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Abstract—Geo-location-based bandwidth prediction together this type of technology, which bandwidth measurements are
with careful download scheduling for mobile clients can be used the best to share among users? In this paper, we use a large
to minimize download times, reduce energy usage, and improve crowd-sourced dataset from BredbandskdilEnaddress these
streaming performance. Although crowd-sourced measurements  gng other open questions. Bredbandskollen is the dominant
provide an important prediction tool, little is known about  gheaqiest service in Sweden. By Feb. 2015 its Android and iOS
the prediction accuracy and improvements such datasets can applications had been used to perform (and collect) roughly 41

provide. In this paper we use a large-scale crowd-sourced dataset "I -
from Bredbandskollen, Sweden's primary speedtest service, to Million crowd-based download (and respective upload) speed

evaluate the prediction accuracy and achievable performance Measurements from mobile Internet usets. this paper we
improvements with such data. We rst present a scalable per- focus on the 16 million measurements from mobile (non-

formance map methodology that allows fast insertion/retrieval ~ WiFi) networks that took place between Jan. 2014 and Feb.
of geo-sparse measurements, and use this methodology to char- 2015, and leverage simultaneously collected meta information
acterize the Bredbandskollen usage. Second, we analyze the such as geographic location and the operator used for each

bandwidth variations and predictability of the download speeds measurement to evaluate the usefulness of crowd-sourced
observed within and across different locations, when accounting measurements for performance prediction.

for various factors. Third, we evaluate the relative performance

improvements achievable by users leveraging different subsets of The paper makes three primary contributions. First, we
measurements (capturing effects of limited sharing or lItering  characterize the mobile speedtest usage of Bredbandskollen,
based on operator, network technology, or both) when predicting  giscuss how the observed usage may impact the service that
opportune locations to perform downloads. Our results are . ownd-sourced performance maps may provide, and develop a
encouraging for both centralized and peer-to-peer performance scalable methodology to maintain performance’ map informa-

map solutions. For example, most measurements are done in . . . S
locations with many measurements and good prediction accuracy, tion that simultaneously is both large and sparse. Similar to the

and further improvements are possible through ltering (e.g., ~ Mobile network traf c itself, the usage of the service is highly
based on operator and technology) or limited information sharing. ~ diurnal (with a daily peak-to-valley ratio of 16), suggesting
that the measurements may be relatively representative of the
performance seen by regular clients. The usage is also highly
skewed towards the regions where most people live, with
Crowd-sourced measurements and network performanca small fraction of the locations being responsible for the
maps summarizing the information from these measurement®ajority of the measurements. For ef cient analysis, we split
can be valuable for predicting future download speeds anthe area of interest into a grid and use a hashmap to perform
improving client performance. By summarizing the informa- constant time insertions and lookups. The methodology is
tion from previously observed download speed measurements)otivated by the skew in the locations where the measurements
these maps allow mobile devices to predict the availableére performed, including the long tail of locations without any
bandwidth in different locations and determine opportune timegneasurements (e.g., where nobody lives), and is expected to
and places to download content. be applicable to other large-scale performance maps as well.

I. INTRODUCTION

Bandwidth prediction based on performance maps have Second, we analyze the variation (and predictability) of
been used to minimize download times and reduce the mahe download speeds observed within and across different
bile units' energy usage [3], to improve streaming perfor-locations. Our single-location analysis compare differences in
mance [13], [1], [12], [4], and to achieve ef cient handovers the download speed variations based on factors such as the
in multi-homed environments [7], [4]. Careful scheduling of location granularity, number of measurements per location,
delay-tolerant downloads can also benet the performanceperator selection, and the average download speed. We nd
of delay-sensitive (e.g., real-time) applications. For examplethat there are signi cant advantages to multi-homing and
scheduling downloads in locations with good bandwidth conthat locations with more measurements typically see higher
ditions will result in (relatively) more bandwidth available average speeds and lower relative bandwidth variations, sug-
to delay-sensitive applications in more constrained locationsgesting that many operators prioritize these regions. Our multi-
signi cantly improving their performance. location analysis extends this analysis by using a hypothesis-

. ovide an initial quanti cation how
While the concept of performance maps have been demor%)—as'eOI methodology to pr q

strated to provide signicant performance benets, many 1Bredbandskollen, http://www.bredbandskollen.se/. We thank Rickard

queS“Q”S renjam unanswered. For .example, hOW does ﬂ‘&hlstrand at the Internet Foundation in Sweden (IIS) for sharing the dataset.
bandwidth variations observed by typical users differ between 2pyer the same period, since the start in 2007, 120 million Bredbandskollen

locations, between operators, and, for a user wanting to uSgeedtests had been performed across both mobile and non-mobile networks.

