

Geo-location-aware Emulations for Performance Evaluation of Mobile Applications

Alberto García Estévez University of Alcala

Niklas Carlsson Linköping University

LIU EXPANDING REALITY

@ WONS 2014, Obergurgl, Austria, April 2014

Customized service

- Access to Internet everywhere
 - Wireless connectivity
- Increasingly mobile users
 - Smart phones and tablets
 - Connected (close to) all the time
- Powerful customized applications
 - Location-aware app
 - Customized services based on location

- New emerging location-based services and applications for mobile users
- Many alternative implementations
- Need fair evaluation methodology

 \mathbf{O}

- New emerging location-based services and applications for mobile users
- Many alternative implementations
- Need fair evaluation methodology

0

- New emerging location-based services and applications for mobile users
- Many alternative implementations
- Need fair evaluation methodology

 \mathbf{O}

• Fair head-to-head comparisons ...

.... under realistic scenarios

- Repeatable experiments
- Quick and low price

- New emerging location-based services and applications for mobile users
- Many alternative implementations
- Need fair evaluation methodology

Approach	Comment	Choice
Field tests		
Modeling Simulations		
Emulation		

Approach	Comment	Choice
Field tests	Expensive and does not allow repeatable experiments	\mathbf{X}
Modeling Simulations		
Emulation		

Approach	Comment	Choice
Field tests	Expensive and does not allow repeatable experiments	\mathbf{X}
Modeling Simulations	Difficult to ensure that abstraction matches reality	×
Emulation		

Approach	Comment	Choice
Field tests	Expensive and does not allow repeatable experiments	\mathbf{X}
Modeling Simulations	Difficult to ensure that abstraction matches reality	×
Emulation	Relatively cheap, real hardware, but we still need methodology for repeatable location- based evaluation	

and the second	/

Approach	Comment	Choice
Field tests	Expensive and does not allow repeatable experiments	\mathbf{X}
Modeling Simulations	Difficult to ensure that abstraction matches reality	×
Emulation	Relatively cheap, real hardware, but we still need methodology for repeatable location- based evaluation	

... develop simple methodology that allow ...

- Repeatable experiments: Allow head-to-head comparison
- Quick and low price: Can be done in-house
- Realistic scenarios: Use of real mobility patterns and network conditions

Example application

- Google Cloud Messaging (GCM)
- Mobile app
 - HTC wildfire with Android
 - Wi-Fi and location service (GPS and network)

- Application server
 - PHP + MySql
 - Notifications, network conditions

Example application

- 1. The server sends a notification to GCM
- 2. GCM notifies the mobile that an update is available
- 3. The mobile requests the update
- 4. The server sends the update

- 1. The server sends a notification to GCM
- 2. GCM notifies the mobile that an update is available
- 3. The mobile requests the update [** geoSmart Scheduler**]
- 4. The server sends the update

GeoSmart Scheduler

-- Design and Proof-of-concept Implementation

Performance Network Map + Smart Scheduler

GeoSmart Scheduler

-- Design and Proof-of-concept Implementation

Performance Network Map + Smart Scheduler

LIU EXPANDING REALITY

Performance Network Map

Throughput-location pairs

- HTTP throughput prediction
- 1. Passively measure throughput when data is downloaded
- 2. Update prediction using EWMA
- UTM location:
- 1. Obtain location in latitude/longitude when data is downloaded
- 2. Convert location to UTM coordinates

GeoSmart Scheduler

-- Design and Proof-of-concept Implementation

Performance Network Map + Smart Scheduler

GeoSmart Scheduler

Basic implementation

- FIFO Notifications queue using
- Threshold based on average path throughput

Evaluation and results

TRACE-BASED EMULATION EVALUATION

LIU EXPANDING REALITY

Trace-driven emulation

- Client location and bandwidth conditions
 - Traces obtained from dataset of real measurements
 - E.g., commuter traces: bus, ferry, car, train, etc.
 - (i) Timestamp, (ii) Latitude/longitude, and (iii) bandwidth
 - Location mocking using Android API features
 - Create test location service
 - Network conditions emulated with Dummynet
- Server-driven workload
 - Traces collected using Twitter API
 - E.g., rate of 3 to 12 notifications per minute
 - (i) time stamp and (ii) unique ID

