.

To see this, we note that these models typically rely on large, di-
verse datasets, which are difficult to obtain due to strict privacy reg-
ulations like the General Data Protection Regulation (GDPR) [27].
WithGDPRmandating anonymization or explicit consent for datasets
containing identifiable individuals, and traditional anonymization
techniques like blurring or pixelization only providing privacy pro-
tection by downgrading the data quality, there is a need for more
sophisticated methods that can achieve high-utility anonymization.

Goal: The central challenge in the anonymization of datasets is
to achieve a desirable balance between privacy and utility. Ideally,
we want realistic anonymization that replaces real individuals in
images with highly realistic but generated ones, preserving data
utility while also proving strong protection of the individual from
identification (i.e., achieving a high privacy level). By maintaining
visual coherence, such anonymization methods have the potential
to create high-quality training data that complies with privacy
regulations without sacrificing performance.

Main Contributions: As a step in this direction, we present the
design and implementation of the Realistic Anonymization using
Diffusion (RAD) framework (Section 4) and use a diverse set of
experiments (Section 5) to demonstrate its effectiveness and pro-
vide insights into several important tradeoffs associated with RAD,
including everything from individual components of the system to
the privacy-utility tradeoff of the generated images themselves.

Design & Implementation: RAD employs a three-step pipeline
(Section 4) to preserve contextual integrity and data utility. The
process starts with pre-processing, where we detect people and
extract structural features. In the synthesis step, Stable Diffusion,
conditioned by the extracted ControlNet features, generates a syn-
thetic image. Finally, the synthesized image is seamlessly integrated
with the original background during the stitching step, ensuring
realistic anonymization without compromising the original scene.
By combining Stable Diffusion with a method to cut out and stitch
back the generated person, RAD produces high-quality images of
higher resolution than presented by most prior works on full-body
anonymization, most of which use GANs and have considered lower
image resolutions than us (Section 7). In comparison, RAD is de-
signed for larger image sizes (e.g., >512×512 pixels) and excels at

https://doi.org/10.1145/3689943.3695048
https://doi.org/10.1145/3689943.3695048
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3689943.3695048


WPES ’24, October 14–18, 2024, Salt Lake City, UT, USA Simon Malm et al.

generating people that are larger in the frame. The source code is
shared with the paper: https://github.com/viktorronnback/RAD.

Effective Anonymization: To evaluate RAD’s anonymization
effectiveness, we used two methods (Section 5.3) to measure the
achieved privacy level: face recognition accuracy and human eval-
uation. For face recognition, the FaceNet512 model measured the
cosine distance between original and anonymized faces, showing
successful anonymization in 95.5% of cases. A survey with 67 par-
ticipants provided human evaluation. Participants first identified
the most similar anonymized face from a set, showing that higher
anonymization strength reduced correct identifications. They then
rated anonymization effectiveness, which correlated with face em-
bedding distances, confirming RAD’s ability to preserve privacy
while retaining data utility.

High Image Utility: To evaluate the utility of the generated
images, we employed two methods (Section 5.4): training instance
segmentation models with anonymized images and assessing their
photo-realism through human evaluation. First, two YOLOv8 seg-
mentation models were trained on the Cityscapes dataset: one with
original images and the other with anonymized images. The com-
parison showed a slight decrease in detection and segmentation
accuracy for the anonymized data, particularly for the person class,
but most of the data’s utility was preserved, evidenced by the minor
drop in performance. Human evaluation rated the photo-realism
of anonymized images with an average score of 3.96 out of 5, sug-
gesting that the images retain sufficient quality for training data in
computer vision tasks. Notably, there was no correlation between
photo-realism and anonymization scores, indicating that higher
privacy levels did not compromise perceived realism. In summary,
while our method does not offer formal privacy guarantees, our
combined privacy and utility evaluation results demonstrate the
feasibility and realism of the anonymization pipeline.

Image Generation Insights: We also provide insights into the
strengths and weaknesses of using Stable Diffusion models for the
task (Section 5.2). For example, the strength of Stable Diffusion was
shown to lie in its capability for full-body anonymization across di-
verse poses, backgrounds, and lighting conditions, effectively modi-
fying features like hairstyle, facial features, and clothing while often
retaining gender and ethnicity cues. In datasets like Pexel-Humans,
which feature close-up, identifiable subjects, anonymization signifi-
cantly alters personal details, such as tattoos or clothing. However,
the synthesis process can introduce artifacts such as extra limbs or
lighting issues, impacting image utility, albeit fixable. Segmentation
and detection failures in preprocessing can also lead to incomplete
anonymization. In datasets like Cityscapes, with smaller, distant
targets, challenges include generating detailed faces and accurately
discerning poses. Despite these hurdles, RAD’s ability to preserve
background context while anonymizing individuals makes it prac-
tical for annotated images, though maintaining identifiable body
shapes poses potential privacy risks in certain contexts.

Outline: After a brief background (Section 2), we present RAD
and its three-step anonymization pipeline (Section 4). We then
present our performance evaluation (Section 5), spanning selected
insights into the strengths andweaknesses (Section 5.2), the achieved
privacy (Section 5.3), and the achieved utility (Section 5.4). Finally,
we provide a discussion (Section 6) and put the work in the context
of related works (Section 7), before concluding the paper (Section 8).

2 Background
2.1 Anonymization
Traditional image anonymization methods like blurring, masking,
or pixelization have been widely used for privacy protection, albeit
with mixed effectiveness [23]. However, these techniques signif-
icantly degrade image quality, which can hinder their utility in
subsequent tasks such as training deep learning models [15]. Ex-
amples in Figure 1 illustrate these limitations.

Realistic Anonymization: Realistic anonymization, sometimes
also called feature-preserving anonymization and generative de-
identification, aims to replace individuals in images with realistic
synthetic counterparts [14], thereby maintaining the images’ utility
for downstream tasks.

Privacy-Utility Tradeoff: The privacy-utility tradeoff refers
to the balance between data anonymity and its usefulness when
applying data manipulation algorithms [25]. This concept is ex-
tensively studied in fields like data mining and healthcare, where
preserving privacy while maintaining data utility is critical [28]. In
the context of using images for training data, the goal is to achieve
anonymity comparable to methods like masking out (Figure 1(c)),
while retaining the utility of the original image (Figure 1(a)). Real-
istic anonymization techniques aim to achieve this balance, though
quantifying it remains challenging due to the absence of universal
metrics for privacy and utility assessment, which often vary based
on specific applications. In this paper, we use both objectively eval-
uated automatic tasks (facial recognition and segmentation) and
more subjective evaluation by humans to evaluate our system and
its privacy-utility tradeoff.

2.2 Stable Diffusion and ControlNet
Latent Diffusion Models: Diffusion models, especially latent dif-
fusion models, have become increasingly popular recently. By com-
pressing data into a lower-dimensional latent space, they focus
on semantically relevant aspects of images, significantly reducing
computational complexity [9, 31].

Stable Diffusion: Stable Diffusion models, a subset of latent
diffusion models, feature specific architectural enhancements. In-
troduced publicly in August 2022 by Stability AI, Runway ML, and
CompVis [1], Stable Diffusion v1 has since been enhanced with
numerous improved models and architectures developed by both
the core team and the community.

Stable Diffusion XL (SDXL), proposed by Podell et al. [29], rep-
resents an enhanced model and architecture within the Stable Dif-
fusion framework. It incorporates additional conditioning of the
U-Net model during training, considering image size, crop dimen-
sions, and aspect ratios. Unlike previous models limited to 512×512
pixels, SDXL is trained on images up to 1024 × 1024 pixels, thereby
producing higher-quality outputs for larger image sizes.

ControlNet: ControlNet, proposed by Zhang et al. [36], en-
hances user control over diffusion processes beyond traditional
text prompts and basic parameters. Unlike existing methods, Con-
trolNet utilizes various image types like edge maps, human pose
skeletons, depth maps, or normal maps for conditioning. It achieves
this by duplicating diffusion blocks, updating the weights of these
copies independently while keeping the original diffusion block
unchanged (“locked"). Outputs from these paired blocks are then

https://github.com/viktorronnback/RAD
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(a) Original (b) Blurring (c) Masking out (d) Pixelization

Figure 1: Three common anonymization techniques: (b) blurring, (c) masking out, and (d) pixelization. Image from MOT17 [26].

Figure 2: RAD’s three-step pipeline and the modules associated with each step.

Figure 3: Conceptual overview of our approach.

combined using “zero convolutions", ensuring minimal interfer-
ence with the underlying diffusion model trained on extensive
datasets. This architecture allows ControlNet models to refine diffu-
sion results effectively, even with smaller training datasets, yielding
high-quality image generations with reduced noise.

3 Threat Model
Here, we briefly describe the targeted threat model assumed when
designing our anonymization framework.

• Adversaries: Potential adversaries include (1) malicious en-
tities seeking to de-anonymize the subjects in the images for
unauthorized identification purposes, and (2) organizations
aiming to exploit personal data without consent, possibly
for targeted advertising or adversarial surveillance (e.g., in-
trusive monitoring without consent).

• Capabilities: We assume adversaries have access to: (1) ad-
vanced face recognition systems (FRS) for comparing original
and anonymized images, and (2) computational resources to
process large datasets and perform recognition tasks.