¢ IFIP (2016). This is the authors' version of the work. It is posted here by permission of IFIP for your personal use. Not for redistribution. The de nitive version was puBIEB&HIm Wireless On-demand
Network Systems and Services Conference (IEEE/IFIP WQOB)ina d’Ampezzo, Italy, Jan. 2016. The nal publication is available in the IFIP DL and IEEE Xplore Digital Library.



often there are signi cant download speed differences betweeiPad versions responsible for 38.7% and 21.7% of the mea-
neighboring locations that can be leveraged by more advancesirements, respectively. The majority of the measurements are
techniques for selecting when and where to download largperformed by users from one of the top-four national operators:
les. We nd that in roughly half (44.2%) of the cases, one Telia (32.7%), Tele2 (10.9%), Telenor (10.3%), and Hi3G
of two neighboring locations provide signi cantly (with 95% (9.0%). For operator specic evaluations, we will focus on
con dence) better download speed, showing that there can beaeasurements performed in these four operators' networks.
signi cant advantages to applications that can select at which
of neighboring locations to download content, while travelingto
along a path (e.g., to/from work).

Limiting ourselves to Jan. 2014 to Feb. 2015 allows us

limit potential effects due to changes in measurement

infrastructure and ever improving Internet speeds. We note that
Third, we present a case-based performance analysis of tlilee service sometimes appears to be used for diagnostics and

relative performance seen by users that use different data shahe dataset therefore include zero-speed measurements. For our

ing policies to determine when to download content along aranalysis we have limited ourselves to measurements that result

example path or visiting a sequence of locations. This evaluan non-zero download speed.

tion is motivated by location-based services with limited access

to measurement information, and differences observed acro& Ef cient Bandwidth Map Design

operators and the access technologies used by the users. Using

data-driven simulations, we compare the average downloa We have found a high skew in where the measurements

. . gke place, with most measurements being performed in the
speed Improvements ach|eva_blt_a when some measurement drﬁ%st populated areas of Sweden. This illustrated in Figure 1,
used for the prediction is missing (e.g., due to limited peer-

to-peer sharing rather than through central directory services h'(t:)h shO\évshthe location of each measll(Jrerrllent p0|rr11t. F'rStr'] It
and the impact of which measurement information is share 0 sefrvSe tdat mostlmeashurementslta ep a(_:l_eh_ln (tj_e 1.;8“'{. ermn
(e.g., if all measurements should be shared, or only thos arts of Sweden or along the coastal region. This distribution

: ; atches well with where people live. For example, 90% of
matching a particular operator or network technology). Ou the population live in the southern 1/3 of the country, and

results show that there are signi cant advantages in selectivel . .
o ; : ost of the people in the northern 2/3 of the country live
restricting the information shared, but that these advantaggl‘Ong the COSF')[. Specon d, we can see the highest conceyntration

decrease as clients must download during a larger fraCtIoof measurements around the country's three biggest cities:

of the locations they visits to complete their downloads. It is
also encouraging to see that in all considered cases there aﬁ]égcrﬁggl”gu?gah?g]:g\?v’eg?sdh I\él%léngf(;:rllzsg;ﬁiggzz?hagen on

signi cant performance advantages to use performance maps
(regardless of the measurement sharing policy and the sharing To better understand the download speed variations, both
level) compared to when clients have no knowledge of priowithin and across locations, we create a bandwidth map that
performance in the different locations. contains information about all measurements, and then use

The remainder of the paper is organized as follows. SeCt_he map to retrieve statistics about each location. Our map

tions II-IV is dedicated to each of our primary contributions. g:&dzssstgga\;\/eoliclﬂ Irﬁzzt;%rr]e%uecrlfte &itﬁl?ﬁgt'% rg;zti(f)?lr iih\c/)vrr?ich
First, Section Il presents a high-level characterization of th

dataset and the usage of the crowd-sourced Bredbandskoll g argjfesrﬂg:??:é gggrlfspl(aece. I\/IS?Ntlt\e/gLend g%):]gei;nig)(l) gggnlz'rﬁl
service. Then, Section Il presents analyze the bandwidth vark: - divide into more than lgl millicB00 20012 s uélres)
ations within and across locations, before Section IV present§ q

a multi-location case study. Finally, related works (Section V)cpedaté\hz L)O:r? dvt/?élthotnfcailgo\?vshic\:,:\ng?\llﬂ I?c?zft?ourzgn\}ﬁmsﬁovf
and conclusions (Section VI) are presented. P y

zero measurements are stored in a hashmap. To ensure easy
lookups, for each measurement, we use a hash key based on the
square-coordinate index of each measurement, after translating
A. Dataset and limitations the x-y index pair into a unique text string. This approach
%Ilows constant time insertions and lookups.

