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Abstract—Cloud computing offers an attractive solution
for modern computer games. By moving the increasingly
demanding graphical calculations (e.g., generation of real-
time video streams) to the cloud, consumers can play games
using small, cheap devices. While cloud gaming has many
advantages and is increasingly deployed, not much work has
been done to understand the underlying factors impacting
players’ user experience when moving the processing to the
cloud. In this paper, we study the impact of the quality of
service (QoS) factors most affecting the players’ quality of
experience (QoE) and in-game performance. In particular,
these relationships are studied from multiple perspectives using
complementing analysis methods applied on the data collected
via instrumented user tests. During the tests, we manipulated
the players’ network conditions and collected low-level QoS
metrics and in-game performance, and after each game, the
users answered questions capturing their QoE. New insights
are provided using different correlation/auto-correlation/cross-
correlation statistics, regression models, and a thorough break-
down of the QoS metric most strongly correlated with the users’
QoE. We find that the frame age is the most important QoS
metric for predicting in-game performance and QoE, and that
spikes in the frame age caused by large frame transfers can
have extended negative impact as they can cause processing
backlogs. The study emphasizes the need to carefully consider
and optimize the parts making up the frame age, including
dependencies between the processing steps. By lowering the
frame age, more enjoyable gaming experiences can be provided.

Keywords-Cloud computing; cloud gaming; QoE; frame age;
single-player; multiplayer; gaming; fast-paced; performance

I. INTRODUCTION

Modern computer games demand more and more com-
puting, while consumers want smaller and cheaper devices.
A solution to this mismatch is to offload heavy graphical
calculations to the cloud. This enables services such as
mobile gaming, where the client device only obtains user
inputs and displays a real-time game video stream generated
by one or more cloud servers.

Cloud computing offers an effective way to deliver high-
performance services to players who lack the necessary
computation resources. In the context of cloud gaming, this
approach has positive effects for both players and devel-
opers. For example, the reduced need for high-performance
computations on the client side allows players to use cheaper
devices and improves battery life. Second, since players
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only need a ”thin client”, they can use regular home enter-
tainment devices rather than custom-made gaming devices.
This significantly extends the pool of customers that game
developers can target. Third, the game-specific code would
only need to be stored on the server, reducing piracy risks
for the developers [1].

Driven by these advantages, there has been a significant
increase in the use of cloud gaming services. The global
cloud gaming market is set to generate $3.2 Billion by
2023 [2]. However, although this approach has many ad-
vantages and is increasingly deployed, not much work has
been done to understand the factors impacting the gamer’s
user experience when processing is moved to the cloud.

In this paper, we study what objective quality of service
(QoS) factors best explain the players’ quality of experience
(QoE) and in-game performance, and how each impacts
the player experience. To capture these relationships from
multiple perspectives and to allow the use of selected,
complementing analysis approaches (taking into account
the impact of game, player, and win/loss, for example),
we designed a series of user-based tests in which two
gamers played a fast-paced single-player game and a fast-
paced multiplayer game many times under different network
conditions. We carefully manipulate the players’ network
conditions (e.g., end-to-end latencies and packet loss rates)
and collect low-level QoS metrics and in-game performance
during the different tests. After each game, the users answer
questions regarding their QoE, as measured by the Mean
Opinion Scores (MOS). In total, the study consists of 325
single-player games and 143 multiplayer games, resulting
in over 2,340 (1,625+715) minutes of detailed per-frame
measurement data.