Under this threat model, we want to achieve a good privacy-utility
tradeoff, in that the anonymized images should (on average) provide
good privacy protection of the individuals appearing in the images,
while preserving most of the utility of the original images.

4 RAD’s Anonymization Pipeline
Figure 2 illustrates the high-level architecture of RAD’s compre-
hensive three-step anonymization pipeline, detailing each indi-
vidual module within these steps, and Figure 3 offers a concep-
tual overview of our approach. The process begins with the pre-
processing step, where people are detected, and structural features
of these people are extracted. Second, in the synthesis step, a syn-
thetic image is generated using Stable Diffusion, conditioned by
the input features. Finally, in the stitching step, the synthesized
image is seamlessly integrated with the original, preserving the
background while anonymizing the people. We next describe each
step in more detail.

4.1 Pre-processing
The pre-processing step detects subjects for anonymization and
extracts the features used as conditioning input in the synthesis
step (to be performed next). This involves four sequential modules.

Detection Module: The pre-processing step starts with a detec-
tion module. This module detects anonymization targets by using
the latest pre-trained You Only Look Once (YOLO) [30] detection
model (YOLOv8), with yolov8x used by default. The default model
performs well without any additional training but switching it for
a higher-performing one is easily done through either the settings
(if it is a YOLO-compatible model) or through code modifications
which is simplified by the pipeline’s modularity. The same is also
true for other modules in the pipeline. The detection module out-
puts detection boxes to the segmentationmodule, marking the areas
of the image that contain people (i.e., anonymization targets).

Segmentation Module: The segmentation module uses the de-
tection boxes as input to Segment Anything Model (SAM) [19],
which helps create a mask for every anonymization target in the
image. These masks are then combined into a single binary mask
(flattened) that we use as input to both cutout modules and the
feature extraction module. While combining detection and segmen-
tation into a single instance segmentation module is an alternative,
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(a) Original (b) Canny edge (c) Silhouette* (d) Pose

Figure 4: Examples of different conditioning input types
when using ControlNet. (*) Also using canny edge model.

separating them allows us to leverage SAM’s powerful zero-shot
segmentation capabilities.

Cutout Module: Next, the cutout module uses the segmentation
mask to create a single cutout of all the people in the original
image. This module is bypassed if the “canny silhouette" setting is
used since the silhouette edge can be extracted directly from the
segmentation mask.

Feature Extraction Module: The feature extraction module
is used to extract one to three different types of features from
the anonymization targets: (1) an edge map, (2) a silhouette edge
map, and/or (3) a pose. These features, illustrated in Figure 4, are
later used as conditioning of ControlNet in the synthesis step. The
edge map is extracted using Canny edge detection on a cutout of
the anonymization targets (excluding the background). The level
of detail in the edge map can be controlled by setting a lower
and upper threshold for edge detection. The silhouette edge map
is also extracted using Canny edge detection but on the binary
segmentation mask. Finally, the pose of anonymization targets is
extracted using OpenPose1 (via a Python pip package for auxiliary
ControlNet tools). To separate the edge map of the person and the
edge map of only the silhouette, we simply refer to them as “Canny"
and “Canny silhouette", respectively.

To speed up potential anonymization re-runs with alternative set-
tings, we cache segmentation masks and pose conditioning images
with the original input images’ hashes as identifiers. This ensures
these conditioning images are generated only once per input image,
regardless of the number of anonymized copies produced.

4.2 Synthesis
The synthesis step is at the heart of RAD. Here, a new image (of
people) is first generated in the diffusion module before a safety
check is applied using the safety check module.

• Diffusion Module: The diffusion module makes use of a
Stable Diffusion XL image-to-image pipeline with Control-
Net, via the Hugging Face Diffusers library [12]. This module
takes a conditioning image from the feature extraction mod-
ule (described above) as input to ControlNet, as well as the
original image, and text prompts as input to Stable Diffusion.

• Safety Check Module: The generated image then under-
goes a safety check, which halts the process if the image is
inappropriate; otherwise, it proceeds to the stitching step.

1https://github.com/CMU-Perceptual-Computing-Lab/openpose

(a) Original (b) 0.3 (c) 0.5 (d) 0.8 (e) 0.99
Figure 5: Example results of using different strength values.

(a) Original (b) “Canny" (c) “Pose" (d) “Both"

Figure 6: Example results of varying the ControlNet setting
which determines ControlNet’s input(s) for the diffusion step.
See Figure 4 for input image examples.

Strength and Quality of Anonymization: The privacy level
achieved by the anonymization is most affected by the strength
parameter while the image quality is most affected by parameter
settings such as the number of inference steps, the prompt, and
the negative prompt. With the strength parameter controlling how
much of the original image is used for the diffusion step, it directly
affects the privacy level achieved. Typically, a higher strength re-
sults in a more anonymized image, at the risk of generating artifacts.
Figure 5 provides a basic example illustrating the impact that the
strength parameter has on the anonymization of a person. The
number of inference steps impacts quality at the cost of the time
taken for image generation. There are also settings for how much
ControlNet should affect the final image; e.g., how closely the gen-
erated image should follow the canny image. See Appendix A for a
more detailed explanation and discussion of these settings.

Impact of ControlNet Conditioning: Using ControlNet, we
implement anonymization using three conditioning types: “canny,"
“pose," or “both", where “both" uses a combination of the first two.
In general, we have found that if there are few anonymization
targets close to the camera (large in the frame), it is recommended
to use the “both" option in combination with using the separate
setting “canny silhouette". The pose conditioning alone can lead
to unrealistic or distorted results if there are many people close
together or if people are further from the camera. Figure 6 shows
examples of how “canny" keeps some identifying features from the
original image, while “pose" does not correctly match the silhouette
of the anonymization target. The option “both" in the figure keeps
the correct silhouette by using canny with only the silhouette of the
anonymization target, while maintaining the pose by also utilizing
the pose conditioning. Considering the level of constraints that
each method provides (see Figure 4), it is easy to see why canny
can retain more information about the anonymization target, while
canny silhouette and pose preserve less identifying information.

https://github.com/CMU-Perceptual-Computing-Lab/openpose
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Figure 7: The generated image is stitched onto the original using a segmentation mask and Gaussian blur on the dilated outline.

Figure 8: Naive stitching (left) compared to stitching with
blending blurred outline (right).

4.3 Stitching
The stitching step preserves the original background by cutting
out the synthesized people and seamlessly stitching them onto
the original image. Figure 7 provides an overview of the stitching
process, with the detailed steps of each module described next.

Cutout Module: First, the cutout module creates a cutout of the
synthesized people in the generated image using the same segmen-
tation mask as the earlier cutout module (see pre-processing step).
Using the same mask is made possible since people are generated
in the same locations as there were people in the original image.
The cutout is then passed to the stitching module.

Stitching Module: Next, the stitching module blends the cutout
onto the original image. A naive approach of simply replacing pixels
would leave noticeable jagged artifacts in the image. This is illus-
trated in the left image of Figure 8. To address this and make the
generated image fit in better with the background, we therefore ap-
ply a blending process. The blending is done by applying a Gaussian
blur (kernel size 5×5) to the outline of the anonymization targets.
Here, the pixels that make up the outline of the anonymization tar-
gets are determined by reusing the canny silhouette created by the
previously described feature extraction module (see pre-processing
step). However, to slightly increase the area of effect, the outline is
further dilated with a 3×3 kernel size.

While this stitching method does not fully eliminate edge arti-
facts (e.g., strands of hair sticking out due to inaccurate segmen-
tation, which is generally challenging to fix), we have found the
blurring to provide some improvements. Figure 8 illustrates the
stitching with and without applying blur.

4.4 Anonymization Settings
RAD supports many different anonymization settings, including
controls for the strengths of the anonymization. These settings
control the generation via a YAML file that is passed as the first
argument to the anonymizer program (as a file path). Appendix A
provides details about the different settings and Table 5 summarizes
the settings used when generating the results presented here.

Table 1: Primary default settings for each dataset.
Dataset Strength Text Prompt ControlNet Mode

Pexel-Humans 0.75 people, high quality, neutral
lighting, hd, uhd, 4k, 8k

Both

Cityscapes 0.75 people, high quality, neutral
lighting, hd, uhd, 4k, 8k, light
scene, summer day

Canny

5 Performance Evaluation
5.1 Datasets
Two different datasets are used for our evaluation of RAD. To ensure
that we can share results including high-quality images (a scenario
typically not considered by prior full-body anonymization papers),
a novel dataset, Pexel-Humans, was compiled. This is the primary
dataset used in our privacy evaluation. Second, the existing and
popular dataset Cityscapes is used for utility evaluation.

Pexel-Humans Dataset: We compiled this dataset from the
stock photo website Pexels, with all collected images being licensed
under their permissive Creative Commons license. Images were
downloaded using the Pexels API with search terms such as “people
talking" and “people laughing". Images that did not contain people,
had too tiny faces for face recognition, wore face masks, or oth-
erwise were deemed unsuitable for anonymization were removed
from the dataset. The resulting dataset consists of 500 images of
people with varying gender, ethnicity, and age. Resolution of im-
ages varies, but are all bigger than 1024×1024 pixels. Examples
images from the dataset are provided in Appendix C.

