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ABSTRACT
Image data analysis techniques such as facial recognition can threaten
individuals’ privacy. Whereas privacy risks often can be reduced by
adding noise to the data, this approach reduces the utility of the im-
ages. For this reason, image de-identification techniques typically
replace directly identifying features (e.g., faces, car number plates)
present in the data with synthesized features, while still preserving
other non-identifying features. As of today, existing techniques
mostly focus on improving the naturalness of the generated syn-
thesized images, without quantifying their impact on privacy. In
this paper, we propose the first methodology and system design
to quantify, improve, and tune the privacy-utility trade-off, while
simultaneously also improving the naturalness of the generated
images. The system design is broken down into three components
that address separate but complementing challenges. This includes
a two-step cluster analysis component to extract low-dimensional
feature vectors representing the images (embedding) and to cluster
the images into fixed-sized clusters. While the importance of good
clustering mostly has been neglected in previous work, we find that
our novel approach of using low-dimensional feature vectors can
improve the privacy-utility trade-off by better clustering similar
images. The use of these embeddings has been found particularly
useful when wanting to ensure high naturalness and utility of the
synthetically generated images. By combining improved clustering
and incorporating StyleGAN, a state-of-the-art Generative Neural
Network, into our solution, we produce more realistic synthesized
faces than prior works, while also better preserving properties such
as age, gender, skin tone, or even emotional expressions. Finally,
our iterative tuning method exploits non-linear relations between
privacy and utility to identify good privacy-utility trade-offs. We
note that an example benefit of these improvements is that our so-
lution allows car manufacturers to train their autonomous vehicles
while complying with privacy laws.
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1 INTRODUCTION
In recent years, there has been an enormous increase in the produc-
tion of video and image data. Widespread use of handheld devices
(e.g., smartphones, tablets, digital cameras), surveillance devices
(e.g., security cameras), and many other factors have contributed
to this global trend. Moreover, recent technologies such as self-
driving vehicles rely heavily on machine learning technologies
being applied on the captured image and video data to operate
autonomously, enhance driving performance, user experiences, or
to in other ways make our lives easier. In these usage scenarios, the
captured data is analyzed with respect to demographic attributes
of the depicted people.

Image and video data, however, are highly privacy-sensitive
as they contain biometric or uniquely identifying information of
individuals (data subjects). To analyze or share such data while
complying with laws such as the GDPR [5], the data owner (e.g.,
the car manufacturer) or data controller (e.g., the data analysts)
need to remove information from the data to de-identify the data
subjects. To achieve this goal, de-identification techniques gener-
ally try to remove identity-related information in such a way that
not only humans but also machines cannot recognize the iden-
tity of any individual present in the data. Furthermore, due to its
critical role in analyzing data from the aforementioned emerging
technologies (e.g., training self-driving cars to detect and better
interact with pedestrians), it is becoming increasingly important
to preserve as much as possible of the utility of original data in
the de-identified data. Ideally, the resulting datasets should also
have similar properties as the original dataset (e.g., distributions
of attributes such as age, gender, skin tone, or even emotional ex-
pression should be preserved), generated faces should look natural,
and the methodology should be generally applicable for different
datasets, without restrictions on how faces are depicted, and allow
for easy addition/removal of images.
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Some of the most popular image de-identification techniques are
from the 𝑘-same [22] family. The idea of 𝑘-same de-identification
is based on the 𝑘-anonymity [32] scheme for categorical data, that
turns identifiability of individuals into one of a set of 𝑘 individuals.
Generally, 𝑘-anonymity based image de-identification techniques
first cluster 𝑘 similar images, then generate a synthesized image
by combining the 𝑘 images from the cluster and, finally, replace
each image in the cluster with the same synthesized image. Thus,
the privacy and the utility provided by the 𝑘-anonymity based
de-identification techniques are highly dependent on the value 𝑘 .
However, the 𝑘-anonymity based de-identification techniques do
not specify how to choose 𝑘 . Another key factor that has a great
impact on the privacy and utility provided is how well we cluster
similar images. To increase the utility (decrease the information
loss), it is important to cluster similar images into one cluster. When
using 𝑘-anonymity schemes, typically all such clusters have the
same number of elements (i.e., 𝑘). While such fixed-size clusters
adhere to the privacy bound 1� 𝑘 , no prior work has provided tech-
niques to cluster similar images into fixed-size clusters in a way
that takes information loss into account or made use of machine-
learning-based embedding techniques such as those used here to
improve the clustering. In this paper, we introduce a framework ca-
pable of reducing the information loss and tuning the privacy-utility
trade-off for a given dataset. To evaluate the utility of different de-
identification techniques and the relative value of applying different
functions within the different modules of our system design, we
present example evaluations on two public datasets. To evaluate
the utility in terms of information loss, we measure the average
Euclidean distances between each image in a cluster and the corre-
sponding synthesized image for that cluster. Furthermore, we study
the privacy-utility trade-off, by varying the size of the clusters gen-
erated (i.e., 𝑘) and calculating the total information loss for each
cluster size. Finally, and perhaps most importantly, we demonstrate
how access to this trade-off (as provided for the first time by our
framework) yields insights and helps us determine the best 𝑘 value,
given a set of specific privacy and utility requirements.