New insights are provided using different correlation-
based statistics, regression models, and a careful break-
down of the QoS metric most strongly correlated with
the users’ QoE. To provide context, we first present a
brief scenario-based analysis that studies the impact of
basic input parameters (e.g., end-to-end latencies and packet
loss rates). Second, we characterize and identify the QoS
metrics with the most significant impact on QoE metrics
and the players’ in-game performance. Here, we present an
extensive correlation analysis using Pearson, Kendall, and
maximal information-based correlation (MIC) [3]. Third, we
use multi-factor regression models to provide insights into
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how well combined sets of factors explain whether users
experience good/bad QoE. Fourth, we study the impact of
individual player differences and whether a user won/lost a
game. Fifth, we present a detailed analysis of the frame age,
defined as the time it takes before the frame is displayed to
the user, and the QoS metric that we found best explains QoE
on its own. This analysis includes basic regression modeling
and an in-depth frame-by-frame analysis in which we look at
auto-correlations, cross-correlations, and other dependencies
between the processing steps making up the frame age under
different conditions. This analysis highlights dependencies
and independencies that may be important for both QoE
modeling and performance optimizations of future solutions.

Our analysis shows that frame age is the most important
QoS metric for determining the players’ in-game perfor-
mance and their QoE; that end-to-end latencies typically
impact QoE more than packet losses; that temporary spikes
in frame age are often the results of long frame transfers;
and that these spikes can have a significant negative impact
on QoE long after they first took place as they can cause
a backlog in the decoding process. These results emphasize
developers’ need to consider and optimize the different parts
making up the frame age and reduce time dependencies
between them to reduce long-drawn negative effects of
potential spikes. Our results suggest that developers and
providers can ensure that their users enjoy high-quality
gaming experiences on basic mobile devices by providing
users with low average frame age and minimizing the size,
frequency, and duration of frame-age spikes.

Outline: Section II reviews related work. Section III
presents our methodology. The following four sections
present our scenario-based analysis (Section IV), QoE mod-
eling using application-specific QoS metrics (Section V), an
analysis of the impact of non-QoS factors (Section VI), and
a frame-by-frame analysis of the different parts of the frame
age (Section VII). Finally, Section VIII presents conclusions.

II. RELATED WORK

The works most closely related to ours can broadly be
classified into two categories: (i) user studies measuring
the QoE under different network conditions, and (ii) system
evaluations and optimizations targeting application-specific
QoS metrics.

User studies measuring QoE: Several works have stud-
ied the effects of latency on gaming, either regular or
cloud-based [4]–[7]. For example, Jarschel et al. [8] present
a subjective user study of QoE showing that users are
more tolerant to packet loss when playing fast-paced games
than slower games such as role-playing games. Clincy and
Wilgor [7] find that the games become almost unplayable
at a packet loss of 1%. Claypool and Finkel [5] study
the effects of latency on player performance in the context
of arcade-type games like ”Crazy Taxi”. By measuring
player scores and subjective opinion scores, they show that

player performance degrades almost linearly with increasing
latencies. Others have studied the impact of latencies in first-
shooter games [6], with findings suggesting that a round-trip-
time (RTT) less than 150 ms is required for a good gaming
experience. Raeen and Petlund [4] studied the impact of
delays within the local systems on the gaming experience,
but did not measure players’ in-game performance or the
impact of network effects and/or distributed computing.
Others have considered how performance relates to QoS [9]
and QoE [10], and how performance degrades when delays
are introduced [11].

None of the above works presents a comprehensive cor-
relation and auto-correlation analysis of application-specific
QoS metrics and the QoE or in-game performance. Instead,
they typically only consider the impact of the network
parameters under direct control (i.e., RTT and packet loss).
Furthermore, we are not aware of any prior work on QoE
that provides a breakdown of frame age and its impact on
QoE. This is an important aspect, as it is the application-
specific QoS metric that most strongly correlates with our
QoE metrics and in-game performance. In contrast to most
prior work, but similar to Hu et al. [12], we use three
different QoE metrics, each providing a different perspective
into the users’ experience.