Cityscapes Dataset: The Cityscapes dataset, designed for evalu-
ating computer vision algorithms in urban scene understanding [8],
includes 5,000 high-quality pixel-level annotations for 30 classes
and 20,000 weakly annotated images. Only high-quality annota-
tions were used for utility evaluation. Since YOLO models require
a specific format, we converted annotations accordingly, generaliz-
ing labels like “rider" to “person" and “truck" to “car." Annotations
for uncountable items (e.g., “road" or “vegetation") were excluded,
focusing on instance-level annotations. Group classifications such
as “persongroup," “cargroup", and “bicyclegroup" were also filtered
out due to the difficulty of converting them into single instances.

5.2 Example Results: Good vs. Bad
Evaluation Settings: The primary default settings used for the
anonymizations of both datasets are provided in Table 1, and the
detailed settings are found in Table 5 (in Appendix A). The strength
setting 0.75 was used for both datasets since it provided a balance be-
tween making enough changes to render subjects anonymous while
minimizing any odd artifacts. (We briefly discuss the impact of our
parameter selection in Section 6 and provide quantitative example
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Figure 9: Anonymizations of images from Pexel-Humans.
Best viewed by zooming in.

Figure 10: Anonymizations of images from Cityscapes. To
the left are original images (with blurred faces to fol-
low Cityscapes licensing) and to the right are realistically
anonymized images. Best viewed by zooming in.

comparisons in Appendix B.) The text prompt used was nearly iden-
tical, except for the addition of the terms light scene and summer
day for Cityscapes to counter its gray, shadowy lighting conditions,
which sometimes resulted in dark, poorly lit synthesized people. As
recommended when anonymizing a high-resolution dataset with
subjects close to the camera, both and canny silhouette settings
were used for Pexel-Humans. This limited the risk of preserving
identifiable details of people close to the camera. For Cityscapes,
the far-away anonymization targets allowed the use of canny due
to the lower risk of extracting identifiable data.

Example Results: Figures 9 and 10 show diverse examples of
Pexel-Humans and Cityscapes images before and after anonymiza-
tion with RAD. The results illustrate that RAD can successfully
perform full-body anonymization of people in a wide variety of

(a) Too many fingers or hands. (b) Poor lighting conditions.

(c) Incorrect pose.* (d) Segmentation failure.

(e) Twins or clones. (f) Deformed face.

Figure 11: Observed limitations when anonymizing Pexel-
Humans. Original images (cropped) on the left in each subfig-
ure. Best viewed by zooming in. (*) Also segmentation failure.

poses, background contexts, and lighting conditions. It can alter
features such as hairstyle, facial features, and clothing. It is also able
to handle overlapping people in an image. Although not always the
case, gender and ethnicity are also often preserved.

Pexel-Humans is especially interesting since it contains many
people who are close to the camera and easily recognizable. Looking
at Figure 9, we note that the anonymized subjects are vastly different
from their original versions. Yet, everything does not change, as
we use the original image as a reference in the diffusion process.
However, while clothing often has the same or a similar color after
anonymization with the used settings, details that otherwise could
be used to identify someone (e.g., tattoos or very specific clothing)
are typically relatively generic after the anonymization.

In contrast to Pexel-Humans, images from Cityscapes often
contain targets quite far away from the camera. This means that
anonymization targets are altered evenmore with the same strength
setting when compared to Pexel-Humans. This is easiest seen by
comparing how much more clothes change.

Limitation Examples and Discussion: The generated images
are not always perfect and some extra filtering may be needed
depending on what the generated images would be used for. To
illustrate this, Figure 11 presents some observed limitations when
anonymizing Pexel-Humans and Figure 12 shows observed limita-
tions when anonymizing Cityscapes.

For Pexel-Humans, examples were chosen to highlight various
challenges in anonymization, particularly those related to the syn-
thesis step, where diffusion tools sometimes generate odd features
like extra fingers/hands, turned-away faces, or poor lighting condi-
tions. Naturally, these side effects typically reduce the utility of the
image but do not negatively impact the privacy protection. Issues of
this kind are time-consuming but, in general, fixable by either gen-
erating the image again with a different seed or by changing the text
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(a) Missing limbs. (b) Deformed faces.

(c) Hairy faces, and trash can be
detected as a person.

(d) Odd artifacts andmissed per-
son (far right).

(e) Inhuman textile targets. (f) Headless targets.

Figure 12: Observed limitations when anonymizing
Cityscapes. Original images (cropped) are to the left in each
subfigure. Faces are blurred to follow Cityscapes licensing.
Best viewed by zooming in.

prompts to target the unwanted feature specifically. Perhaps more
critical challenges are connected to the pre-processing step (typi-
cally due to segmentation or detection failures) since they can lead
to a target being partly or completely missed during anonymiza-
tion. Figure 11 (d) shows an example of when segmentation has
failed and Figure 14 shows several examples of when detection
has failed (counting towards the missed faces measure in the face
recognition evaluation, presented next). Section 6 discusses how
damaged images can be identified and regenerated.

For the Cityscapes dataset, the anonymization targets are often
smaller, resulting in a few new challenges, such as creating detailed
faces for people far away, or mixing people up with trash cans or
bicycles. People are also turned away more than in original images,
likely due to difficulties estimating the pose. The impact of these
challenges is illustrated in Figure 12.

Finally, we note that RAD only applies anonymizations to peo-
ple in an image while preserving the background and outline of
anonymization targets. This makes RAD practical for anonymizing
already annotated images since annotations can be reused after
anonymization. However, it also preserves anonymization targets’
body shapes, which might make them identifiable in some contexts.

5.3 Privacy Evaluation
We use two methods to evaluate the achieved privacy level: (1) face
recognition accuracy when using state-of-the-art face recognition
and (2) human evaluation.

Face Recognition to Measure Privacy Level: First, to eval-
uate face recognition accuracy post-anonymization, we used the
state-of-the-art FaceNet512 model via the Deepface library [33] to
compare face embedding distances between synthesized faces and
their originals, utilizing default cosine distance with a 0.3 threshold.

Table 2: Face recognition results on the anonymized Pexel-
Humans dataset. *Cases where the number of faces in the
original and anonymized image does not match.

Measure Explanation Value
TP ↓ Failed anonymizations 49 (4.5%)
FN ↑ Successful anonymizations 1029 (95.5%)
FP False recognitions 12
TN Correctly unrecognized faces 2369
X Missed faces 25
M Mismatches* 46

Figure 13: Face embedding distances where 𝑡 is the threshold
for what is considered a recognition and 𝜇 is the mean.

This method quantifies RAD’s fool rate on a large image set and
identifies instances where RAD struggles.

To compare face pairs in Pexel-Humans images, which often
contain multiple people, we classified pairs as belonging to the same
or different individuals. Pairs were considered the same person if
their faces were within 30 pixels of each other in both the original
and synthesized images. This method generally works because
the pipeline synthesizes people in the same pose as the original
images. However, faces that shift more than 30 pixels might lead
to misclassifications, affecting recognition accuracy. We carefully
monitored recognition results to minimize such errors.

Table 2 presents face recognition results for the anonymized
Pexel-Humans dataset and Figure 13 shows the distribution of
face embedding distances across all anonymizations (TP + FN).
We achieved a 95.5% success rate in fooling FaceNet, based on the
ratio of false negatives (successful anonymizations) to total face
pairs compared. Among 49 successful recognitions, 25 pairs had
distances under 0.1, indicating that the face was completely missed
during detection (see examples in Figure 14), and were therefore not
properly anonymized. The remaining face pairs are dominated by
faces captured from the side, which the recognition model struggles
with regardless of how different the faces are (see examples in
Figure 15(a)-(b)). Additionally, 46 images (9.2% of images) had some
mismatch between the number of detected faces in the original
and the synthesized image (see Figure 15(c)). This issue, caused by
incorrect face counts, can often be fixed by adjusting generation
parameters. A few false negatives, due to segmentation failures,
slightly inflated the fool rate.

Human Evaluation on Similarity:We conducted a two-part
survey to assess the quality of anonymizations and the ability of
humans to identify anonymized subjects. The survey was imple-
mented using Google Forms and representative Pexels images. In
total, we had 67 participants, mostly males (79.1%), covering a big
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(a) (b) (c)
Figure 14: Examples where a face was missed during the de-
tection step of the anonymization, and therefore did not get
properly anonymized. Anonymized Pexel-Humans images
(bottom) and the original (upper), with pairwise distances
of the faces shown in the bottom row (d:). Here, all faces
detected in this step now have a pairwise distance well above
the recognition threshold of 0.3, while the missed images all
have a pairwise distance close to 0 (suggesting insufficient
anonymization for these cases). Here, and in the next figure
we use red boxes for pairs that are recognized when using
our recognition threshold of 0.3, and green boxes highlight
those that are sufficiently anonymized.

(a) (b) (c)
Figure 15: Examples where the recognized faces in profile for
which the distance measure is a poor measure of similarity
((a) and (b)) and where there is a mismatch between the num-
ber of faces in the original and anonymized images ((c)).

age spectrum (18 to 75+ years). Most participants (68.7%) used a
computer, while the rest used a phone.

In the first part, selected the most similar person from five op-
tions and rated their similarity, with only one option showing an
anonymized version of the target individual.

Each question presented an image of a target person (indicated
by a red arrow) and five anonymized images. Respondents selected
the image they thought most resembled the target person and rated
the similarity on a scale of 1-5 (1 being “very dissimilar" and 5 “very
similar"). See Appendix D for example questions.