Our Contribution. In summary, our main contributions are:

� Methodology, conceptual framework, and metrics for quanti-
fying the privacy-utility trade-off. Our solutions are applied
and evaluated on two datasets.

� A solution framework that improves the overall privacy-
utility trade-off by increasing utility unilaterally with own
algorithms (clustering), novel utilization of tools developed
for a different purpose (embedding), and use of a suitable
off-the-shelf tools (synthetic-face generation).

� A methodology for tuning the privacy-utility trade-off by
exploiting non-linear relations where increases in privacy
(𝑘 in 𝑘-anonymity) result in little loss of utility.

Overall, the framework is shown to provide desirable security prop-
erties (k-anonymity and facial recognition resistance), while im-
proving several efficacy properties (e.g., utility, naturalness, and
generality) compared to related works.

Organization. The rest of the paper is organized as follows. We
first review the history and state of the art of image de-identification
in Section 2. We then present AnonFACES in Section 3, including

the desired properties, the conceptual framework, and detailed de-
scriptions of the instantiated components of the framework. We
evaluate the performance and security in Sections 4 and 5 respec-
tively, followed by our conclusions in Section 6.

2 RELATEDWORK
The early data anonymization research mostly focused on pro-
tecting privacy of categorical data which produced multiple well-
known data de-identification techniques. One such technique for
de-identifying entries in a relational database was proposed by
Sweeney and termed as𝑘-anonymity [32]. Building on𝑘-anonymity,
there are other data anonymization techniques for categorical data
proposed in the literature: among those 𝑙-diversity [21] and 𝑡-
closeness [16] are the two most popular.

The early face de-identification approaches started with ad-hoc
techniques such as black box, blurring, and pixelation [27]. Even
though ad-hoc techniques can prevent humans from reidentifica-
tion of a subject in a de-identified image, they fail to preserve the
utility present in the data and are not robust enough to fool the
recognition systems [24]. To overcome these issues, the research
then shifted towards techniques with provable privacy guarantees.
Since differential-privacy techniques share the problems of blur-
ring and pixelation, the focus has been on 𝑘-anonymity. Newton
et al. [24] first proposed the original 𝑘-same algorithm based on
the 𝑘-anonymity model. The original 𝑘-same algorithm had limita-
tions in terms of the naturalness of the synthesized images and also
in terms of information loss during the de-identification process.
Many improvements of the original 𝑘-same algorithm have been
proposed to overcome these limitations including 𝑘-Same-Select
[9], 𝑘-Same-M [10], 𝑘-same-furthest [23], and 𝑘-Diff-furthest [31],
to name a few. These techniques either use Active Appearance
Model (AAM) or Principle Component Analysis (PCA) to construct
and preserve the different facial attributes such as age or gender.