II. CHARACTERIZATION OF MEASUREMENTUSAGE

Bredbandskollen is the most popular speedtest service i
Sweden. In this study we analyze all speedtest measurements In addition to allowing easy access to all measurements
performed by mobile users testing their cellular (non-WiFi)within a location, this approach also makes it easy to identify
Internet speed via Bredbandskollen's Android or iOS appli-and analyze download speed correlation between neighboring
cation between Jan. 2014 and Feb. 2015. In total, this dataskftcations. The fast and easy lookup of neighboring locations,
include over 16 million measurements. For each measuremens allowed by our choice to use a deterministic method
the application measures the upload speed, download spedbat takes the square-coordinate index of each location as
and latency. All tests are carried out against the geographicallgrguments when calculating the hash key for each location.
closest Internet eXchange Point (IXP). For each test, the applisiven knowledge about the square-coordinate index of one
cation also records a timestamp, the geographical coordinatéscation, it is therefore trivial to lookup the measurements
where the test was performed, and information such as whichf the neighboring locations, which simply is offset by one
network technology and operator was used. square-coordinate index (in either x or y direction). In the

The dataset is highly diverse and includes measuremen ”0\%'”93 V\{ehusg th|sbstrgct%reh tg'ﬁanalyze the ddatas.et' and
from 3,184 different phone types, with various iPhone an ovide Insights into bandwidth differences and variations

ithin and across locations. Naturally, similar hashmap-based
3This includes various 2/2.5G (e.g., GPRS, EDGE), 3G (e.g., umTs,bandwidth maps can easily be implemented for other large-
CDMA, HSPA, HSDPA, HSPAP), and 4G (LTE, LTE Advanced) technologies. Scale crowd-sourced systems.
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Fig. 1. Geographic measurement overview.  Fig. 3. Relative concentration of measurements across non-empty locations.

C. Location and Measurement Concentration With this choice, we end up using a threshbldof 15, 25, 30

. . for the rst three granularities, respectively), each set being
To understand the skew in the locations where the measur asponsible for 70%, 70%, and 80% of the measurements,

ments take place, we calculate the number of measuremeqlgspectively_ To ensure that we always have more than 1,000

associated with each location bucket, when using one of foug : _ . .
; . 5 ! 5 ample points, we us& = 20 for the 1;600 1;600
?T:Efe;irg[ f%%koet Sl'_zggzoog]z ch?”rgv\;iﬁoioi%)é?] ’ ?2&0208\/9 granularity case; resulting in 18% of the locations and 90%
' ' ' 1. Following np ' of the measurements being captured.
use rank plots, Cumulative Distribution Function (CDF) plots,
and Complementary CDF (CCDF) plots to capture the con-_ _. )
centration of events; in this case the locality of measurement®- Time-of-Day Analysis

Figures 2(a) shows a rank plot of the number of measure- Tp better understand any biases in the dataset and the
ments per location, where location “ranks” are sorted from the€rvice usage, we next take a closer look at the hourly usage

locations with most to the fewest number of measurementd?@ttern (Figure 4(a)) and the “download speed pro les” for
Figure 2(b) shows a CCDF of the fraction of locations with different times of the day (Figure 4(b)), where a download
more measurements than a given sample thresNgldis a speed prole consists of a CDF of the download speeds
function of N. Both these plots focus on the locations with OPserved across all measurements associated with that pro le.
the most measurements. We note that depending on locatioM/e Use three-hour time buckets to distinguish pro les.

bucket granularity there are only between 4 (less than 0.003% \ve observe a signi cant diurnal pattern (Figure 4(a)) in the
of the non-empty200 200 locations) and 200 locations number of measurements per hour, as function of time, with
(approximately 0.8% of thel;600 1,600 locations) with 3 peak-to-valley ratio of 16 (525 to 33). The diurnal pattern
more than 1,000 measurements. Regardless of granularifhatches well with the expectation of when the networks are
there are however more than 1,000 locations with more thamgst in use. While we have observed some non-negligible
100 measurements (corresponding to between 0.8% and 78ffferences in the average and median download speeds for the
of the non-empty locations, depending on bucket granularity)gifferent times of day, with the biggest differences in median