System evaluations and optimizations of application-
specific QoS: Many works characterize or optimize the
performance of these systems. Examples include video
encoding optimizations for cloud gaming delivery [13],
[14]; virtualized GPU resource scheduling [15], performance
benchmarking [16], [17]; the development of a distributed
game engine that allows the graphical rendering to be dy-
namically executed and moved across cloud VMs and client
devices [18]; characterizations of the interaction delay and
the responsiveness on the cloud-based platform when adding
network latencies [19]; measurements to understand the im-
pact of the latencies, packet losses, and bandwidths on frame
rates and graphical quality of cloud-based platforms [20], or
analyzing the impact that frame rates or graphical quality
have on QoE [21]. However, these papers typically do
not evaluate the actual QoE or in-game performance. One
exception is the work by Hsu et al. [12], who use trace-
driven simulations based on a user study in which QoE is
measured to demonstrate the effectiveness of their optimized
frame-rate and bitrate adaptation algorithms.

Frame age: We are not the first to highlight the impor-
tance of frame age. Yates et al. [1] use the recent mod-
eling concept of ”age of information” to optimize a cloud
gaming system. Although their work is theoretic, they stress
the importance of future work (empirically) determining
”whether the average frame age is an effective measure of
user-perceived QoE ...”. Our work provides such empirical
and data-driven support.



Figure 1: Streaming setup

III. DATA COLLECTION METHODOLOGY

High-level setup: Figure 1 shows our test setup. Steam
Remote Play [22] is installed on both the server and the
client. The client runs on a mid-power laptop with integrated
graphics (Intel i5 8250U, 8 GB RAM), while the server
runs on a high-powered desktop computer (Intel i7 8700K,
Nvidia GTX 1080 Ti, 16 GB RAM). At a high level, the
client machine captures user inputs, sends these to the server,
and displays video streams rendered and delivered frame-by-
frame by the server. In addition to rendering video streams,
the server also collects and logs statistics (including some
client-side statistics) and player performance. Finally, we
use Clumsy [23] to introduce artificial network latencies and
packet losses. These network parameters allows most prac-
tical network conditions to be emulated. In our multiplayer
tests, we also use asymmetric (and adaptively assigned)
latencies to penalize the better player and achieve more even
winning probabilities.

Per-frame QoS metrics and per-game summary statis-
tics: For each game scenario, Steam Remote Play sum-
marizes data such as average bitrate for the client and
server, average ping times, average bandwidth usage, and
much more. Furthermore, we periodically (every 10 seconds)
poll video trace information from the client through Steam
Remote Play. These traces contain detailed frame-by-frame
information (for the last 10 seconds) and per-second network
statistics. The traces are compressed and saved on the server.
Table I summarizes the per-frame metrics analyzed here. For
our per-game analysis, we also calculate and analyze the
mean, median, maximum, minimum, and standard deviation
values for each of these metrics.

QoE and in-game performance metrics: At the end
of each game, when a player either died or time run out,
we measure the user’s Mean Opinion Score (MOS). In
particular, we ask the user for its subjective opinion on a 7-
point scale (1 worst and 7 best) regarding (i) the graphical
quality, (ii) the quality of the interactivity, and (iii) their
overall opinion score. These three questions were inspired
by Hsu et al. [12], although we opted to use seven levels
rather than five. We note that both 5 and 7 fall within the
criteria for the number of rating levels that a person generally
can distinguish between [24] and empathize that a MOS
score should not be interpreted as a precise number but as a
statistical measurement [25]. We will therefore not compare

Table I: QoS metrics collected and stored by server
Per-second statistics: Ping (network latency), server bandwidth usage,
client bandwidth usage, link bandwidth (maximum available), packet
loss rate (%)
Per-frame statistics: Frame size, frame age (from creation to when
displayed), capture time, encode time, transfer time, decode time,
complete time (the wait time until the frame can be displayed)
Per-game statistics: Summary stats (i.e., mean, median, min, max,
stdev) for all above metrics, as well as: ”dropped slow network” (%
frames dropped due to transfer took too long), ”dropped lost network”
(% lost during transfer), ”dropped slow decode” (%), ”dropped corrupt
decode” (% ), ”dropped late” (% too long time to display), ”dropped
reset” (% ), and ”dropped total” (% frames dropped in total)

the absolute values that we obtain against those obtained by
Hsu et al. [12]. Finally, we record the in-game score, which
the player obtained playing the game, and use as a measure
of the player’s in-game performance.