The de-identified images produced by 𝑘-same based approaches
discussed previously lack naturalness. Generative Adversarial Net-
works (GANs) are recent generativemodels that can produce natural-
looking synthesized images of any given object using adversarial
training. This idea was first proposed by Goodfellow et al. in [8].
The synthesized images produced by GANs are also visually con-
vincing for the human eye. Since GANs are capable of producing
natural-looking synthesized images, they are well suited for de-
identification. As a result, multiple works proposed GAN-based
image de-identification techniques. One such technique is Privacy-
Protective-GAN (PP-GAN) proposed by Wu et al. [34]. PP-GAN is
designed for face de-identification by adapting GAN with novel
verificator and regulator modules. It is capable of retaining struc-
ture similarity in the de-identified output based on a single input.
Similarly, AnonymousNet [17] extracts facial features for structure
but adds noise for GAN-generated images.
𝑘-same-Net proposed by Meden et al. [22] is another image de-

identification scheme that aims to combine the 𝑘-same algorithm
with a GAN. Similarly, 𝑘-Same-Siamese-GAN proposed by Pan et
al. [26] is also a GAN based de-identification scheme that com-
bines 𝑘-anonymity, GAN, and hyperparameter tuning methods to
efficiently train the GAN networks and de-identify images with



Figure 1: Overview of system model

provable privacy guarantees. Nevertheless, there are still limita-
tions in the GANs used by these techniques. For example, while
the : -Same-Siamese-GAN and PP-GAN still lack in naturalness,
: -same-Net needs to be re-trained for every new image dataset,
which is ine�cient for practical use cases.

None of the related works provide the quanti�cation and method-
ology needed to �nd good values for: in terms of the privacy-utility
trade-o�. Due in part to the concrete instantiations for di�erent
functions such as clustering and synthetic-face generation, they
have lower utility, naturalness, and generality than AnonFACES.

3 ANONFACES COMPONENTS
In this section, we introduce our proposed methodology and system
implementation, AnonFACES, to quantify, improve and tune the
privacy-utility trade-o� in image de-identi�cation. We �rst identify
the desired properties of such a system, and then, after a high-level
system overview, explain how AnonFACES is designed to achieve
these properties.

3.1 Desirable System Properties
We categorize the desired properties according to whether they
relate to security (S) or e�cacy (E).

S1:: -anonymity. Increased: means a larger anonymity set
and, thus, more privacy.

S2: Facial recognition resistance. Synthesized faces should
not match identi�ed faces from the original dataset, and vice
versa.

E1: Utility . Non-identifying attributes should be preserved
for accuracy of analysis. To generalize to analysis-agnostic
cases, the information loss should be low.

E2: Naturalness. Synthesized faces should look like actual
faces.

E3: Generality. The methodology should work for di�erent
datasets, without restrictions on how faces are depicted (e.g.,
angles), allow for addition and removal of images, and for
di�erent instantiations of functional components.

3.2 System Overview
Our proposed model (Figure 1) consists of the following three main
components.

Cluster analysis. The challenge is to generate �xed-size clus-
ters for : -anonymity and at the same time minimize the
information loss. To do so, we divide the process into two
steps: extraction of low-dimensional feature vectors that rep-
resent the images (embedding), and�xed-size clustering
based on these feature vectors.

Synthesizing faces. For synthesizing one face from the: im-
ages in a cluster, the �rst step isidentity mixing . The re-
sulting vector then is input for the imagegeneration . The
synthesized image is tested with facial recognition forrisk
assessmentof re-identi�cation, with weight adaptation for
the identity mixing if need be.

Tuning. Di�erent cluster sizes (: values) are evaluated for
their associatedinformation loss , to inform the output
selection of goodvalues for : and the corresponding syn-
thesized faces for each cluster. We de�ne the information
loss for a set of de-identi�ed images according to Def. 3.2.

