
This is the authors’ version of the work. It is posted here by permission of IEEE for your personal use. Not for redistribution. The definitive version was published in Proc. IEEE/IFIP Conference on Wireless On-demand Network Systems and

Services (WONS), Obergurgl, Austria, Apr. 2014. The final/official version will appear in the conference proceedings and the IEEE Xplore Digital Library.

Geo-location-aware Emulations for Performance

Evaluation of Mobile Applications

Alberto Garcı́a Estévez

Universidad de Alcalá de Henares, Spain

alberto.garciae@alu.uah.es

Niklas Carlsson

Linköping University, Sweden

niklas.carlsson@liu.se

Abstract—This paper presents the design of a simple emulation
framework for performance evaluation and testing of mobile
applications. Our testbed combines production hardware and
software to allow emulation of realistic and repeatable mobility
scenarios, in which the mobile user can travel long distances,
while being served by an application server. The framework
allows (i) geo-location information, (ii) client network conditions
such as bandwidth and loss rate, as well as (iii) the application
workload to be emulated synchronously. To illustrate the power
of the framework we also present the design, proof-of-concept
implementation, and evaluation of a geo-smart scheduler for
application updates in smartphones. This geo-smart scheduler
reduces the average download time by using a network per-
formance map to schedule the downloads when at places with
relatively good conditions. Our trace-driven evaluation of the
geo-smart scheduler, illustrates the workings of the emulation
framework, and the potential of the geo-smart scheduler.

I. INTRODUCTION

Increased Internet speeds and wireless connectivity

promises mobile clients seamless access to a wide range of

Internet-based on-demand services, content and information.

With increasingly mobile users and an exponential growth

in the number of users connected to mobile data networks,

mobile developers are increasingly building location-aware

applications and services that provide customized service and

take into account the client’s geographic location.

While these applications and services are powerful and add

a new dimension to online services, they come with new

unique challenges. In this paper, we address the problem of

how to evaluate new mobile applications that take into account

the user location. Ideally, such evaluation framework should

allow repeatable experiments (needed for fair head-to-head

comparisons of alternative protocol implementations) using the

mobility patterns and network conditions seen by real users.

While experiments using real test subjects address the

second property, large-scale test deployments are typically

expensive and do not allow repeatable experiments. System

designers are therefore often limited to simulations and math-

ematical models when evaluating these systems.

This paper makes two primary contributions. First, in Sec-

tion II, we present the design of a simple emulation framework

for performance evaluation and testing of mobile applications.

The framework combines basic production hardware and soft-

ware to allow emulation of realistic and repeatable mobility

scenarios, in which the user can travel long distances, while

being served by an application server. The framework allows

(i) geo-location information, (ii) client network conditions

such as bandwidth and loss rate, as well as (iii) the application

workload to be emulated synchronously.

Second, in Section III, we present the design and proof-of-

concept implementation of a geo-smart scheduler for appli-

cation updates in smartphones. We implement a notification

service based on Google Cloud Messaging (GCM), which

allows notifications to be pushed to multiple Android devices

in parallel. However, rather than immediately downloading

the contents that the client is informed about, our geo-smart

scheduler creates, maintains, and use network performance

maps to determine opportune times to download the contents;

trying to reduce client download times and energy usage.

Using the emulation framework we show (in Section IV)

that our geo-smart scheduler can reduce the average download

times in some scenarios. While our results for the geo-smart

scheduler is preliminary, the emulation-based performance

evaluation illustrates the power of the emulation framework,

as well as the potential of the geo-smart scheduler.

While previous works have demonstrated that the use of net-

work performance maps can enhance the performance of some

application in mobile data networks, these studies typically

are based on simulations and/or theoretical analysis [1], [2].

To the best of our knowledge, and as discussed in Section V,

this is the first paper to design, implement, and evaluate a real

implementation within an emulation-based test environment.

An extended version of the paper, as well as the code for

our GCM-based server, geo-smart scheduler android app and

emulator can be found at [3].

II. EMULATION FRAMEWORK

A. Example application: GCM-based notification

To illustrate how our emulation framework can be used to

compare the performance of alternative implementations, in

this study, we use a basic notification service built using the

Google Cloud Messaging (GCM) service.1 GCM is free and

can be used to push notifications to multiple Android devices

in parallel. The service allows messages to be sent in both

directions, and handles aspects such as queuing and delivery of

messages to devices that are not online, for example. This type

1Google Inc., Developers Android - Google Cloud Messaging for Android,
http://developer.android.com/google/gcm/index.html, 2013.