To generate answer options, we selected an image of the tar-
get person in different clothes and pose, then four similar im-
ages. All five images were anonymized using RAD. Cutouts of

Figure 16: Original images (top) and anonymized versions
(bottom) for question 2 of the human evaluation form. The
left-most image is the target person.

Figure 17: Similarity answers. Colored bars represent the op-
tion in which the target person was realistically anonymized.
In Q1 and Q3, a lower diffusion strength was used during
anonymization. In Q5, the target person was deliberately
missing among the options.

Figure 18: Similarity scores on a scale between very dissimilar
(1) and very similar (5). Blue lines indicate the medians.

the anonymized individuals were placed randomly as options A-E
to avoid background influence, and options were shuffled.

Figure 17 shows answer percentages for each of the ninemultiple-
choice questions, with colored bars indicating the anonymized
target options. The tallest bar represents the most popular choice.
Figure 18 separately displays each question’s similarity score. The
bar heights, combined with similarity scores, indicate whether a
person was recognized after anonymization.

When interpreting these results, it is important that we included
three control questions (Q1, Q3, and Q5). In Q1 and Q3, a lower
anonymization strength was used, retaining clothes and accessories,
to test if respondents could identify the target person with weaker
anonymization. In Q5, the target person was absent to gauge per-
ceived similarity among different individuals. In all other cases, we
used an image of the target person in a different pose to ensure the
evaluation mimics real-world scenarios where the original image
is not publicly available for comparison.
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True similarity in Part 1 was measured by the accuracy and con-
fidence of respondents’ guesses. High accuracy and confidence in-
dicated high similarity, while low accuracy indicated low similarity.
High accuracy with low confidence also suggested low similarity,
but less conclusively. Low accuracy with high confidence indicated
that another option was more similar than the anonymized target.

Our control questions yielded expected results, indicating survey
engagement. First, referring to Q1 and Q3, with lower anonymiza-
tion strength, we observed over 90% correct picks and high simi-
larity scores (medians of 4.0 and 5.0), regardless of the device used.
Second, for Q5, with no target, two options were chosen 36% and
48% of the time, both with a low median similarity score of 2.0. This
serves as a baseline for successful anonymization.

For the other (non-control) questions, the results were mixed.
The remaining non-control questions had varying results:

• In Q4 and Q6, over 75% of respondents consistently chose an
option that was not the target person, with both questions
showing a low median similarity score of 2.0. This suggests
that respondents did not recognize the target person among
the answers. Interestingly, the consistently chosen alterna-
tive may indicate which features respondents prioritize. In
Q4, the most selected answer matched the target person’s
age, while the anonymized person appeared younger. In Q6,
respondents favored options of the same gender as the target,
whereas the anonymized option was of a different gender.
This suggests age and gender consistency are significant
factors for similarity judgments.

• In Q2 and Q7, respondents rarely chose the target person,
with a median similarity score of 2.0. No option in Q2 was
picked more than 40%. The even distribution of answers,
likely due to similar age and gender among choices, suggests
that respondents did not recognize the target person.

• Q8 is notable, with 79% of respondents correctly identifying
the target person, with a median similarity score of 4.0. This
suggests the anonymization failed in this case, likely due to
too many identifiable features being preserved.

Overall, the human evaluation indicates that anonymized images
are rarely recognized as similar to the originals. While over 90% of
respondents identified the correct individual with low anonymiza-
tion strength, this majority recognition occurred only once with
higher strength. These findings suggest that anonymization strengths
do affect recognition, highlighting that people generally cannot
identify an anonymized person even among a small group.

Human Evaluation of Achieved Privacy Level: In the second
part of the survey, we directly asked participants to rate the effec-
tiveness of anonymizations of eleven image pairs clearly labeled
as “Original" and “Anonymized", respectively. Specifically, for each
question, respondents were asked to first rate the anonymization
effectiveness on a scale of 1-5, with 1 representing “very ineffective"
and 5 representing “very effective". Finally, they were asked to rate
the photo-realism (evaluated and discussed in the next section) on a
scale of 1-5 with 1 representing “very unrealistic" and 5 representing
“very realistic". See Appendix D for an example question.

To better understand the impact of image selection and whether
facial recognition tools can be used as a good pre-screener, images
were chosen based on the face embedding distances gathered during

Figure 19: Scatter plot of the mean anonymization effective-
ness scores on a scale from very ineffective (1) to very effective
(5) for image pairs with different face embedding distances.

face recognition. Most images, seven out of eleven, were chosen
from face pairs with low distances to avoid getting overly optimistic
estimates of anonymization effectiveness. The remaining images,
four out of eleven, were chosen from face pairs with high distances.

Figure 19 shows a scatter plot of the mean anonymization effec-
tiveness scores on a scale from very ineffective (1) to very effective
(5) for image pairs with different face embedding distances. As a
reference point, the mean face embedding distance for all pairs
in the dataset is 0.70, predicting an anonymization score of 3.66
based on regression. In general, we observe a positive correlation
between face embedding distance and perceived anonymization
effectiveness, suggesting that face embedding vectors can be used
to estimate the privacy level of different images and sets.

5.4 Utility Evaluation
The utility of the anonymized images was mainly evaluated by (1)
using them as training data for an instance segmentation model
and (2) asking human evaluators to rate their level of photo-realism.
Instance segmentation is a complex task that involves precise detec-
tion and pixel-level classification of individual objects. For realistic
anonymization, it is important that a person is still recognized as
a person, even as their identity is obscured. This task evaluates
how well RAD generates new individuals in place of the origi-
nals—important for applications like safe navigation, pedestrian
detection, patient monitoring, and privacy-conscious customer anal-
ysis. We also include some basic object detection results.

Training an Instance Segmentation Model using the Data:
Two YOLOv8 segmentation models2 were trained on the Cityscapes
dataset [8]. First, a baseline model was trained on images in their
original form. Then, a second model was trained on anonymized
versions of images. The two models were then compared in terms
of Average Precision (AP) and mean AP (mAP).

Specifically, the models were trained for 100 epochs on the train-
ing split of Cityscapes, with early stopping if no improvement was
seen within 25 epochs. The evaluation was subsequently done on
the validation split. Table 3 summarizes the training configurations:
any parameter not present used the default YOLO training settings3.

Instance Segmentation Evaluation Results: Table 4 presents
the segmentation task results, including detection box results (marked
as (b) for box and (m) for mask). Comparing the Baseline model’s
performance on the “original" and the “anonymized" datasets re-
veals a slight decrease in detection and segmentation accuracy,

2https://github.com/ultralytics/ultralytics/tree/v8.2.0
3https://docs.ultralytics.com/modes/train

https://github.com/ultralytics/ultralytics/tree/v8.2.0
https://docs.ultralytics.com/modes/train
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Figure 20: Segmentation examples using a model trained on anonymized Cityscapes. Images are randomly selected images
containing humans from the validation set. Faces are blurred to follow Cityscapes licensing.

Table 3: YOLO Training Configuration with Stochastic Gradi-
ent Descent (SGD) and early stopping (*).
Parameter Value Parameter Value Parameter Value

Model yolov8m-seg Batch Size 6 Learning Rate 0.01
Epochs 100* Image Size 1280×640 Weight Decay 0.0005
Patience 25 Optimizer SGD Overlap Mask False

Table 4: Instance segmentation AP (m) and object detection
AP (b) on the Cityscapes dataset with YOLOv8. The results
presented are from the best epochs (15 and 32). (*) Early
stopping

Object detection Instance segmentation
Dataset Epochs 𝒎𝑨𝑷 ↑ (𝒃) 𝑨𝑷𝒑𝒆𝒓𝒔𝒐𝒏 ↑ (𝒃) 𝒎𝑨𝑷 ↑ (𝒎) 𝑨𝑷𝒑𝒆𝒓𝒔𝒐𝒏 ↑ (𝒎)

Original 39* (15) 0.456 0.492 0.422 0.413
Anonymized 49* (32) 0.456 0.477 0.417 0.402
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Figure 21: Mean photo-realism scores on a scale from very
unrealistic (1) to very realistic (5). As additional reference
points, we also show the mean anonymization scores (scale
1-to-5) and the embedding distances.

particularly for the person class. Despite this, the small decrease
indicates that most of the data’s utility is preserved. This is further
illustrated by example segmentations (e.g., see Figure 20) generated
by the model trained on the anonymized Cityscapes.

Human Evaluation on Photo-Realism: As described above,
the second part of the human evaluation form (questions 9-19) asks
respondents to rate the photo-realism of anonymized images. See
Appendix D for an example question.

Figure 21 shows the mean photo-realism score for each question,
along with mean anonymization scores and embedding distances.
We note that the difference between the lowest and highest mean
is only 0.99, meaning that images were considered quite equal in
terms of photo-realism. The average score of 3.96 indicates that
respondents perceived images to be realistic. This suggests that the
photo quality may be sufficient to be utilized as training data for
computer vision tasks (e.g., detecting humans in the wild).

No significant trend was observed between photo-realism scores
and face embedding distances or anonymization scores (see Fig-
ure 21), indicating that better anonymization does not compromise
realism. However, notably, despite not seeing the trend for all ques-
tions, the images with the lowest and highest photo-realism scores
also had the highest and lowest anonymization scores, respectively.