Each of the modules that perform the functions provided by the
components can be instantiated in various ways. We describe the
di�erent modules and promising instantiations in more detail in
the following subsections.

3.3 Cluster Analysis
3.3.1 Definitions.For completeness, we provide, in this section,
some de�nitions necessary to follow our work. First, a person-
speci�c dataset is presented below based on the de�nition suggested
by Newtonet al.[24].

De�nition 3.1 (Person-speci�c dataset).Let H be a dataset con-
taining " images,i.e., f H1• ” ” ” •HMg. Then,H is a person-speci�c
dataset if and only if(i) each imagef Hig82»" ¼2 H relates to only
one person and(ii) no two imagesHi•Hj•2 H •8< 9relate to the
same person.



From now on in this paper, if we do not specify otherwise, the
term dataset we use is person-speci�c dataset. To formalize our
utility metric, we shall need the following de�nition.

De�nition 3.2 (Information Loss).Let ®I1• ” ” ” •®IN and ®D1• ” ” ” •®DN
be the sets of the vector representation of the original images and
corresponding de-identi�ed images with®Im = ¹im1• ” ” ” •impº and
®Dm = ¹dm1• ” ” ” •dmpº, wherem 2 »# ¼andp is the vectors' dimen-

sion. Then, we de�ne information loss to be the average pair-wise
Euclidean distance of the de-identi�ed images to original images.
More formally, the information loss (IL) is de�ned as follows:

IL =

Í #
< =1

q Í ?
;=1 ¹iml � dml º2

#

3.3.2 Embedding.The goal here is to compress the original im-
age database into condensed and lightweight embeddings which
can improve clustering. For embedding, we base our idea on the
deep-similarly metric for facial images, which achieves a high level
of precision as shown in recent works [11, 30, 33]. In contrast to
the related research, which mostly use dimensionality reduction
techniques such as Principal Component Analysis (PCA) or Lin-
ear Discriminant Analysis (LDA), in AnonFACES, we use Convo-
lutional Neural Network(CNN) based techniques for embedding.
Dimensionality reduction techniques are generic techniques for
representing high dimensional data into low dimensional space and
are not tailored for clustering similar identities, whereas the CNN
based embedding techniques are designed for that speci�c purpose.
The embeddings extracted using CNN not only provide insights
into the structure of the input dataset but also can help reducing
information loss of de-identi�cation.

Two such face embedding techniques are Dlib [14] and FaceNet
[30]. They are trained to generate embeddings in such a way that
the distance between embeddings of the same identity or similar
identities is small and that between di�erent identities is large. Even
though we use these face embedding techniques for a di�erent but
related purpose, our experiments show that by using the embed-
dings generated by these techniques it is possible to instead cluster
images ofdi�erent identities who have similar features (e.g.,age,
gender) into one cluster.

3.3.3 Clustering.The goal of the clustering module is to cluster
similar images into �xed-size clusters and the existing state-of-the-
art clustering techniques are not tailored to do so. Thus, we need to
de�ne the clustering criteria and what is clustering accuracy for our
work. Our clustering criteria are based on the deep similarity metric
where it is expected that given the embeddings, the clustering
algorithm should �nd equivalence classes in which the members in
a cluster should have the smallest possible pair-wise distance.

� Evaluation Metric. We evaluate the clustering based on a)
Pair-wise distance: min, average, and max distance; b) Mean
Silhouette scores. While the former provides a view on how
pair-wise distances between faces are distributed, the latter
measures the coherence and separation of clusters [28].