Single player tests: The single-player tests were per-
formed using ”Geometry Wars: Retro Evolved” [26]. This
is a 2D game in which the player plays a small ship inside
a larger box where enemies of different sizes and abilities
are spawned. The player can move the ship inside the box,
earn points by shooting enemies, and can clear the screen
of enemies using bombs. (Use of bombs earn the player no
points.) The player starts the game with three lives and three
bombs. Figure 1 includes a (compressed) game screenshot.

During a test session, the user is first given a chance to
familiarize itself with the game. Each user then plays 25
games per session, where each game captures a new set of
network conditions.

The first and last game in each session are used as baseline
tests. During these games, no additional delays or packet
losses are introduced beyond those that occur naturally in
our high-speed local area network (LAN). To measure the
relative impact of added delays and packets losses on player
performance, at the end of each session, the in-game score of
the other 23 games of the session are normalized compared
to the corresponding average baseline score.

Participants played each game until they ran out of lives
or for at most 5 minutes. The time limit ensures that the
players’ experience is still relevant at the end of the test [27].

Between the two baseline tests, the users go through a
series of test scenarios in random order. To capture the
impact of end-to-end latencies, we include experiments with
eight levels of end-to-end latencies (0, 25, 50, 75, 100, 125,
150, 175, 200 ms) for a series of low-loss scenarios without
any additional packet losses and with five latency levels (0,
50, 100, 150, 200 ms) for a series of high-loss scenarios
with 1% packet loss rate. Similarly, we include experiments
with eight packet-loss levels (0, 0.25, 0.5, 0.75, 1, 1.25, 1.5,
1.75, and 2%) for a series of low-delay scenarios without any
additional delay and with five levels of packet-loss rates (0,
0.5, 1, 1.5, and 2%) for a series of high-delay scenario with
100ms end-to-end delay. Except for the baseline scenario
(first + last), we do not repeat any experiment scenario twice
during a session.



Multiplayer tests: Our multiplayer tests were performed
similarly to the single-player tests, but with a few dif-
ferences. First, two gamers compete against one another.
Second, we use the game Speedrunners [28]. Third, we only
alter the latency; not the packet losses. Finally, and most
importantly, we adapt the network delays for each player on
a game-by-game basis so to compensate for skill differences
and more fairly balance their win probabilities. We use a
simple adaptive algorithm for this purpose. During the first
game of a session, both players start with an added latency
of 50 ms. Then, after each new match, the delay of the player
that won the n (n ≥ 1) most recent games is increased by
a factor f = xn, where x depends on the difference in the
score at the end of the match (best of 5), and the losing
player has its delay reduced by dividing its current delay
with the same factor f . Here, we set x = 1.2 if the score
was 3-0, x = 1.15 if it was 3-1, and x = 1.1 if it was 3-2.

Dataset limitations and reproducibility: Our data col-
lection is only performed using a single platform (Steam
Remote Play), we only use two example games (both fast-
based: one single-player and one multiplayer), and we only
performed experiments using two players (that played a
lot of games). The choice to use Steam Remote Play
is motivated by the desire to collect detailed per-frame
information and its popularity as a service. The choices
to only use two games and have two players play these
games many times (rather than having many players each
playing fewer times) were made so to allow us to build and
compare more accurate models using four complementing
approaches (i) per-player models, (ii) per-game models, (iii)
as an aggregate across players, and (iv) using combined
multivariate regression models capturing player or game-
related differences using categorical variables to capture
players, games, and win/loss, for example. This is important
for our non-QoS related analysis in Section VI. For improved
reproducibility, tools and datasets are made available.1In
Section VII-A we use detailed system measurements (e.g.,
memory, disk, bandwidth, and CPU utilization) to validate
that system constraints and data collection does not impact
our results.

