Geo-location-aware Emulations for Performance Evaluation of Mobile Applications

Alberto García Estévez
University of Alcalá

Niklas Carlsson
Linköping University

@ WONS 2014, Obergurgl, Austria, April 2014
Customized service

- Access to Internet everywhere
 - Wireless connectivity
- Increasingly mobile users
 - Smart phones and tablets
 - Connected (close to) all the time
- Powerful customized applications
 - Location-aware app
 - Customized services based on location
Evaluation methodology

• New emerging location-based services and applications for mobile users
• Many alternative implementations
• Need fair evaluation methodology
Evaluation methodology

- New emerging location-based services and applications for mobile users
- Many alternative implementations
- Need fair evaluation methodology
Evaluation methodology

• New emerging location-based services and applications for mobile users
• Many alternative implementations
• Need fair evaluation methodology
Evaluation methodology

- Fair head-to-head comparisons …
 …. under realistic scenarios
- Repeatable experiments
- Quick and low price

- New emerging location-based services and applications for mobile users
- Many alternative implementations
- Need fair evaluation methodology
Evaluation Methodology

<table>
<thead>
<tr>
<th>Approach</th>
<th>Comment</th>
<th>Choice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field tests</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modeling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simulations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emulation</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Evaluation Methodology

<table>
<thead>
<tr>
<th>Approach</th>
<th>Comment</th>
<th>Choice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field tests</td>
<td>Expensive and does not allow repeatable</td>
<td>![X]</td>
</tr>
<tr>
<td></td>
<td>experiments</td>
<td></td>
</tr>
<tr>
<td>Modeling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simulations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emulation</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Evaluation Methodology

<table>
<thead>
<tr>
<th>Approach</th>
<th>Comment</th>
<th>Choice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field tests</td>
<td>Expensive and does not allow repeatable experiments</td>
<td></td>
</tr>
<tr>
<td>Modeling Simulations</td>
<td>Difficult to ensure that abstraction matches reality</td>
<td></td>
</tr>
<tr>
<td>Emulation</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Evaluation Methodology

<table>
<thead>
<tr>
<th>Approach</th>
<th>Comment</th>
<th>Choice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field tests</td>
<td>Expensive and does not allow repeatable experiments</td>
<td>✗</td>
</tr>
<tr>
<td>Modeling Simulations</td>
<td>Difficult to ensure that abstraction matches reality</td>
<td>✗</td>
</tr>
<tr>
<td>Emulation</td>
<td>Relatively cheap, real hardware, but we still need methodology for repeatable location-based evaluation ...</td>
<td>✓</td>
</tr>
</tbody>
</table>
Evaluation Methodology

<table>
<thead>
<tr>
<th>Approach</th>
<th>Comment</th>
<th>Choice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field tests</td>
<td>Expensive and does not allow repeatable experiments</td>
<td>❌</td>
</tr>
<tr>
<td>Modeling Simulations</td>
<td>Difficult to ensure that abstraction matches reality</td>
<td>❌</td>
</tr>
<tr>
<td>Emulation</td>
<td>Relatively cheap, real hardware, but we still need methodology for repeatable location-based evaluation</td>
<td>✔️</td>
</tr>
</tbody>
</table>

... develop simple methodology that allow ...

- **Repeatable experiments**: Allow head-to-head comparison
- **Quick and low price**: Can be done in-house
- **Realistic scenarios**: Use of real mobility patterns and network conditions
Example application

- Location-aware download scheduler based on notification service
 - Google Cloud Messaging (GCM)

- Mobile app
 - HTC wildfire with Android
 - Wi-Fi and location service (GPS and network)

- Application server
 - PHP + MySql
 - Notifications, network conditions
Example application

Registration

Notifications
Example application

Registration

Notifications
Example application

1. The server sends a notification to GCM
2. GCM notifies the mobile that an update is available
3. The mobile requests the update
4. The server sends the update
Example application

1. The server sends a notification to GCM
2. GCM notifies the mobile that an update is available
3. The mobile requests the update [**geoSmart Scheduler**]
4. The server sends the update
GeoSmart Scheduler

-- Design and Proof-of-concept Implementation

Performance Network Map + Smart Scheduler
GeoSmart Scheduler
-- Design and Proof-of-concept Implementation

Performance Network Map + Smart Scheduler
Performance Network Map

Throughput-location pairs

- HTTP throughput prediction
 1. Passively measure throughput when data is downloaded
 2. Update prediction using EWMA
- UTM location:
 1. Obtain location in latitude/longitude when data is downloaded
 2. Convert location to UTM coordinates
GeoSmart Scheduler