� Size Constraint on Clustering. To ensure that all the clus-
ters adhere to: -anonymity, we need to generate clusters in
such a way that each cluster contains at least: elements. In

Algorithm 1: Hierarchical partitioning

Input: ( : input dataset with= records,: : size constraint,
;8=:: linkage criteria

Output: � : set of clusters (where size of each cluster� : )
1 < = b=•: c : number of clusters
2  = f : 1• :2• ”””• :< g, where: 8 = : ¸ 1 for 1 � 8� (= mod< ),

and: 8 = : for (= mod< ) Ÿ 8� <
3 / = ;8=:064¹(• ;8=:º: Hierarchical tree based on pair-wise

distance
4 for 9= 1 to< do
5 @= ;
6 while j@j � : 9 do
7 ) = 2DC_CA44¹/•< º: Cut the tree into< clusters
8 @= max¹) º: Sub-tree with the biggest size in T
9 @= f@1•@2• ”””•@: g: Select the lowest: members in

the sub-tree
10 < = < � 1

11 / = / � @: Update the tree
12 < = bj/ j•: c : Update number of clusters
13 � = � [ @

14 return �

the case of images, it makes sure that at least: facial images
are chosen for generating a synthesized face.

� Hierarchical Partitioning. Since there is no existing clus-
tering technique to cluster similar images into �xed-size
clusters based on the deep similarity metric, we developed
our own algorithm. As the embeddings are optimized for
comparing pair-wise distance between faces, building a hi-
erarchical tree based on distance matrix is a natural choice.
Based on this notion, in our algorithm, we build a hierarchi-
cal tree and cut the tree at di�erent thresholds until we �nd
a cluster with at least: members. To ensure that each cluster
has at least: members, each cluster is pre-assigned a cluster
size. In default mode, all clusters are assigned either a size:
or : ¸ 1 (when= is not evenly divided by: ). The algorithm
for this approach is described in Algorithm 1. There are four
di�erent linkage criteria one can choose for the hierarchical
tree. In particular, considering we are clustering two clusters
� 0 and� 1, where the pair-wise distance between the two
data points isX8 9= j%8� %9j such as%8 2 � 0 and%9 2 � 1, then
the single linkageis de�ned asmin¹X8 9º the complete linkage
is max¹X8 9º (8%8 2 � 0 and8%9 2 � 1). In their simplest form,
the average linkageis

Í
X8 9•j� 0j j� 1j, and theward linkageis

Í
X2

8 9•j� 0j j� 1j (8%8 2 � 0 and8%9 2 � 1), wherej� 0j and j� 1j
are sizes of the clusters.

3.4 Synthesizing faces
The goal of the synthesizing faces component is to generate synthe-
sized images for each cluster by combining all the: images in the
corresponding cluster. In our system model, the synthesizing faces
component (Figure 1) is comprised of three modules: (1) Identity
mixing for combining identity vectors (i.e.,latent vectors in the



case of GAN networks), (2) Generator for synthesizing image from
the mixed latent vector and (3) Re-identi�cation risk assessment
for preventing face recognition.

Identity Mixing. The purpose of identity mixing module is to
generate one latent vector for each cluster by mixing the latent
vectors of all the identities in the corresponding clusters. The mixed
latent vector is required as input to the generator. The latent vec-
tor for each identity is generated based on the high-level features
extracted from the input image. For more details on embedding im-
age to StyleGAN's latent space please refer to [1, 2]. Assuming we
are mixing identities of a cluster with: members, each identity is
represented by a latent vector!+ 8, 1 � 8� : . The mixing equation
is formed as:

!+ <8G =
� :Õ

8=1

!+ 8F8

� . � :Õ

8=1

F8

�
• (1)

whereF8 with 1 � 8� : is the weight value of a latent vector!+ 8.
Initially, we set!+ <8G as the mean of all!+ 8, in that case:F8 = 1•: .
(To avoid a deterministic output, the weights can already at this
point be universally randomized within margins, as described in Sec-
tion 3.4 for images with elevated risk of re-identi�cation. We keep
the determinism here for reproducibility of the evaluation.) Note
that both the embeddings and the latent vectors can be computed
from the high-level features, however, they are used for di�erent
purposes. The former is for the task of calculating deep similarity
metric between faces for clustering, while the latter is input for the
image generator.