Other Downstream Tasks: We have also run some experi-
ments using YOLOv8, showing that RAD (using default parame-
ters) achieves a strong balance between anonymization and image
integrity. For these experiments, we enabled detection of all ob-
ject classes available in the yolov8x model, allowing us to observe
how the anonymization process affects various objects within the
images. For this evaluation we used three metrics: (1) the average
object count per image, (2) the average intersection over union
(IoU), calculated as the overlap between detected objects in the
original images with their anonymized counterparts, and (3) the
average center deviation, calculated as the difference in the central
position of detected objects between the original and anonymized
images. The first metric allows us to assess the consistency of object
detection before and after anonymization, ensuring that the num-
ber of detected objects remained stable, the second metric provides
an indicator of how well the anonymized images preserved the spa-
tial and semantic integrity of the original content, and finally the
third metric gives insight into the positional accuracy retained after
anonymization. Collectively they provide a detailed understanding
of the model’s impact on image quality and the preservation of
crucial details necessary for real-world computer vision tasks.

Our results show that the system maintains a high average IoU
of 0.88, indicating effective preservation of image semantics. The
center deviation is 1.36%, reflecting accurate spatial positioning of
anonymized faces. Importantly, the system preserves the number of
detected bounding boxes, with a nearly perfect match to the original
images (7.0485 vs. 7.0490), ensuring consistent object detection.
Additionally, the system does not generate new people, maintaining
the integrity of the original image content. Appendix B discusses
the impact of the strength parameter on this task.

6 Discussion
Impact of Face Recognition Strength: RAD’s privacy-preserving
effectiveness depends on the strength of the FRS used. We em-
ployed state-of-the-art FaceNet512 models to quantify anonymiza-
tion by measuring cosine distances between features of original
and anonymized faces, supplemented by human evaluations.

While our evaluation is limited to a single FRS, RAD achieved a
95.5% success rate against FaceNet512, demonstrating strong pri-
vacy protection. However, as FRS and adversarial techniques evolve,
RAD may need ongoing adjustments to maintain its effectiveness.

Privacy-Utility Tradeoff: The adequacy of RAD in protecting
privacy against potent adversaries largely depends on maintain-
ing a balance between data utility and privacy. The approach’s
effectiveness was shown through both automatic face recognition
accuracy and human evaluation, confirming its potential in gen-
erating high-utility images compliant with privacy regulations.
However, ongoing adjustments may be needed as facial recognition
technologies and adversarial tactics evolve.
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Impact of Strength Parameter:We acknowledge that the se-
lection of the strength parameter (0.75) is preliminary, and the
best choice may vary both within and across datasets, depending
on factors like the size of the generated person within the image.
While higher strength can enhance privacy, it also increases the
risk of introducing artifacts due to the limitations of Stable Diffu-
sion. Given the numerous parameters involved (e.g., inference steps,
guidance scale, ControlNet scale), it was impractical to exhaustively
test all configurations. As such, we acknowledge that tuning may
be required for each specific dataset. In Appendix B, we present
an evaluation using alternative strength values (0.3, 0.5, 0.99). To
better generalize across diverse datasets, interesting future work
could be to design methods to dynamically adapt this parameter.

Imperfections of Generated Images: As shown in Sec. 5.2,
Stable Diffusion-generated images may contain artifacts and imper-
fections, a limitation of current generative models. We acknowledge
these limitations but believe future advancements will continue to
reduce such issues. Our open-source contribution ensures that such
enhancements can be easily integrated, improving RAD over time.
In the meantime, to improve a dataset, imperfections must be de-
tected and corrected, either through human oversight or automated
methods. First, an anomaly detection network can be trained on
intentionally damaged images—created via techniques like overlays,
noise, or low-step diffusion models—to identify flaws such as seg-
mentation errors and other artifacts. Once detected, regeneration
can easily be done by changing the seed or adjusting prompts. In
the case that does not work, artifacts can be reduced by lowering
the strength setting (at the cost of worse anonymity) or by altering
other parameters such as CFG (how closely the generation follows
the prompts) and the ControlNet “strength” (how closely the gen-
eration adheres to ControlNet input). Figure 22 illustrates how a
different seed improves flawed images from Figure 11.

Risk of Generating Real Individuals: The use of pre-trained
models like Stable Diffusion presents ethical concerns, including
the risk of unintentionally generating images resembling real indi-
viduals [7] without their explicit consent. Although our approach
aims to create diverse, non-specific human faces, even coincidental
resemblances can raise serious ethical issues. Furthermore, explicit
consent for inclusion in an original dataset does not imply consent
for generating new images. We acknowledge these risks and stress
the importance of weighing them against the benefits of producing
high-quality anonymized data for different use cases.

High-Quality Datasets:While RAD aims to anonymize individ-
uals to protect privacy, we recognize that high-quality anonymized
datasets such as those that RAD can help generate could still be
misused in ways that threaten privacy and security, including for
privacy-threatening applications like adversarial surveillance or to
create convincing fake content for spreading misinformation.

Performance Insights:We also performed a runtime analysis
of RAD’s pipeline. Key findings are presented here, while a detailed
analysis is provided in Appendix F. For example, executing on both
a consumer desktop with an Nvidia GTX 2070 GPU and a GPU clus-
ter node equippedwith an Nvidia A100 GPU, the average processing
time per image was measured across modules. Notably, the desk-
top, constrained by 8 GB of VRAM, required CPU offloading and
experienced slower performance in modules like pose extraction
due to single-core operations and lower clock speeds. In contrast,

the cluster node’s 80 GB VRAM facilitated faster parallelized op-
erations for segmentation and diffusion. However, runtime varied
by module, with diffusion affected by inference steps and detec-
tion, segmentation, and pose extraction influenced by the number
of people in the image. The diffusion module, being particularly
resource-intensive, suggests opportunities for optimization to im-
prove efficiency, especially for larger datasets.

7 Related Work
Prior works on realistic anonymization have primarily focused on
faces [3, 13, 22] and less on full-body anonymization [14]. However,
limiting synthetic data to faces still risks violating privacy since
other identifiable features may remain [14].

While GAN-based works like StyleID [22], focusing on facial im-
ages, have demonstrated that it is possible to protect individual iden-
tities while maintaining the high integrity of dataset characteristics,
it is therefore less clear to what extent good utility-privacy tradeoffs
can be achieved using diffusionmodels for full-body anonymization.
Only recently have full-body anonymization techniques started be-
ing explored to address this gap [5, 14, 16].

RAD’s innovations are based on a practical approach to anonymiza-
tion that covers full-body images and their interaction with the
surrounding environment, rather than focusing solely on faces as
in the StyleID approach. While StyleID offers a refined technique
for feature preservation with a high level of granularity on facial at-
tributes, our method may be more relevant for pedestrian detection,
anomymized behavior studies, and other applications benefiting
from full-body anonymization.

GANs for Full Body Anonymization: GANs [10] are widely
used for various generation tasks, including generating entire im-
ages, image in-painting, and super-resolution [2]. Hukkelås et
al. presented DeepPrivacy2, a framework for full-body realistic
anonymization based on Surface-guidedGANs [14, 17]. Thismethod
detects, synthesizes, and stitches synthetic human figures and faces,
showing promising results for key computer vision tasks [15]. Max-
imov et al. introduced CIAGANs, generating images using land-
marks based on shapes to match poses, although it was mostly
evaluated on low-resolution face images [24].

Stable Diffusion for Face Anonymization: Stable Diffusion
represents the state-of-the-art in image synthesis, although its
use in anonymization has primarily focused on faces. Klemp et
al. introduced LDFA, a pipeline using Stable Diffusion for face
anonymization [20]. In addition to only anonymizing faces, their
work differs in that they process each face individually (by extract-
ing patches) while we synthesize all individuals simultaneously.
Since they only use Cityscapes for evaluation (which predominantly
contains smaller faces) it is difficult to compare the quality of their
anonymizations with ours. Rowan et al. developed a method for
face reconstruction using Stable Diffusion conditioned on depth
maps with ControlNet, creating a diverse dataset of photo-realistic
3D faces [32]. While their results seem promising and their 3D-
mesh approach appears extendable for full-body anonymization,
their current work only considers face datasets.

Stable Diffusion for Full Body Anonymization:Most closely
related to our work, is the work by Kurzhals [21], who showed that
Stable Diffusion can generate slightly modified, synthesized images
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(a) Improved hand. (b) Improved lighting. (c) Improved pose. (d) No twins/clones. (e) Fixed face deformation.

Figure 22: Regenerated versions of the imperfect images used to illustrate observed limitations when anonymizing Pexel-
Humans (in Fig. 11). Bad example to the left and improved on the right. While we can achieve improved versions of the
segmentation failure example too (omitted), the segmentation issues sometimes persist.

to create anonymized versions. Here, we significantly improve on
this by prompting Stable Diffusion with cutouts instead of entire
images, which are then seamlessly re-incorporated. This method
enables more dramatic appearance changes while preserving the
original image’s integrity, enhancing both privacy protection and
data utility.