The small fraction of locations with many measurements2€ing between 3:00-6:00 (20.7 Mbit/s) and 18:00-21:00 (18.1
matches the intuition that there is a high skew in the locaMbit/s), the download speed proles (Figure 4(b)) have in
tions where the majority of measurements take place. Theeneral very similar charactgrlstms, regar_dless of the time of
concentration in measurements are captured by Figures 3(Hfty- Motivated by the relatively small differences and the
and 3(b), which show CDFs of cumulative fraction of total lack of m_easurements during nighttime m_most I_ocatlons, for
number of measurements associated with the locations thie remainder of this paper, we do not differentiate between
makes up the fraction (x) with most measurements. Whildneasurements within a single locations based on time-of-day.
there are differences in the absolute concentration, in general,
between 10-20% of the locations (with non-zero number of [1l.  BANDWIDTH VARIATION ANALYSIS
measurements) are responsible for between 80-90% of aA
measurements. This suggests similar skews as with Pareto
principle. For much of our later analysis we will therefore  To better understand if and how past measurements can be
focus on the location buckets with the most measurements. lased to predict the network conditions in a location, we rst
particular, we will typically focus on the top-15% of locations. consider the relative variation observed in the measurements

Single-location Variation Analysis
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, ments per location (Figure 5(b)). In both plots, both the distri-
08 ‘ butions and cross-over points are very similar for all curves.
The insensitiveness with regards to granularity is encouraging,
as the use of coarser granularity provides greater opportunities
04 N=10 to aggregate information from many measurements.

N=15

o
@

o
o

o
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02 E§§ Third, while there are some smaller variations across the
; _ N-eo top-four operators (Figure 5(c)), for all four operators more
Cosfficient of variation (CV) ° Coefficient of variation (QV) than 85% Of_ the locations haV_e Iow-variance. Hi3G have th_e
(@) Location granularity (b) Threshold K ) highest fraction (93%), low-variance locations, whereas Telia
, , has the lowest fraction (85%). The somewhat lower fraction for
Telia may be due to Telia covering more locations, including
some less covered regions where the mobile Internet conditions
are not as good as within the cities. This conjecture is sup-
ported by the fourth and nal observation, that the fraction of
high-variance locations is much higher for low-bandwidth con-
0-10 Mois nections. The higher variance for low-bandwidth conditions,
‘ Saowbis is exempli ed by the 0-10 MBit/s curve in Figure 5(d). Here,
os 1 15 2 25 05 1 15 2 25 3 69% are consider low-variance locations, compared to 82% of

Coefficient of variation (CV) . Coefficient of variation (CV) the 10-30 MBit/s and 30+ Mbit/s locations.
(c) Operator (d) Average download speed

Fig. 5. Cumulative Distribution Function (CDF) of the Coefcient of To further validate our conjecture, we compare the CDFs
Variation (CV), across large number of sample locations. of the (average) download speeds observed for locations with
different number of measurements. Figure 6(a) shows the
download speed pro les for three intervals of sample thresh-
olds (some of which are smaller than the thresholds used to
determine which locations to include in our analysis). Consis-
tent with our conjecture, the download speeds are signi cantly
lower (note the logarithmic axis scale) for the locations with
Figure 5 shows CDFs of the coef cient of variation (CV) few measurements (e.gN < 10 curve) than those with
of the download speeds, as calculated across all locationsmany (e.g.,N 35 curve). Having said that, we have not
satisfying different criteria. In particular, we show curves toobserved any signi cant differences in the overall download
illustrate the impact of using different (a) location granularities,speed pro les of the operators (Figure 6(b)).
(b) thresholds for the minimum number of measurements per
location, (c) operators, and (d) locations for which the averB. Pairwise Head-to-Head Comparison
age download speed falls into different speed ranges. When .
interpreting these results, we note that typically locations with I cases when one operator provides better download
a CV less than one are considered as low-variance location§P€€dS in a location, knowing the “winner” may allow multi-
and locations with CV greater than one are considered to ha med users to switch to the best operators in each location [4],

high variance. To put this in context, we note that exponential/] @nd multipath-TCP users may be able to better utilize
distributions have CV=1, Erlang distributions have €1, and  th€ differences in speeds across parallel connections [16]. In
hyper-exponential distributions have Y. contrast, if there typically is no clear “winner”, solutions that

aggregate all measurements (across operators) may allow for
Based on these gures, we make four observations. Firstadded accuracy in locations with otherwise few measurements.
and perhaps most importantly, the majority of locations are

low-variance locations. For example, for 12 of the 17 curve .
more than 80% of the locations are considered Iow-variancz.erences observed between two operators, we use hypothesis