Generator. The task of the generator module is generating one
synthesized image by combining: images. The choice of generator
can have a signi�cant impact on the e�cacy of the de-identi�cation
process. In our system model the generator can be chosen indepen-
dently. We experimented with three di�erent generators: Active
Appearance Models (used in [10, 23, 29, 31]), Up-convolutional neu-
ral network [6] (used by: -same-net [22]), and StyleGAN[12]. In
the end, we chose StyleGAN due to its �exibility and performance.
One of the key bene�ts of StyleGAN is that it can generate synthe-
sized images of any unknown identities with a pre-trained network,
hence it does not need to be re-trained for every new dataset. In
contrast,: -same-net can only generate synthesized images of the
identities that it is trained on. Thus, it needs to be re-trained for
every new image and every new dataset, which is ine�cient. In
addition, StyleGAN also provides us the �exibility to control the
non-identity related features such as age, gender, emotion, skin
color, camera angle, lighting, etc. of the generated synthesized im-
age which is not possible in: -same-net without extra additional
manual-parameters (e.g.,face expression: happy, fear, sad). Lastly,
the naturalness of the synthesized images generated by StyleGAN
is better than the counterpart.

Re-identi�cation Risk Assessment. One of the problems while
using: -same family algorithms is that there is a possibility that the
synthesized face is biased towards one or more identities among
: original identities. In an ideal scenario, if we replace: identities
with the same synthesized one then the re-identi�cation probability
is 1•: . However, regardless of the choice of generator, there is still
bias while synthesizing an image. To tackle this, we introduce a
module in our system model for assessing and adjusting the re-
identi�cation risk. In our case, we can easily measure the similarity

distance from the synthesized identity to the original ones. First,
using the similarity distances, we identify whether a synthesized
image is below a certain face-recognition threshold distance (e.g.,
0.6 in the case of Dlib-based face recognition; this varies for other
techniques) from any original identity. Once we detect such a risk,
the weights of the identities that are at risk are adjusted and the
mixed latent vector is re-calculated by Equation (1).

In particular, assuming that we are generating a synthesized im-
age� 8, 1 � 8� b=•: c for a cluster� 8with : membersf< 1• ” ” ” •<: g,
we �rst calculate the distancesfW1• ” ” ” •W: gfrom � 8 to f< 1• ” ” ” •<: g.
By comparing the distances to the re-identi�cation threshold, we
detect identities that are at risk and we denote their set as' =
f< A1• ” ” ” •<AD g, with Dbeing the size of the set of identities under
the threshold. The re-identi�cation rate for this cluster is&8 = D•: .
The weights of identities in' are reduced by a factorV 2 ¹0•1º, i.e.,
fFA1 � V• ” ” ” •FAD � Vg. With these new weights, the mixed latent
vector is updated and a new synthesized image is generated. This
is repeated untilD= 0 and' = fg.

3.5 Tuning
The process of image de-identi�cation results in a trade-o� between
privacy and utility. The relation between privacy and utility in the
case of image de-identi�cation is nonlinear. Thus, to exploit this
relation and �nd good points in the trade-o� between privacy
and utility, we repeat the de-identi�cation process for di�erent
values of privacy (the value: ) and quantify the corresponding
utility (information loss). Based on the quanti�cation, we look for
nonlinear e�ects to get recommendations for good values of: that
add little information loss. We exemplify this process and other
ways of �nding a good: on two di�erent datasets in the evaluation.

4 PERFORMANCE EVALUATION
4.1 Datasets and Experiment Environment
To evaluate AnonFACES, we use the Microsoft Azure Virtual Ma-
chine with a Standard NC6 con�guration: E5-2690v3 Xeon CPU,
Tesla K80 GPU, and 56GB of RAM. Our code is available in a GitHub
repository1. For the datasets, we use two publicly available datasets
of face images,i.e.,Radboud Faces Database (RaFD) [15] and Large-
scale CelebFaces Attributes (CelebA) Dataset [20].

� RaFD:The RaFD dataset contains high-quality images of 67
subjects with eight di�erent facial expressions (i.e.,anger,
disgust, fear, happiness, sadness, surprise, contempt and neu-
tral) per subject. Furthermore, for each facial expression,
each subject is captured under three di�erent gaze directions
and from �ve camera angles.