(a) Registration with GCM (b) Notification/download

Fig. 1: Overview of GCM-based example notification service.

of implementation is very attractive in mobile environments

with non-persistent connectivity.

The messages are encoded using JSON and are sent using

either HTTP or XMPP. To register (Figure 1(a)) with the noti-

fication service: (1) the client sends a sender id and application

id to the GCM server, (2) the GCM server register the client,

and upon successful registration, issues a registration id to the

android device, which (3) the client sends to the server, which

then (4) stores the registration id for later use.

The server can now push notifications about objects of

interest to the registered user(s) via GCM (steps 1 and 2

in Figure 1(b)). The client can later download these objects

from the server (steps 3 and 4). In section III we describe

a geo-smart scheduler that determines when these download

requests (using HTTP) should be made, based on geo-location

information and past history about network performance.

B. Trace-driven emulation testbed

Our emulation testbed consists of three main components.

• Client running mobile application: The notification ap-

plication and geo-smart scheduler are both implemented

and installed on a Wildfire powered with Android 2.3.7,

root permission, Wi-Fi connectivity, and GPS.

• GCM-based notification service: The notification ser-

vice is implemented using GCM, and pushes notifications

to the mobile devices in order to inform them about new

content available on the server.

• Application server: While the framework allows a

generic server to be used, for the purpose of our ex-

periments we use a laptop running an Apache server

within Linux. PHP was used to develop the sever side

application, and MySQL was used as a database.

Trace collection: To allow repeatable experiments, our

evaluation framework relies on collection of realistic mobility

traces that captures (i) the network conditions and coordinates

seen by clients as they traverse the path, as well as (ii) the

notifications generated by the application server. The first set

of traces can be collected using example users, and should

include a list of timestamp marked coordinates and network

conditions as a client is moving through a network. The second

set of traces can be collected at server side, and include the

notifications and the timestamps when they were generated.

Trace-driven evaluation: The traces for the mobile’s lo-

cation and network conditions are feed into the mobile client

Fig. 2: Network performance map for the bus scenario (cf.

Section IV-A) with 1000m resolution.

while the notification traces are feed into the server, allowing

us to capture the client mobility pattern, network conditions,

as well as generating the notification workload.

Location mocking: To capture client mobility while the

testbed remains in a simple lab environment, we have taken

advantage of the built-in location providers (GPS and network

provider) and the Android API to design code that mocks

the mobile device to think that it is in motion along a route

determined by the location trace. Our customized location

provider is implemented in a java class, that registers a test

provider on the device and sets the position of the location

provider by periodically (every second) reading a pair of

latitude and longitude coordinates from a file. Thereby, each

time that the application needs to retrieve the location of the

device, the location is requested from our test provider in the

same way as with the GPS or network location provider.

Network conditions: To emulate the network conditions

for each location along the client’s recorded path we use

dummynet [4] and a WiFi capable router that enable the

connection between server and mobile. In our experiments

dummynet runs within our server operating system and is

configured to adapt the bandwidth conditions based on the

location-bandwidth pairs read from a trace file.

In summary, combining the above components and their

default hardware and software, we create an environment for

testing mobile applications. By running the same network and

workload traces for multiple candidate implementations, alter-

native solutions can be compared under the same conditions

on the actual end-system devices.

III. GEO-SMART SCHEDULER

Our geo-smart scheduler is implemented using two comple-

menting modules, which together aims to improve the resource

usage of the mobile devices.

• Map manager: This module is responsible for creating

and updating a network performance map, predict future

performance seen by the client, and answer queries re-

garding network performance.

• Download scheduler: This module is responsible for

determining when the client should schedule its down-

loads, such as to best leverage the available resources

and predicted network performance seen by the client.



A. Map manager

Our network performance maps are stored in a database, and

include tables with (i) throughput predictions for each visited

location, and (ii) path predictions of upcoming locations. We

implemented a map manager API (java library) that integrates

all the functions and services needed to implement and manage

these maps using three primary sub modules.

First, a network monitor passively collects sampled points

of the cumulative HTTP byte counts and time stamps us-

ing the java TrafficStats class, as well as the Uni-

versal Transverse Mercator (UTM) coordinates using the

LocationManager provided by the Android API. As il-

lustrated in Figure 2, the UTM coordinate always corresponds

to a square area where the side depends on the resolution of

the coordinate and any point that lies within a square of a

particular resolution has the same UTM coordinate value.