Only for the low-average-speed case (69%) is there less thdfSting. For this analysis we identify a large number of pairwise
75% low-variance locations. This is interesting as low-variance@MPle sets, perform hypothesis testing on each such pair, and
locations provide better prediction opportunities. report the fraction of pairs for which the test is rejected. This

methodology allows us to calculate and compare the fraction
Second, the results are relatively insensitive to the locatiof locations in which the download speed difference between
granularity (Figure 5(a)) and the minimum number of measuretwo operators are statistically signi cant.
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within each location. The relative variation is typically mea-
sured by the coef cient of variation (CV), sometimes referred
to as the relative standard deviation, de ned as the ratiof
the standard deviation () and average (), and estimated as
g— using their respective sample measusesndX;.

To better understand how often there are statistical dif-



TABLE I. PERCENT REJECTED PAIRWISE-TEST WHEN COMPARING

OPERATORS AVERAGE DOWNLOAD SPEEDS is not a consistently dominating player that always have better

Telia Tele? Telenor H3G performance, there often is a clear winner in individual regions.
Telia _ 39°=50.0% | 22 =455% | 321 =46.7% The exibility to switch to the best operator in each region
Tele2 | 229°=50.0% _ £=373% | 2=635% |can therefore signi cantly improve the average download
Tolenor | o5 T B3T3 | = #7550 | Speeds. Others have drawn similar conclusions [5]. Without a
Hi3G %:46 70 5263 505 | 2L=42.9% 49— consistent winner there are also advantages to multi-path TCP
B — ot Ao lutions, which can adapt the bandwidth share across parallel
Al | 2C=145% | 200=258% | 25=26.1% | 22=25.1% | >0 UHoNs, P P
5908 1180 988 805
connections, over separate operators, for example [16].

For each pair of sample sets, we apply Welch's t-test [15] to
calculate the t-statistics for the null hypothesis that the meang. Comparing Neighbor Locations

of those two sets are equal (i.e3 = ), with the alternative . . .
hypothesis that the means differ (i.eq 6 ,). Assuming . CGeographic download speed differences allow mobile
normally distributed samples in each sample set, but allowing“e”ts to select opportune times and locations to download
for different variance in each set, the t-score is calculated a<LONt€Nts, such as to improve download speeds, save energy,
and improve conditions for delay sensitive applications. For

t= X1 X2 : (1) example, a mobile client moving between two neighboring lo-
st s cations can easily use a bandwidth performance map to decide
M1 N2 in which of the two locations to download the content. We

whereX; andX, are the means of the two sample sefsand  next analyze how frequently there are statistically signi cant
s, are the standard deviation of two sets, anchndn, are the  differences between the average download speeds observed
number of measurements in each set. For each pair, we thdxetween neighboring locations.

compare the t-statistics with the signi cance threshblg ,

where the degrees of freedom is calculated as First, let us again apply our pairwise methodology (Sec-

tion 1lI-B) to compare the measurements associated with two
_(s?=ny + s3=ny)? neighboring locations. For much of this analysis we discuss
d = (s2=n1)? , (s3=n2)?’ (2) results in which we vary one factor at a time, starting with

n 1 nz 1 a default case in which we use a granularity200 200, a

and allow us to control the signi cance level. When> 95% con dence level ( = 0:05), and require at least = 20

t.¢ , we reject the null hypothesis (that the means are equal) imeasurements in each of the two locations. In this default case

favor of the alternative hypothesis (that the means differ). Thigve reject the null hypothesis (that there are no differences in

test is then repeated for all pairs, and we report the fractiothe means) in 44.2% of the location pairs. This shows that in

of tests that are rejected. slightly less than half of the cases one of the locations would

: . . be the preferred location to perform a download.
Consider now the potential download speed differences P P

between the top-four operators in our dataset. Table | shows the Interestingly, the probability that the user will have a clear
percentage of cases in which the null hypothesis (that there amginner location increases slightly with coarser granularities.
no differences in the mean download speeds) are rejected wiffor example, compared to our default case with granularity
95% con dence. Here, we have only conducted pairwise test200 200 (44.2%), the percentage rejected null hypotheses
when both operators have at le&st 10 sample points in a increases to 47.5% with granularig00 400, to 53.9%
location. In addition to comparing the top-four operators, wewith 800 800, and 57.7% withl; 600 1;600. This nding

also include a comparison against a default case when “allduggests that coarser granularity maps can help users make
measurements from that location are used as an aggregatetter download decisions than ne granularity maps.

including measurements from any operator.