� CelebA: The CelebA dataset is a popular large-scale dataset
containing over200: celebrity images, each with 40 attribute
annotations. The diverse images in this dataset cover 10,177
di�erent identities, large pose variations, and include a rich
variation in background clutter.

Regarding the generator, we use StyleGAN [12]. Incorporating
StyleGAN into our experiments is straightforward since pre-trained
models are available for the two high-quality datasets FFHQ and
CelebHQ [25]. Whereas CelebHQ contains high-quality images of

1https://github.com/minha12/AnonFACES



Figure 2: Comparing internal pair-wise distances on CelebA dataset with di�erent algorithms: (Hierarchical Partition): aver-
age, complete and ward linkage; ( : -Means Partition): OTP [19], elki [3], random method; (kNN Partition): : -same clustering
[24], : member [4], max dist method. Here, we used : = 20.

the same identities as CelebA, the FFHQ contain portrait images
of normal people on Flickr.com. For the StyleGAN experiments
presented in this section, we used the pre-trained models based on
the FFHQ dataset. This allows us to target a more realistic use case
in which a network is trained and applied on datasets containing
di�erent identities.

4.2 Clustering Evaluation
Besides our proposed hierarchical partitioning algorithm, we im-
plemented other related works and grouped them according to
their relative algorithm,i.e.,kNN Partition includes: -same clus-
tering [24], : member [4], and max dist method - a variance of
clustering used in: -same with maximum distance function for se-
lecting initial cluster centroids;: -means Partition includes elki [3]
and random method - a variance of elki with random selection as a
baseline comparison. To evaluate how well di�erent clustering al-
gorithms group similar images, we calculate the minimum, average,
and maximum pair-wise distance within a cluster, as well as the
mean Silhouette scores. The results of the experiments performed
on CelebA dataset are shown in Figures 2 and 3. The choice of fo-
cusing on distance metrics within a cluster rather than cross-cluster
metrics is motivated by the observation that the internal distances
matter most for minimizing the information loss when combining
similar faces in a cluster. It matters much less how far apart the
faces in di�erent clusters are separated.

Comparing the distance scores of the algorithms (Figure 2), we
observe a slight advantage for hierarchical partitioning in many
but not all cases, including when the best linkage criteria are used
(i.e.,when combined with average or ward linkage the hierarchical
partitioning performs best on average). Note that for both Figures 2
and 3, we narrow down the y-axis to focus on the changes.

Considering the Silhouette scores (Figure 3), the hierarchical
partitioning again stands out as the winner in most cases and is
the only partitioning technique that achieves positive scores (again
when using average and ward linkage). A positive Silhouette score
means that similar faces are well situated in their cluster rather
than their nearest-neighbor cluster. These results indicate that for

Figure 3: Clustering evaluation: comparing average Silhou-
ette scores on CelebA dataset. Here, we used: = 20.

CelebA dataset, hierarchical partitioning is best suited. While the
best method may di�er for other datasets, the methodology de-
scribed here can easily be replicated to �nd the best algorithm also
for other datasets. Therefore, our methodology satis�es the desired
property for generality (E3).

4.3 Information Loss Evaluation
In this section, we experimentally evaluate the improvements pro-
vided by AnonFACES as well as how the con�gurations at each
stage of the process a�ect the privacy-utility trade-o�.

To capture the utility of the images generated by AnonFACES,
we �rst show its naturalness preservation capability and then, we
use the information loss metric to evaluate the information loss
attributed to some of the design choices made in the AnonFACES
design. For the latter part, we present a step-by-step analysis, taking
into account the information loss associated with three of the main
steps: embedding, clustering, and image generation.

Preserving Naturalness (E2). Preserving the naturalness of
de-identi�ed image is the main focus of recent works [22, 26, 34]
on image de-identi�cation. This aspect is di�cult to measure by
embedding techniques since it is subjective to human observation.
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