Video Synthesis: Other researchers have focused on creating
temporally consistent videos. For example, OpenAI’s SORA [6] uses
diffusion model denoising and visual patches to produce varying
resolutions and aspect ratios, controlled by textual prompts. Yang
et al. [35] introduce a framework that can generate synthetic videos
from existing ones that are temporally consistent. Like us they
built the tool around Stable Diffusion and ControlNet. However,
taking a video-based approach their hardware requirements are sub-
stantially higher than ours and background of the video is altered,
making it suitable for other use cases than those considered here.
Furthermore, on the technical side, they are not concerned with
stitching synthesized content back onto original images (possibly
reducing the utility of the data) and the framework is not targeting
anonymization (which can be seen also by some of their example
figures which may be deemed to preserve too much information for
effective privacy protection). Building upon this tool, Xia et al. [34]
have demonstrated the feasibility of creating an anonymization tool
(called DiffSLVA) with the help of this framework. In comparison
to these video tools, we have much lower hardware requirements,
making our solutions more practical, and we produce higher quality
images than what they can achieve for individual frames.

Privacy Evaluation: Prior evaluations of full-body anonymiza-
tion have shownmixed results regarding privacy. Hanisch et al. [11]
highlight limitations in current methods, such as assuming a weak
adversary and suggesting more challenging datasets for better ap-
proximation of worst-case scenarios. Studies like those by Hukkelas
et al. [14] demonstrated successful anonymization with lower re-
identification mAP but noted issues with false positives. Klemp et
al. [20] found smaller distances between original and anonymized
faces using face embeddings, although predominantly evaluating
small faces lowered the distances. User studies, such as those by
Khamis et al. [18], suggest deepfake obfuscation is promising for
privacy and produces more aesthetically pleasing images compared
to traditional techniques. Traditional methods like blurring and
masking have also been evaluated, with Birnstill et al. [4] and Li et
al. [23] noting that masking was more effective for de-identification
but less satisfactory in overall image quality. Here, we use a combi-
nation of face recognition and human evaluation to demonstrate
the level of privacy provided by RAD.

Utility Evaluation: Many studies compare the performance of
their realistic anonymization tools to naive techniques due to the

lack of standardized baselines [14]. Hukkelås et al. [15] found that
their GAN-based tool, DeepPrivacy2, improved instance segmenta-
tion and pose estimation tasks compared to blurring, masking, and
the earlier version, DeepPrivacy [13]. Similarly, Klemp et al.[20]
demonstrated that their Stable Diffusion-based tool, LDFA, out-
performed naive techniques and DeepPrivacy models in image
segmentation and face detection. Zhou et al. [37] concluded that
generative models synthesizing biometric features could mitigate
data degradation issues in semantic segmentation tasks. Here, we
use a combination of segmentation tasks and human evaluation
to demonstrate RAD utility, and note that the generated images in
general are of higher resolution than those targeted by most prior
works on full-body anonymization.

8 Conclusion
In this paper, we have introduced the Realistic Anonymization
using Diffusion (RAD) framework. The RAD pipeline carefully
leverages an image-to-image Stable Diffusion model to provide
significant advancements in realistic anonymization, effectively
reducing the likelihood of recognition while maintaining high im-
age utility. Our evaluations show that RAD provides a high degree
of privacy protection, with human assessments aligning closely
with face embedding distances in determining the achieved privacy
levels. While RAD cannot guarantee complete anonymity due to
potential detection and segmentation errors, it significantly miti-
gates these issues compared to traditional methods. Furthermore,
the high utility of RAD is demonstrated by using the anonymized
images as training data for instance segmentation tasks and through
human evaluations of photo-realism, suggesting their viability for
various applications. While some limitations remain (e.g., slower
processing times compared to GAN-based models and potential
misclassification in diverse lighting conditions), RAD represents a
promising approach for anonymizing large datasets while retaining
their value for deep learning and other downstream tasks. Future
improvements in diffusion models and optimization techniques
will likely enhance RAD’s effectiveness and efficiency, broadening
its applicability and impact. Other interesting future work include
evaluating RAD with additional state-of-the-art FRS.
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• Save format specifies inwhat image format the output images
should be saved. The default is to use the same format as the
input image.

Diffusion Settings: The settings that have the most significant
impact on the quality of the generated persons are strength, in-
ference steps, prompt, and negative prompt. Strength generally
controls how anonymous the final image will be, at the risk of
generating artifacts. The number of inference steps impacts quality
at the cost of the time taken for image generation. There are also
settings for how much ControlNet should affect the final image, e.g.
how closely the generated image should follow the canny image.
Each setting is described in more detail below.

• Strength controls how much the original input image should
be changed, i.e. how much "freedom" the Stable Diffusion
model has in the generation. A higher value means that
the generation is allowed to stray further from the original
image contents. This means that the strength setting can
be seen as a degree of anonymization, with a higher value
usually correlating to a more anonymous person. Too high
strength values, however, tend to produce unrealistic results
with artifacts such as too many arms or fingers. Also, a
lower strength can sometimes produce a very anonymous
generation for one input image, but a not-so-anonymous
generation for another. A further observation is that people
who occupy a larger part of the frame usually require a
higher strength setting to be as anonymous than a person
who occupies a smaller part of the frame. See Figure 5 for
an example of how strength affects the anonymization of
a person. The strength should be set between 0-1, and it is
recommended to use a value of around 0.75 if people are
close in the frame.

• Prompt and negative prompt are conditioning textual inputs
to Stable Diffusion used in the diffusion process. The prompt
specifies what is wanted in a generated image, and the nega-
tive prompt specifies what is unwanted. When, for example,
trying to achieve photo-realism with natural lighting con-
ditions, the text prompt could include terms such as high
quality, hd, 4k, and neutral lightning. The negative prompt
could include terms like cgi, 3d, drawing, and sunset. Impor-
tant to note is that some artifacts in an image are hard to
fix only by adjusting the prompts, such as blurry images
or clones (the same person generated multiple times). Such
artifacts are usually fixed by using higher-resolution images.
Also worth noting is that the text prompts are separated
from the input image. Therefore, instructional prompts such
as "change the shirt to a red jacket" do not have the desired
effect.

• Inference steps control how many steps the diffusion denois-
ing process should take. A higher number of steps usually
results in higher quality image generations but comes at the
cost of time. Hugging Face Diffusers will use fewer infer-
ence steps than specified at a lower strength according to
inference steps = 1

strength . A recommended setting for infer-
ence steps is between 15 and 50.

• ControlNet conditioning scale defines how much ControlNet
will affect the generated image. A higher value means that

the generated image more closely aligns with the Control-
Net conditioning input (canny or pose images). This setting
should be set in the range of 0-1, but can be set to higher at
the risk of producing artifacts. A recommendation is to set
this to close to 1.

• Guidance scale, also known as CFG, controls how much of
an effect the prompts have on the generated image. A higher
valuemeans that the prompts have a higher impact on the im-
age generation. This value should be in the range of around
0-50, but a good recommendation is to keep it around 7.5.

• Seed controls what seed to use for the randomness in the
noise added during the diffusion process. This setting could
be left unset and will then default to a random seed. The
main benefit of setting the seed manually is to get predictable
results. Anonymizing an input image with identical prompts,
strength, conditioning, guidance scale, and seed will result
in the same generated image.

ControlNet Settings: These settings specify what ControlNet
conditioning should be used and how the conditioning input should
be extracted from the original image.

• ControlNet mode controls the type of ControlNet condition-
ing that will be extracted from the original image and used as
conditioning in the image generation. This option can be set
to either "canny," "pose," or "both". The options "canny" and
"pose" will only extract and use one of these conditioning
types, while "both" will use a combination of the two. In
general, if there are few anonymization targets in an image
that is close to the camera (large in the frame), it is recom-
mended to use the "both" option in combination with using
the separate setting "canny silhouette". The pose condition-
ing alone can lead to unrealistic or distorted results if there
are many people close together or if people are further from
the camera.

• Canny minimum and maximum thresholds are specific set-
tings for the canny extraction process. These settings deter-
mine howmuch detail is extracted from the original image of
the anonymization target. Higher values for the thresholds
will result in a less detailed canny conditioning image, ef-
fectively providing higher anonymity. However, values that
are too high defeat the purpose of extracting edges. Gener-
ally, the minimum and maximum thresholds should keep
a ratio of between 1:2 and 1:3 for optimal results. Another
important aspect is that the selected thresholds might affect
varying images differently. For example, canny detects more
edges for sharp images with high contrast. Therefore, the
threshold might have to be adjusted depending on the types
of images in a dataset. Because of the troublesome process of
finding a threshold suitable for an entire dataset, canny edge
detection is not ideal for the anonymization task. However,
some kind of edge detection is often necessary, especially
for smaller anonymization targets in the frame where the
pose is harder to determine.

• Canny silhouette is a toggle setting that tries to solve most
anonymization issues with the regular canny extraction pro-
cess. If toggled on (set to true) the canny conditioning will
only be used with a canny image that contains extracted sil-
houettes of anonymization targets (by extracting the canny
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Figure 23: Result of using different diffusion models.

conditioning image from the segmentation mask as opposed
to from the original image cutout). This means that no in-
formation about a person’s appearance outside of their sil-
houette (and possibly their pose) is used for the ControlNet
conditioning, resulting in a higher guarantee of privacy. The
original image is still used as input to the generation process,
so a high strength value is still required for high anonymiza-
tion.