Second, all throughput-location pairs are sent to the align-

ment module, which takes these sample points and estimate

the HTTP throughput as the bytes received between sam-

ple points divided by the time between sample points. An

Exponential Weighted Moving Average (EWMA) is used to

update the throughput estimate for each location. The align-

ment module is also responsible for updating the transition

frequencies/probabilities between locations. Transitions with

high frequencies indicate paths often taken by the user (e.g., a

commuter). Combining the information of the current location

with information for surrounding locations we can estimate the

performance for longer time durations.

Finally, a query interface is provided that allow other mod-

ules, such as the download scheduler to query the network per-

formance map about predicted/expected HTTP performance

for the current location and along predicted future paths.

B. Download scheduler

The current download scheduler uses a FIFO queue to

handle notifications, and does not download objects out of

order. When the device receives a notification about data

available at the server, the scheduler uses the above query API

to estimate the expected download performance and determine

if the client should request the next file from the server or

suspend download until reaching a better location.

To determine opportune times for downloads, we employ

a simple threshold policy based on the expected average

HTTP throughput, observed along the expected path over the

duration of the download. When the expected average HTTP

throughput exceeds the threshold or is unknown (i.e., the client

is missing estimates for this location) a download is scheduled;

otherwise, we wait until a zone change is detected, upon which

a new estimate is requested from the map manager. While the

threshold easily could be made adaptive, in our experiments,

we use the average throughput seen by the client.

IV. TRACE-BASED EMULATION EVALUATION

A. Mobility scenarios

While our framework allow arbitrary location and band-

width traces to be used, the traces used for our performance

 

0

500

1000

1500

2000

2500

3000

3500

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5 5,5

Kbps

Km

(a) Commuter path (b) B/w variation

Fig. 3: Bus scenario (5.8 km over 9 min 40 sec).

 

0

500

1000

1500

2000

2500

3000

3500

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5 5,5

Kbps

Km

(a) Commuter path (b) B/w variation

Fig. 4: Ferry scenario (5.9 km over 9 min 52 sec).

evaluation were collected by a research group in Norway and

captures two commuter scenarios [5], in which the commuters

traveling into Oslo using bus (Figure 3) and ferry (Figure 4).2

In the bus scenario the average bandwidth (Figure 3(b))

vary greatly, but the minimum bandwidth of approximately 1.5

Mbit/s normally should provide the client with good download

speeds. In the ferry scenario, the available bandwidth depends

more strongly on the position along the path. The signal is

strongest when the ferry is close to land, with an average

bandwidth of 1.5 Mbit/s. In contrast, the signal far from land

are weak. Although the signal is never completely gone while

crossing the Oslofjord, the user rarely experience bandwidths

greater than 1 Mbit/s in this segment of the path.

The location traces (sequence of time-location pairs) are

feed to the mock location API in our emulation framework,

making the mobile device believe it is in that particular lo-

cation. The bandwidth traces (sequence of location-bandwidth

pairs) are feed to the network emulator causing the client to

see the bandwidth suggested by the trace.

B. Notification workload

Notification traces were generated by collecting tweets with

specific hashtags using the Twitter API.3 The collection was

performed for 3-4 hours for hashtags with high, medium,

and low popularity, such as to allow traces with different

notification frequencies. Each notifications trace include a list

of unique tweet ids and their timestamps. The tweet id is used

to keep track of which object the clients will try to download.

C. Evaluation

Our evaluation framework allow different policies to be

compared under the same mobility scenarios and notification

patterns. For illustration, the performance of the geo-smart

scheduler have been evaluated using network performance

maps with both 100m and 1000m location resolution, as well

2As there only is a limited number of traces available in the Riiser
datasets [5], we also generated synthetic traces based on the original traces [3].

3Twitter, REST API v1.1, https://dev.twitter.com/docs/api/1.1, 2013.



(a) Bus scenario

(b) Ferry scenario

Fig. 5: Download times (measured in milliseconds).

as with a naive scheduler, which tries to download the content

from the server as soon as a notification is received.

Figures 5(a) and 5(b) show the average file download time

(per file) for different files sizes, for each of the policies, under

the bus and ferry scenario, respectively. We note that there are

between 10-20% reductions for the ferry scenario when using

high granularity, but considerably smaller improvements for

the bus scenario. The bigger savings in the ferry scenario are

due to the scheduler avoiding to download during the times

when the ferry is far from shore and performance is poor.

The relatively small improvements, especially for the bus

scenario, are due to high variations in the network conditions,

making the predicted values very unreliable. For example,

we observe a normalized Root Mean Square Error (RMSE)

between 0.3 and 0.5 in most locations, and high correlation

(0.89 Pearson correlation coefficient) between the normalized

RMSE and the coefficient of variation.