IV. SCENARIO-BASED QOE ANALYSIS

To understand the impact of end-to-end latencies and
packet losses on QoE and in-game performance, we first
present a scenario-based analysis. These results are for the
single-player sessions.

Figure 2 shows a box plot with the three QoE met-
rics (MOS, graphical, and interactive) for all scenarios of
consideration. In our box plots, we show the minimum
(bottom marker), 25-percentile (bottom of box), median
(marker inside box), 75-percentile (top of box), maximum

1Scripts and datasets are made available here: https://www.ida.liu.se/
∼nikca89/papers/ucc2020.html

(top marker), outliers (dots), and determine outliers using the
commonly used 1.5-IQR rule. If the results from a scenario
are displayed a second time (from left-to-right), we use
light-grey text in the scenario label. From left-to-right, we
show the baseline scenarios (no added delay or losses), eight
low-loss scenarios (no added losses) with varying latencies,
eight low-latency scenarios (no added latency) with varying
packet loss rates, five high-loss scenarios (1% losses) with
varying latencies, and five high-delay scenarios (100 ms
default latency) with varying loss rates. Figure 3 shows the
corresponding plot for the normalized in-game performance
score (i.e., the ratio between the in-game score of a game
and the average score for the two baseline tests from the
same session).

We observe downward trends in the QoE scores and in-
game performance for all four sub-groups (for clarity, sub-
groups are separated using colors in Figure 3 and separator
lines in Figure 2) as the network conditions worsen (i.e.,
the end-to-end latencies or loss rates increase). However,
in general, for the latency and loss rate ranges considered
here, we found that the highest latencies (i.e., 200 ms) have
a greater negative impact on player performance than the
highest packet loss rates (i.e., 2%). This finding matches
observations from fast-paced games for which users appear
more tolerant to packet losses than to high latencies [29].

Having said that, the impact of packet losses is higher
when the delays are high. For example, while we observe
limited impact of packet loss for the low-delay scenarios
(second group), the negative impact of packet losses is much
greater for the high-latency scenarios (fourth group) with
a default latency of 100 ms. This is captured by a much
sharper decline in QoE scores and in-game performance for
this group of scenarios.

In general, the increasing latencies and packet losses
provide compounding negative effects. We note that in-
creasing end-to-end latencies still appear to have a bigger
negative effect than increasing packet losses also for the
most challenging scenarios we consider. For example, the
worst-case scenario is the one with 200 ms latency and 1%
packet loss rate, rather than 100 ms latency and 2% loss
rate. Both these scenarios see as doubling in one of the
two parameters compared to the scenario with 100 ms delay
and 1% packet loss. In addition to having the worst QoE
scores, we can note that the players typically did not reach
the 10,000 points limit needed to reach the first in-game
milestone for this scenario.

Similar arguments about the relative impact of latencies
vs. packet losses can be made by comparing the relative
improvements when halving the latency (i.e., 50 ms and 1%
loss rate) compared to halving the loss rate (i.e., 100 ms
and 0.5% loss rate) relative to the shared high latency/loss
case (i.e., 100ms and 1% loss rate). Also, in this case, the
change in latency have significantly greater impact on the
QoE and in-game performance than the change in loss rate.
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Figure 3: Normalized in-game performance score (compared to baseline) across all network condition scenarios

All of this indicates that the latency impacts the player more
than packet loss for the game considered here.

Comparing the QoE metrics, it is also interesting to note
that the interactive score deteriorates the most across the
scenarios. This result is another indicator of the fast-paced
nature of the game. The players appear to notice changes in
the responsiveness of the game but do not appear to be as
concerned about the visual aspects (i.e., the graphical score).
This is in sharp contrast to role-playing games, for which
packet losses appear to be a more important factor [8].