Model Settings: All models used in the pipeline can be changed
through the settings. This includes the main diffusion model, Con-
trolNet conditioning models, and the models used for creating
segmentation masks. The choice of models that affect anonymiza-
tion the most is the diffusion-related models and the object detec-
tion model. All models can be defined as local paths, which can
be important when, for example, running an anonymization in a
containerized setting. The main diffusion model and ControlNet
models can also be defined as Hugging Face repository names such
as "stabilityai/stable-diffusion-xl-base-1.0". Similarly, the YOLO and
SAM models will be automatically downloaded if only specified as
the name of the model.

• Diffusion model is the setting that defines the main Stable Dif-
fusion model used to generate images. Without code modifi-
cation, the only valid models are Stable Diffusion XL models
that support image-to-image generations. Example results
with different models are shown in Figure 23.

• Refiner model is an optional setting that defines the refiner
model to be used. A refiner is a specific diffusion model that
increases the quality of an already generated diffusion image.
If this setting is left out, no refiner will be used. The necessity
of a refiner depends on the quality of the diffusion model
output.

• ControlNet canny model defines the model used for canny
conditioning images. This should be a model that is trained
to specifically condition image generation using canny con-
ditioning images.

• ControlNet pose model defines the model used for pose con-
ditioning images. This should be a model that is trained to
specifically condition image generation using pose condi-
tioning images.

• YOLO object detection model specifies the YOLO model that
is used to detect anonymization targets in an image. The
resulting detection boxes are then used as input to SAM for
creating segmentation masks. This chosen detection model
needs to be compatible with YOLO, if no modification is
made to the code. The choice of model is very important for

anonymization purposes since it detects the targets (people)
to anonymize. A model with poor detection performance
will miss people in an image. This in turn results in people
from the original image not being anonymized and instead
kept as is, just as the background of the original image is
preserved.

• SAM segmentation model specifies what SAM model to use
for segmentation. This has to be a SAM-compatible model,
unless the code is modified.

Optimization Settings: An issue with Stable Diffusion (and
especially Stable Diffusion XL) is that it, by default, uses a large
amount of VRAM when generating images. This is a problem when
generating images on a consumer GPU since these usually do not
have more than 8 GB of VRAM. A solution for this is offloading, i.e.
moving the models between the GPU and CPU.

• Maximum output width and height specify the maximum size
of the input image. If an input image exceeds these dimen-
sions, it will be resized to fit. Additionally, all input images
will be cropped to be a multiple of 8 since this is a require-
ment for the Hugging Face Diffusers. Larger input images
will result in larger generated images (same dimension as the
input), requiring more VRAM and resulting in longer image
generation times. Therefore, an important optimization can
be to adjust the image dimensions. Note that input images
with a width or height below 512 pixels can result in artifacts
in the generated image.

• CPU offloading specifies the amount of offloading used. This
setting accepts values from 0-3, where zero represents no of-
floading, and three represents maximum offloading. A value
of one means that whole models are offloaded, a value of
two results in sub-models being offloaded, and a value of
three means that sub-model offloading and VAE tiling are
employed. More offloading reduces the amount of VRAM
used but comes at the cost of additional execution time for
image generation.

• Compile U-Net specifies if the U-Net used in the Stable Dif-
fusion generation should be compiled or not (a true or false
value). A compiled U-Net can significantly speed up im-
age generation time, especially if a large batch of images is
anonymized. However, this can only be used without CPU
offloading (offloading with a value of zero).

Device Settings: Device settings specify which hardware device
to use for image generation and creation of segmentation masks.
The segmentation setting also specifies if segmentations should be
run in parallel or sequentially.

• Device specifies what device the images should be generated
on (what device to run Stable Diffusion on). This should, for
example, be set to "cuda" if running on an Nvidia graphics
card.

• Segmentation is a setting that specifies how the segmentation
should be run. By default, segmentation masks will be cre-
ated in parallel on the same device as the image generation.
This results in almost no additional time being required to
create segmentation masks after the first image. An option
if VRAM resources are limited is to set segmentation to run
in parallel on, for example, the CPU instead. An additional
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Table 5: Complete anonymization settings for Pexel-Humans
(PH) and Cityscapes (C).

Diffusion Settings
Strength 0.75
Prompt people, high quality, neutral lighting, hd, uhd, 4k, 8k, light

scene (C), summer day (C)
Negative prompt (deformed iris, deformed pupils, semi-realistic, cgi, 3d,

render, sketch, cartoon, drawing, anime, extra face, clone,
cloned face), no pants, no shirt, swimwear, lightly dressed,
sunrise, sunset, lamp, bright light, text, cropped, out of
frame, worst quality, low quality, jpeg artifacts, duplicate,
morbid, mutilated, extra fingers, mutated hands, poorly
drawn hands, poorly drawn face, mutation, deformed,
blurry, dehydrated, bad anatomy, bad proportions, ex-
tra limbs, disfigured, gross proportions, malformed limbs,
missing arms, missing legs, extra arms, extra legs, fused
fingers, too many fingers, long neck, UnrealisticDream

Inference steps 53
ControlNet scale 0.9
Guidance scale 7.5

Seed 0

ControlNet Settings
Mode both (PH) canny (C)

Canny thresholds 100/200
Canny silhouette true (PH) false (C)

Model Settings
Diffusion model 𝑅𝑒𝑎𝑙𝑉 𝑖𝑠𝑋𝐿_𝑉 3.0
Canny model 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑛𝑒𝑡 − 𝑐𝑎𝑛𝑛𝑦 − 𝑠𝑑𝑥𝑙 − 1.0
Pose model 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑛𝑒𝑡 − 𝑜𝑝𝑒𝑛𝑝𝑜𝑠𝑒 − 𝑠𝑑𝑥𝑙 − 1.0
YOLO model 𝑦𝑜𝑙𝑜𝑣8𝑥
SAM model 𝑠𝑎𝑚_𝑣𝑖𝑡_ℎ

option, if experiencing other hardware limitations, is setting
segmentation to "seq," meaning that the segmentation mask
is created sequentially with each input image.

Settings Used for Experiments: Table 5 presents the complete
anonymization settings for both the Pexels-Human and Cityscapes
datasets used for privacy and utility evaluations.

Discussion of Settings and their Tradeoffs: RAD comes with
many user-controllable parameters. This allows flexibility in the
anonymization of varying types of images. It also gives the user
a lot of control over what is generated. However, finding settings
suitable for anonymizing large datasets can be both difficult and
time-consuming. Many parameters directly impact the privacy-
utility tradeoff and can tip the scale one way or the other in terms
of identifiability. Following are discussions about the settings that
are particularly important, since these have the greatest effect on
the quality of anonymizations:

• Strength is perhaps the most intuitive setting, and also one
that has an immediate impact on anonymity. Higher strength
leads to better anonymizations, which is reflected in the
results. But a higher strength setting can also lead to artifacts
in a generated image, and increased generation time if one
wants to keep the same level of detail. Finding a one-size-
fits-all value for this setting would be preferable, but the
required strength is highly dependent on the context. For
instance, the strength setting will alter subjects further away
from the camera more than close subjects. This can be seen

when comparing the anonymized images from Cityscapes
with those from Pexel-Humans since the datasets vary in
this regard (see Figure 10 and Figure 9). Both these datasets
were anonymized using 0.75 strength.

• ControlNet mode also has a significant impact on anonymity,
since it controls what features are extracted from people in an
image. From a utility perspective, the more features that can
be preserved, the better; however, from a privacy perspective,
the opposite is true. The available choices in RAD each have
pros and cons. Canny edge maps are particularly useful for
preserving pose and blending anonymization targets well
into the background. However, edge maps also run the risk of
preserving identifiable information in the image, especially
when anonymization targets are large in the frame. Pose
maps preserve pose with less information than edge maps,
but perform poorly for anonymization targets that are small
in the frame. The recommended both option achieves the
most consistent results by using posewith only the silhouette
edges using canny silhouette. This option reduces the risk of
preserving identifiable features while enabling reliable pose
replication.

• Detection, segmentation, diffusion, and ControlNet models all
have a fundamental impact on anonymizations. This is a
consequence of constructing a pipeline with several existing
models; the anonymization quality is limited by the perfor-
mance of each one. The detection and segmentation mod-
els are critical for finding and producing masks for every
anonymization target in an image, greatly affecting the level
of achieved privacy protection. The Stable Diffusion and
ControlNet models affect both the quality and photo-realism
of generated images and the achieved privacy level.

• Text prompt and negative text prompt can be varied end-
lessly and are central to Stable Diffusion. They can control
both general and detailed aspects of image generation. Gen-
eral text prompts that fit most images are best suited for
anonymizing an entire dataset with diverse images. This
thesis has focused on achieving prompts that work reason-
ably well for the datasets used, instead of finding optimal
prompts. So-called "prompt engineering" is a novel field of
research, born from the desire to design optimal prompts,
and deserves more attention in future work.

B Impact of the Strength Parameter
To better understand the impact of the strength parameter, we
ran RAD with different strength parameters in the Pexel-Human
dataset.

High-level Results: Table 6 summarizes these results for the
strengths 0.3, 0.5, 0.75, and 0.99. We note that RAD achieves the
best performance at with a strength of 0.75; the default choice
used in all reported experiments. With this setting, we achieve a
95.5% successful anonymization rate (1,029 FN out of 1,078 total
faces) and only 12 FP. This setting outperforms lower strengths
(0.3 and 0.5), which show higher failed anonymizations (200 and 97
TP, respectively), while avoiding the over-anonymization seen at
0.99 strength (36 FP). In general, 0.75 results in the most successful
anonymizations (FN) and the most faces correctly classified as
different (TN), as well as the fewest failed anonymizations (TP) and
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Figure 24: Samples images from the Pexels-Humans dataset.