-- Design and Proof-of-concept Implementation

Performance Network Map + Smart Scheduler
GeoSmart Scheduler

Basic implementation

- FIFO Notifications queue using
- Threshold based on average path throughput
Evaluation and results

TRACE-BASED EMULATION EVALUATION
Trace-driven emulation

- **Client location and bandwidth conditions**
 - Traces obtained from dataset of real measurements
 - E.g., commuter traces: bus, ferry, car, train, etc.
 - (i) Timestamp, (ii) Latitude/longitude, and (iii) bandwidth
 - Location mocking using Android API features
 - Create test location service
 - Network conditions emulated with Dummynet

- **Server-driven workload**
 - Traces collected using Twitter API
 - E.g., rate of 3 to 12 notifications per minute
 - (i) time stamp and (ii) unique ID
Trace-driven emulation

- **Client location and bandwidth conditions**
 - *Traces obtained from dataset of real measurements*
 - *E.g.*, commuter traces: bus, ferry, car, train, etc.
 - (i) Timestamp, (ii) Latitude/longitude, and (iii) Bandwidth
 - *Location mocking using Android API features*
 - Create test location service
 - *Network conditions emulated with Dummynet*

- **Server-driven workload**
 - *Traces collected using Twitter API*
 - *E.g.*, rate of 3 to 12 notifications per minute
 - (i) time stamp and (ii) unique ID
Bandwidth, location, and workload traces

Bus scenario

Bandwidth, location, and workload traces

Bus scenario

(a) Bus
(b) Ferry
(c) Metro
(d) Tram
Bandwidth, location, and workload traces

Bus scenario

Notification traces …

#topicX

#topicY
Naive download speeds

Bus scenario

Ferry scenario

Sample file size 100KB
GeoSmart Scheduler Results

- Example measure: Average download time
- Three (3) alternative approaches (or grid sizes)
- Four (4) alternative file sizes

Bus scenario

Ferry scenario
GeoSmart Scheduler Results

- Example measure: Average download time
- Three (3) alternative approaches (or grid sizes)
- Four (4) alternative file sizes
GeoSmart Scheduler Results

- Example measure: Average download time
- Three (3) alternative approaches (or grid sizes)
- Four (4) alternative file sizes

Bus scenario

Ferry scenario
GeoSmart Scheduler Results

- Relatively small improvements (e.g., 10-20%)

Bus scenario

Ferry scenario
GeoSmart Scheduler Results

- Relatively small improvements
- Better improvements in scenarios with significant location differences in network performance

Bus scenario

Ferry scenario
Conclusions

• Our emulation framework provides fair-head-to-head protocol/service comparisons
 • Real hardware and realistic mobile scenarios
 • Repeatable experiments
 • Relatively low cost

• Regards to our proof-of-concept implementation
 • GeoSmart scheduler perform better in scenarios with significant location differences in network performance
 • Limited accuracy of EWMA estimator for HTTP throughput
 • Choose correct resolution is important

• Future work will consider
 • Higher order stochastic models for estimation, adaptive map resolution (e.g., based on speed of user) with richer information (e.g., based on network data technology)
Conclusions

• Our emulation framework provides fair-head-to-head protocol/service comparisons
 • Real hardware and realistic mobile scenarios
 • Repeatable experiments
 • Relatively low cost

• Regards to our proof-of-concept implementation
 • GeoSmart scheduler perform better in scenarios with significant location differences in network performance
 • Limited accuracy of EWMA estimator for HTTP throughput
 • Choose correct resolution is important

• Future work will consider
 • Higher order stochastic models for estimation, adaptive map resolution (e.g., based on speed of user) with richer information (e.g., based on network data technology)
Conclusions

• Our emulation framework provides fair-head-to-head protocol/service comparisons
 • Real hardware and realistic mobile scenarios
 • Repeatable experiments
 • Relatively low cost

• Regards to our proof-of-concept implementation
 • GeoSmart scheduler perform better in scenarios with significant location differences in network performance
 • Limited accuracy of EWMA estimator for HTTP throughput
 • Choose correct resolution is important

• Future work will consider
 • Higher order stochastic models for estimation, adaptive map resolution (e.g., based on speed of user) with richer information (e.g., based on network data technology)
Geo-location-aware Emulations for Performance Evaluation of Mobile Applications

Alberto García Estévez (UA)
Niklas Carlsson (LiU)

Software: www.ida.liu.se/~nikca/papers/wons14.html