We note that part of the improvements with the 1000m

granularity may come from the fact that there are more mea-

surements for each location. Mobility can also play a factor in

some cases. This is interesting as the biggest improvements

in the ferry scenario is achieved for the 50KB case (50%

reduction) for which transition between locations are unlikely.

While these results show that there are some potential for

using geo-smart schedulers, more importantly, the case-based

study clearly illustrates how our emulation framework can

provide head-to-head performance comparisons of alternative

implementations under relatively realistic scenarios in a simple

and inexpensive lab environment.

V. RELATED WORK

Dummynet [4] and other network emulators [6]–[8] have

been used to evaluate real systems under a wide range

of scenarios. Different network performance maps [2], [9],

[10] have been shown useful, including to help avoid TCP

retransmissions [9] and to opportunistically schedule traffic

across different provider links [10]. Perhaps most closely to

ours is the work by Riiser at al. [11], who use the same

traces as used in this paper to simulate the performance of

a system that combines a reactive buffer-based HTTP-based

Adaptive Streaming (HAS) algorithm with a simple prediction

model to determine which video quality should be requested

as a commuter watching video moves through the network.

In contrast to these works, we present a relatively simple

dummynet-based [4] evaluation framework that allow us to

mock both the clients location and network conditions, and

evaluate the advantage of a geo-smart scheduler that schedule

downloads of (single quality) contents at opportune times,

under a scenario in which the client has a single provider.

VI. CONCLUSIONS

This paper presents a simple approach for geo-location-

based emulation and mobile application evaluation that allow

repeatable experiments on real hardware, as well as the design,

implementation, and evaluation of a geo-smart scheduler. The

geo-smart scheduler implements a notification service that

maintains network performance maps to determine opportune

times to download contents from the applications servers.

Our emulation environment offers an effective way of test-

ing applications in realistic mobility scenarios with minimum

effort. Since the emulation environment uses real hardware, we

can use all the features offered by mobile devices, including

simple and fast software updates. By reducing the burden of

the developer, while providing a framework for easy head-to-

head protocol comparisons, this simple framework can greatly

help designers improve their mobile applications. Future work

include the design of adaptive policies and multi-granularity

maps that make use of more advanced prediction algorithms.

REFERENCES

[1] J. Yao, S. S. Kanheren, and M. Hassan, “An empirical study of band-
width predictability in mobile computing,” in Proc. ACM WiNTECH,
Sept. 2008.

[2] J. Yao, S. S. Kanhere, and M. Hassan, “Improving qos in high-
speed mobility using bandwidth maps,” IEEE Transactions on Mobile

Computing, vol. 11, no. 4, 2012.
[3] A. G. Estévez and N. Carlsson, “Geo-location-aware emulations

for performance evaluation of mobile applications,” 2014. [Online].
Available: http://www.ida.liu.se/∼nikca/papers/wons14.html

[4] M. Carbone and L. Rizzo, “Dummynet revisited,” ACM SIGCOMM

Computer Communication Review (CCR), Mar. 2010.
[5] H. Riiser, P. Vigmostad, C. Griwodz, and P. Halvorsen, “Commute path

bandwidth traces from 3g networks: Analysis and applications,” in Proc.

ACM MMSys, Feb/Mar. 2013.
[6] J. Ahrenholz, “Comparison of core network emulation platforms,” in

Proc. IEEE MILCOM, Oct/Nov. 2010.
[7] E. Hernandez and A. S. Helal, “Ramon: Rapid-mobility network emu-

lator,” in Proc. IEEE LCN, Nov. 2002.
[8] I. Ku, J.-T. Weng, E. Giordano, G. Pau, and M. Gerla, “Running

consistent, parallel experiments in vehicular environment,” in Proc.

WONS, Jan. 2011.
[9] K. Hojgaard-Hansen, T. K. Madsen, and H.-P. Schwefel, “Reducing

communication overhead by scheduling tcp transfers on mobile devices
using wireless network performance maps,” in Proc. EW, Apr. 2012.

[10] J. Yao, S. S. Kanhere, and M. Hassan, “Geo-intelligent traffic scheduling
for multi-homed on-board networks,” in Proc. MobiArch, June 2009.

[11] H. Riiser, T. Endestad, P. Vigmostad, C. Griwodz, and P. Halvorsen,
“Video streaming using a location-based bandwidth lookup service for
bitrate planning,” ACM TOMCCAP, vol. 8, no. 3, July 2012.