Trace-driven emulation

- Client location and bandwidth conditions
 - Traces obtained from dataset of real measurements
 - E.g., commuter traces: bus, ferry, car, train, etc.
 - (i) Timestamp, (ii) Latitude/longitude, and (iii) Bandwidth
 - Location mocking using Android API features
 - Create test location service
 - Network conditions emulated with Dummynet
- Server-driven workload
 - Traces collected using Twitter API
 - E.g., rate of 3 to 12 notifications per minute
 - (i) time stamp and (ii) unique ID

Bandwidth, location, and and workload traces

H. Riiser, P. Vigmostad, C. Griwodz, and P. Halvorsen, "Commute path bandwidth traces from 3g networks: Analysis and applications," in Proc. ACM MMSys, Feb/Mar. 2013.

Bandwidth, location, and and workload traces

Bus scenario

LIU EXPANDING REALITY

 \mathcal{O}

Bandwidth, location, and and workload traces

Notification traces ...

Available bandwidth (Kbps)

Naive download speeds

Bus scenario

Ferry scenario

Sample file size 100KB

- Example measure: Average download time
- Three (3) alternative approaches (or grid sizes)
- Four (4) alternative file sizes

Bus scenario

- Example measure: Average download time
- Three (3) alternative approaches (or grid sizes)
- Four (4) alternative file sizes

Bus scenario

- Example measure: Average download time
- Three (3) alternative approaches (or grid sizes)
- Four (4) alternative file sizes

Bus scenario

- Relatively small improvements (e.g, 10-20%)

Bus scenario

- Relatively small improvements
- Better improvements in scenarios with significant location differences in network performance

Bus scenario

Conclusions

- Our emulation framework provides fair-head-to-head protocol/service comparisons
 - Real hardware and realistic mobile scenarios
 - Repeatable experiments
 - Relatively low cost
- Regards to our proof-of-concept implementation
 - GeoSmart scheduler perform better in scenarios with significant location differences in network performance
 - Limited accuracy of EWMA estimator for HTTP throughput
 - Choose correct resolution is important
- Future work will consider
 - Higher order stochastic models for estimation, adaptive map resolution (e.g., based on speed of user) with richer information (e.g., based on network data technology)

Conclusions

- Our emulation framework provides fair-head-to-head protocol/service comparisons
 - Real hardware and realistic mobile scenarios
 - Repeatable experiments
 - Relatively low cost
- Regards to our proof-of-concept implementation
 - GeoSmart scheduler perform better in scenarios with significant location differences in network performance
 - Limited accuracy of EWMA estimator for HTTP throughput
 - Choose correct resolution is important
- Future work will consider
 - Higher order stochastic models for estimation, adaptive map resolution (e.g., based on speed of user) with richer information (e.g., based on network data technology)

Conclusions

- Our emulation framework provides fair-head-to-head protocol/service comparisons
 - Real hardware and realistic mobile scenarios
 - Repeatable experiments
 - Relatively low cost
- Regards to our proof-of-concept implementation
 - GeoSmart scheduler perform better in scenarios with significant location differences in network performance
 - Limited accuracy of EWMA estimator for HTTP throughput
 - Choose correct resolution is important
- Future work will consider
 - Higher order stochastic models for estimation, adaptive map resolution (e.g., based on speed of user) with richer information (e.g., based on network data technology)

Geo-location-aware Emulations for Performance Evaluation of Mobile Applications

Alberto García Estévez (UA) Niklas Carlsson (LiU)

Software: www.ida.liu.se/~nikca/papers/wons14.html

Linköping University expanding reality www.liu.se