Figure 25: Sample Images from Cityscapes dataset with seg-
mentation masks for object instances (e.g. red=person, or-
ange=car, pink=bicycle, green=traffic light). Faces are blurred
to follow Cityscapes licensing.

Table 6: High-level summary results using different strengths
parameter settings with the Pexel-Human dataset. All other
parameter values remain the default values.

Strength parameter
Measure Explanation 0.3 0.5 0.75 0.99
TP ↓ Failed anonymizations 200 97 49 56
FN ↑ Successful anonymizations 932 1,023 1,029 962
FP False recognitions 20 24 12 36
TN Correctly unrecognized 2,366 2,362 2,369 2,288
X Missed faces 45 33 25 23
M Mismatches* 23 32 46 85

Table 7: Object detection results using different strengths
parameter settings with the Pexel-Human dataset together
with YOLOv8. All other parameter values remain the default
values.

Strength Parameter
Parameter Value 0.3 0.5 0.75 0.99
Avg Object Count 6.9556 6.9839 7.0485 6.8508
Avg IoU 0.9134 0.8979 0.8751 0.8477
Avg Center Deviation 0.91% 1.12% 1.36% 1.77%

false recognitions (FP). Overall, the intermediate strength of 0.75
appears to effectively balance privacy preservation and data utility.

ObjectDetectionResults:To evaluate the impact of the strength
parameter of RAD on image quality and object detection perfor-
mance, we re-ran our YOLOv8 experiments from Section 5.4 for
each of the considered parameter choices. Table 7 summarizes these
results.

Our face anonymization system shows varying performance
across different strength parameters, reflecting the tradeoffs be-
tween anonymization and image quality. As the strength parameter
increases, the average Intersection over Union (IoU) decreases, from
0.91 at a lower strength to 0.88 at 0.75, and 0.85 at the highest setting,
suggesting that higher strengths may lead to over-anonymization,
potentially compromising image semantics. The center deviation,
which measures the positional accuracy of detected objects, also
increases with higher strength, rising from below 1.12% at lower
strengths to 1.36% at 0.75, and 1.77% at the highest considered
strength.

The 0.75 strength represents a balanced choice, offering en-
hanced anonymization while maintaining reasonable spatial accu-
racy and image quality. At this setting, the system nearly perfectly
preserves the number of bounding boxes (7.0485) relative to the
original images (7.0490), ensuring consistent object detection. Addi-
tionally, the system does not generate new individuals, maintaining
the integrity of the original content. By excluding unpaired boxes
from the center point deviation and IoU calculations, we ensure an
accurate assessment of the system’s performance on successfully
anonymized faces.

This analysis highlights the importance of carefully selecting
the strength parameter to balance privacy with the retention of
essential image details, particularly in applications requiring high
utility from the anonymized data.

C Example Images from the Datasets
Figure 24 example images from our Pexels-Human dataset.

Figure 25 shows two examples from the Cityscape dataset, in-
cluding also the corresponding segmentations.

D Example Questions from Survey
Figure 26 shows two example questions used in the first part of the
user survey. Again, three of these questions (Q1, Q3, and Q5) are
control questions, while the others are regular questions (Q2, Q4,
Q6, Q7, Q8). Figure 27 shows an example of the question type used
in the second part of the survey (Q9-Q19).

E Licensing Information
The pipeline makes use of several existing tools with a few different
licenses. Licenses and basic license information for all major tools
are provided in Table 8. Most licenses for the tools used in this
pipeline are very permissive, but some prohibit commercial use
or mandate that any derived programs must disclose their code as
open source.

F Example Runtimes and Bottlenecks
The average execution time for each module was measured twice:
once on a consumer desktop and once on a GPU cluster node.
The graphics card in the consumer desktop was an Nvidia GTX
2070 with 8 GB of VRAM, while the cluster node had an Nvidia
A100 with 80 GB of VRAM. For these measurements, 10 sample
images from the Cityscapes dataset were chosen at random. These
images have an image size of 2048 × 1024 pixels (PNG format) and
contain varying amounts of people (from none up to 20 people). For
these settings, both canny and pose were used, and an empty cache
folder, meaning no segmentations or pose images were cached
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Figure 26: Sample questions from first part of the user survey.
A comparison of original images and anonymized versions
for question 2 (right image) can be found in Figure 16.

Figure 27: Sample question from second part of the survey.

Table 8: Licensing information for each tool, including li-
cense requirements on copyleft and non-commercialization.
Many of these licenses also prohibit the use of the author(s)
name in promotional material for derived products.

Tool Type License Closed-source Commercial
YOLO ML Framework AGPL-3.0 ✗ ✓

ControlNet Aux. Preprocess Apache-2.0 ✓ ✓

OpenPose Preprocess Custom ✓ ✗

HF Diffusers Diffusion Apache-2.0 ✓ ✓

DeepFace Face recognition MIT ✓ ✓

SAM Preprocess Apache-2.0 ✓ ✓

PIL (Pillow) Image processing HPND ✓ ✓

NumPy Image processing Custom ✓ ✓

PyTorch ML Framework Custom (BSD) ✓ ✓

Matplotlib Graphs PSF ✓ ✓

Table 9: Runtimemeasurements (in seconds) for eachmodule
in the anonymization pipeline. Notes: (*) Executed in a thread
separate from the rest of the modules. (**) Only runs on the
CPU in the current implementation.

Module Cluster Node Consumer Desktop
Detection 0.46 1.30*
Segmentation 0.46 26.16*
Cut out < 0.1 < 0.1
Canny extraction < 0.1 < 0.1
Pose extraction** 59.7 15.3
Diffusion (39 steps) 15.3 182
Safety Check < 0.1 < 0.1
Stitch 1.1 0.95
Total 77.3 203
Total w/o pose 17.6 187

beforehand. The optimization settings were set to maximize VRAM
usage without running out of memory.

Table 9 summarizes the average time it took to anonymize one
image, measured for every module in the pipeline. The time for
the first image was disregarded since it included extra initialization
time that becomes irrelevant when anonymizing a more extensive
set of images.

When interpreting these results, it should be noted that the lim-
ited VRAM (8 GB) of the consumer desktop meant that it required
maximum CPU offloading, in turn preventing the U-Net from being
compiled. The limited VRAM also meant that the parallel segmen-
tations were run on the CPU. In contrast, the larger VRAM of the
cluster node (80GB) ensures that no CPU offloading was needed, we
could compile the U-Net and the segmentation could be performed
sequentially on the GPU.

In general, the key factors that most influence the runtime are
distinct for each module. For example, the runtime for diffusion is
primarily influenced by the number of inference steps used, while
the runtimes for detection, segmentation, and pose extraction are
predominantly influenced by the number of people in an image.

Some operations running on the CPU are slower on the cluster
than on the consumer desktop. This is despite having many more
CPU cores available on the cluster. However, the consumer desktop
cores run at a higher clock frequency than those on the cluster.
Poorly parallelized operations can only run on one or a few cores

https://github.com/ultralytics/ultralytics/blob/v8.1.0/LICENSE
https://github.com/lllyasviel/ControlNet/blob/main/LICENSE
https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/LICENSE
https://github.com/huggingface/diffusers/blob/main/LICENSE
https://github.com/serengil/deepface/blob/v0.0.85/LICENSE
https://github.com/facebookresearch/segment-anything/blob/main/LICENSE
https://github.com/python-pillow/Pillow/blob/10.2.0/LICENSE
https://numpy.org/doc/stable/license.html
https://github.com/pytorch/pytorch/blob/v2.2.1/LICENSE
https://matplotlib.org/stable/users/project/license.html
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at a time, resulting in clock speed being the main runtime bottle-
neck. This can be seen in the pose extraction module, which is not
parallelized in the current implementation, resulting in almost a
four-time increase in runtime. Conversely, parallelized operations
such as segmentation and diffusion run extremely fast on the clus-
ter. This is partly due to the cluster GPU having more cores and
faster clock speeds than the desktop GPU.

The usage of maximum CPU offloading on the consumer desktop
significantly impacts the diffusion runtime, since this requires the
CPU to offload parts of the diffusion pipeline when not in use. This
also affects the parallel segmentation execution time and vice-versa
since these operations were also run on the CPU.

Overall, the pipeline has a few limitations, primarily related to
the runtime of diffusion, object detection, and the pose detector.

First, while the diffusion models in RAD provide high-quality and
controlled image generation, they are more resource-intensive and
slower than GAN-based alternatives, especially with limited VRAM.
Optimizing runtime and memory usage could make diffusion-based
anonymization more feasible for large datasets. Second, RAD cur-
rently relies on object detection for anonymization targets. Adding
a face detector in the pre-processing and verification stages could
enhance detection accuracy and privacy by ensuring faces are prop-
erly anonymized and re-generated if needed. Third, the pose de-
tector, using a community OpenPose implementation, often misses
people and runs on the CPU, increasing runtime. Using the official
OpenPose Python API could improve performance but might com-
plicate installation. Our current implementation is relatively easy
to install and run on different systems.
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