With limited variations within locations (Figure 5(a)), much
First, note that the fraction of rejected null hypothesisof the observed increase in the number of neighboring loca-
tests consistently is much smaller for the “all” row (14.5- tions with statistical differences is likely due to the improved
26.1%) than for any of the other pairwise comparisons (allprediction allowed by the additional measurements associated
above 37%). This suggests that the aggregate measurememtith larger location buckets. This hypothesis is also supported
in a location often can be used as a good estimate of whdty the results when looking closer at the impact of the
users of well-used operators in that location experiences. Thigireshold valueN . For example, relative to our default case
is in part due to many locations being dominated by a bigwith N = 20 (44.2%), the fraction of rejected tests increase
player, but may also partially re ect the competitive natureto 47.0% withN = 35, and go down to 38.9% with = 10.
of the telecom industry driving operators toward trying to

provide their users with at least equally good service as theiﬁlus-l'raetemrr)lalzcit SIetgeWrmé?]bsego\?Js%Zasgﬁggﬁgtse 2;6 ;:Jr\r/'\[/t]see:
competitors in a particular location. Yet, in the cases with 9 ! P 9 P

suf cient measurements from multiple operators, we note thaf €StS_that were rejected for pairwise tests with different
sample count¢N;; N;) for the two locations. Here, heatmap

there often is a statistically signi cant winner when comparing . k
two operators. For example, among the six unique pairwisg'”'Cket boundaries (squares) are de ned by(fiig; N2) counts

companons e reect betvizen 37.3.73.5% nll hyponesif” e ¥ 400 &, noross o granries, e bioges
suggesting that we have 95% con dence that the averag J 9 y

download speeds of the operators in these locations differ, aoWnload speeds than the neighbor location) occurs in the
heatmap buckets (squares) with most measurements (outermost

These differences suggest that there may be signi cant berblue regions). While most pairs fall into heatmap buckets with
e ts to using adaptive multi-homing. Although there typically few measurements (lower left corner) for all granularities,



A. Trace-driven Methodology

For this analysis we focus on 200,000 measurements that
took place within a20 20km? area centered in central
Stockholm between Nov. 2014 and Feb. 2015. Stockholm is
the capital, the highest populated city in Sweden, and also the

()200 200 (b)400 400 (C)800 800 (d) 1600 1:600 area with most measurement points (e.g., Figure 1).

Fig. 7. Fraction (not) rejected pairwise t-tests comparing the download speeds \\/e then simulate the performance of a user moving across

in neighboring locations. Here, red is zero rejected and blue is 100% rejecte(N locations, with each location de ned as a unique 2km
rectangle. For each simulation, we randomly select one mea-
surement from each dfl location buckets along the path. A
sequence oN such random sample measurements represents
a sample patf.Given a sample path, we then evaluate the
performance seen by different policies, where each policy use
the remaining measurements in each bucket to predict the best

(20200 200 (b)400 400 (c)800 800 (d)1;600 1,600 locations to perform the download.
Fig. 8. Number of neighbor pairs in each heatmap bucket. Here, red indicate

the bucket with most pairs and blue the buckets with fewest neighbor pairs. In our evaluation, we assume that a client always down-

loads when in the& locations with the highest expected (pre-

there are in general more location-pairs per high-count buckeficted) download speed of thé locations. Given download
when the granularity is coarser. To put the relative skews irpPeed estimations for each location, this approach maximizes

perspective, Figure 8 shows the relative number of observeifie client's expected average download speed kuecations.
location pairs falling into each heatmap bucket. Furthermore, under this assumption, the client performance

. ) . of different policies only differs by the information used for
_ We have also found that rejected pairs often are associatefle prediction. To simulate different client behaviors and data
with regions with higher download speeds. In all Cons'dere%haring policies we lIter the data used for each simulation.
cases, the average download speed across the locations with, example, to simulate a client that only has knowledge
the rejected hypotheses are consistently higher than across thgout 50% of the measurements we lters out 50% of the
non-rejected pairs for the same case. For example, for thgeasurements before making the prediction. Similarly, to
200 200 case the two averages are 30.2 Mbps and 27.Qimylate a policy that only uses (or shares) information about

Mbps, respectively. As expected, the fraction of rejected testg narticular operator, we only use the data associated with that
increases when only requiring 90% con dence (e.g., 51.7%perator for the prediction.

with = 0:1) and decrease when requiring 99% con dence ] ]
(e.g., 30.9% with = 0:01). Note that thek selected locations may differ based on
the information that the client has available when making the
download speed estimates for each location. In this paper we

use ve different ltering policies.
Crowd-sourced measurements allow performance maps to

IV. MULTI-LOCATION USeE CASE STUDY

scale and have the advantage of a rich database. However,
with many contributing users, measurements will typically
be performed using different phone types, across different
operator networks, and using different transfer technologies.
This raises many questions regarding which information is best
shared and distributed among users.

In addition, both centralized directory services and peer-
to-peer approaches are possible to share measurement infor-
mation. While peer-to-peer exchange policies can help avoid
single-point of failure problems and naturally provide local-
ized data sharing, peer-to-peer approaches typically limits the
measurements that clients have access to. Such limitations can
impact the accuracy of the prediction.

This section investigates the performance impact that lim-

Full sharing: Users share and use all available data.

Same operator:For each location, users only use
measurements made over the same operator.

Same technologyFor each location, users only use
information about measurements made over the same
network technology (3G or 4G).

Restricted sharingFor each location, users only use
information that simultaneously satisfy both the “same
operator” and “same technology” policy.

Random sharingEor each location, users only use in-
formation aboup% randomly selected measurements.

We also compare two baseline policies. First, we include

itation in the amount of data (e.g., due to limited coveraggesults for a “no sharing” policy that does not use any
by peer-to-peer systems) and the type of information that ignformation at all, but simply pickk (of N) locations at

shared (e.g., by careful ltering based on which operator andandom. This policy provides an example of the performance

network technology was used for each measurement) may hageen by a user not using any past knowledge for the scheduling.
on the performance optimizations performed by a client usindsecond, we use an “oracle” policy that uses information about

the performance maps information. Motivated by one of the — — :
most common use cases for network performance maps, for, fis depecere assuion & meeled B Har W Tao o 3 L)
this analyss we cons[der th? averag_e achieved QOwnIoad Spe%@asurements performed grl)ong }; speci c trip, even when performed back-to-
when using the available information to predict opportuneyack, and time-based moving averages therefore are not suitable for prediction
times and places to download (and upload) data. in mobile networks (in contrast to in static environments).




the speeds that the user actually would see in each location, and V. RELATED WORK
hence always “guesses” the b&dbcations for each particular . . - .
sample path. Clearly, this provides a lower bound that is no Prior work have shown that there is very limited correlation
achievable in practicé, except for the special case when C"en&etween neighboring locations [18], that bandwidth prediction

download in allN locations (and no scheduling is needed) IS more su_ccessful i.f location is takgn into account [2], gnd
" that for a given location, past bandwidth measurements give a

When comparing policies, we simply calculate the averaggood prediction of the experienced bandwidth [17]. Motivated
download speed of each policy as as the average samplyy these and similar observations, researchers have proposed
speed across thHelocations selected for that policy. Naturally, the use of network performance maps.
higher download speeds are better here, as it provides better
energy saving opportunities, for example. Each reported Valuﬁ]a
is calculated as the average value over 50 simulations.

Network performance maps have been shown useful in
ny scenarios [17], [8], [19], [3]. For example, performance
maps based on commuter traces have been used to reduce the
average download times of delay-tolerant downloads, effec-
B. Simulation Results tively reducing the energy usage of the mobile devices [3],
and to achieve smoother video streaming in mobile environ-
Let us rst consider the average download speed alongnents [13], [1], [12], [4], [5]. As an example, Riiser et al. [12]
a sample path oN = 11 locations, starting in a suburb show that bandwidth prediction together with careful quality
(Hasselby) and ending in downtowi®gtermalm). Figure 9 adaption can help reduce the number of playback interruptions
shows the average download speed as a function of the numbef HTTP-based Adaptive Streaming (HAS), compared to when
of download locationk (1 k N) along the path, when not using prediction.
using the “full sharing” and “oracle” policy. For aK, the “no

R, : In the context of vehicular networks, both crowd-
sharing” policy (not shown) achieves on average the download . y
speeds of the right-most poit = N . In this example, the sourced [11] and personal [10] bandwidth maps have been

“full sharing” policy achieves noticeable improvements overShoWn to provide good predictions. While mobile devices

the “no sharing” policy, but these improvements decrease wit pically experience worse performance than stationary on

increasingk. The much higher speeds of the “oracle” policy the same network [9], history-based prediction can improve
indicates that there is much room for improvements. download speeds also in high-speed scenarios [17]. Good
bandwidth prediction has also been shown to help improve

We next take a closer look at the “random sharing” policyhandover selection in multi-homed environments [7], [4].
and the impact of the percentage shared. Figure 10 shows
the relative download speed difference between the “rando
policy” and the “oracle” as a percentage, for different levels
of sharingp. With our choice to normalize download speeds
relative to the download speeds observed with the “oracle
policy, the “full sharing” curve in Figure 10 is simply equal
to the percent difference between the two curves in Figure
Note that “full sharing” consistently performs the best (closest While speedtest data similar to that used here have been
to zero), and the “random sharing” policy with the least amountused in other studies, we are not aware of any study that use
of sharing p = 1%) andk = 1 results in the worst relative such data to evaluate the value of crowd-based bandwidth
download performance (compared to “oracle”). performance maps. Perhaps closest to ours is the work by

Finally. Fi 11 h lati ; Sommers and Barford [14], in which they use similar data to
inally, Figure compares the relative performance.qm e the latencies in WiFi and mobile networks in different
(download speed increase compared to the “oracle” policy) fo

; . ) . egions. In contrast to their work, we focus on the value of
each sharing policy. Here, we have simulated 20 different patfygi, crowd-based measurements for performance prediction.
scenarios; each scenario consisting of 11 randomly selectef

location squares, from the entire Stockholm area.

Transport layer information such as round-trip times
TTs) can further improve prediction maps [8]. Our dataset
does not contain RTT information, TCP retransmissions,
threshold, window sizes, etc. Instead, similar to most prior
works, we focus only on application layer measurements. In
9this case, download (and upload) speeds from (to) a server.

VI. CONCLUSIONS
We note that all three selective policies (“same operator”,
“same technology” and “restricted sharing”) outperform “full
sharing” when the client downloads in only a small fraction of
the locations (e.gk = 1 andk =4 shown in Figures 11(a)
and 11(b), respectively). For these conditions the “restricte
sharing” policy performs the best. As the client uses more,
locations (e.g.k = 8 shown in Figure 11(c)), the benets
become smaller and “full sharing” in fact has the best media
performance (red line). This shows that the type of informatior}i o
that is used for the prediction is very important when bein

Using a large dataset from Bredbandskollen, this paper
evaluates the prediction accuracy and achievable performance
improvements that large-scale crowd-sourced datasets may al-
low when download speed predictions based on these datasets
re combined with careful download scheduling for mobile
lients. Working with a large and sparse dataset, we rst
resent a scalable performance map methodology, which uses
hashmap-based structure to perform constant time inser-
n/retrieval of geo-sparse measurement information. Using

selective (smalk values) but decrease with increaskgvhere this methodology, we then characterize the speedtest usage
v of Bredbandskollen, observing a usage representative of the

It |ns'tead may be 'r*IPo”a”t to e,’,‘sure that all locations have Bandwidth usage itself, including highly diurnal usage pattern
suf cient number of “reasonable” measurements. In all cases,

all policies signi cantly outperforms the “no sharing” policy, and most measurements being in highly populated regions.

highlighting the value of using careful scheduling based on We then extend the analysis to answer questions regard-
performance maps. ing how the bandwidth variations observed by typical users



Fig. 9. Average download speeds when using “full sharing” and the “oracle’Fig. 10.
sharing” policy. Download speeds calculated relative to the “oracle” policy.

policy.

(@k=1,N=11
Fig. 11.

differ between location and operator, for example. For this [4]
analysis, we analyze the bandwidth variation and predictability
of the download speeds observed within and across different
locations, when accounting for factors such as the locationl®!
granularity, number of measurements per location, operator
selection, and the average download speed. Using hypothesis
testing we show that there often are signi cant download [
speed differences that can be predicted between neighboring
locations, that these differences are most signi cant in the
locations with most measurements, and that larger location
buckets therefore are bene cial. Finally, we use a data-drivenl’]
performance study of a geo-smart download scheduler to eval-
uate the relative performance of users using different subset&!
of the measurements when predicting opportune locations to
perform downloads. This allows us to capture effects of limited [g;
sharing or Itering based on operators, network technology,
or both. Our results are encouraging for both centralized and
peer-to-peer network performance map solutions, and show0]
that the high skew in measurement locations allows us to
achieve additional improvements through lItering (e.g., based
on operator and network technology) or reduce overheab]
through limited information sharing.

Motivated by the performance improvements that we show!?!

are possible with the help of crowd-source measurements,
we believe that crowd-sourced performance maps provides
a valuable tool for mobile clients. Future work includes the[13]
design and evaluation of geo-smart schedulers for a richer set
of application domains and for multi-homed devices. There ar§l4]
also many interesting open challenges with deploying crowd-
based systems in general [6]. [15]
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