Another interesting observation is the drop in the players’
scores for scenarios with 100ms or higher latencies. This
observation is consistent with the findings by Claypool and
Finkel [5], who observed a 25% downgrade when increasing
the delay by 100ms. (We observed a 50% downgrade from
100 ms to 200ms.) Finally, when comparing with other
works, it should be noted that packet losses appeared to have
much smaller impact for us (and Suznjevic et al. [30]) than
reported by Clincy and Wilgor [7]. For example, while they
observed a significant degradation already for 1%, the QoE
and in-game performance remained high even for a 2% loss
rate (especially in low-latency scenarios) in our experiments.
Again, this difference is most likely due to differences in the
nature of the games and how the implementations handle
packet losses.

V. QOE MODELING USING QOS METRICS

This section presents correlation (Section V-A) and regres-
sion modeling (Section V-C) analysis for determining the
application-specific QoS metrics best explaining QoE and
in-game performance. In this section, we analyze all single-
player sessions as an aggregate. Section VI extends our
methodology and analysis to account for non-QoS factors

such as skill/opinion differences, game differences (single-
player vs multiplayer), and whether a player wins/loses.

A. Correlation Analysis

To compare how individual QoS metrics affect the play-
ers’ QoE and in-game performance, we first performed a
correlation analysis. For this analysis we used two tradi-
tional correlation metrics (Pearson’s r and Kendall’s τ ) and
a more recent technique, called the maximal information
coefficient (MIC) [3]. Pearson’s r is perhaps the most pop-
ular correlation metric. It assumes a linear relationship and
Gaussian errors. The other two metrics are less restrictive (in
their assumptions) and provide complementing perspectives.
Kendall’s τ is a rank-based metric that captures the ordinal
association between two measures. Both Pearson’s r and
Kendall’s τ use a range [-1,1]. A coefficient close to 1
(or -1) indicates a perfect linear relationship or a perfect
monotone relationship, respectively, and random data would
have a value of 0. In contrast, MIC uses a range [0,1], only
measures how strong the relationship (linear or non-linear)
between the two variables is (not the direction or type of
relationship), and random data has a MIC score of 0.18.

Figure 4 presents correlation results for the QoS metrics
of most interest. For each correlation metric, we include
results for all three QoE metrics and the normalized in-game
performance. When interpreting this figure, note that Pearson
and Kendall can have values within the full range (red-to-
blue) but MIC only can have positive values (white-to-blue).

Perhaps the most important finding is the importance
of the average frame age. This metric has the strongest
correlation of all QoS metrics in 11 out of 12 cases (three
correlation metrics × four QoE/performance metrics). Only
in the case of the graphical score using MIC does it lose out,



Figure 4: Correlation analysis of application-specific QoS metrics and the three QoE metrics and the normalized in-game
performance metric, using three different correlations metrics (Pearson, Kendall, MIC)

and in that case it is ranked second, closely after the average
encoding time, which as we will see in Section VII makes up
a significant fraction of the frame age. The importance of the
average frame age and its standard deviation is also visible
when looking at the top-5 correlations using each correlation
metrics. See Table II. For all three correlation metrics, these
two frame-age metrics are together responsible for the four
top-4 entries of each respective top-5 lists. These entries are
significantly correlated. For example, the highest p-value for
any of the top-5 entries in Table II are 2.20·10−26 (Pearson),
3.38 · 10−29 (Kendall), and bounded by 1.28 · 10−6 (MIC).
Furthermore, the largest p-value value for any of the correla-
tions associated with the average frame age is no larger than
1.88 ·10−16 (MIC with 1.28 ·10−6). The very small p-values
observed for average frame age (e.g., all much smaller than
p < 0.05) confirms that it always is significantly correlated
with the QoE and in-game performance, regardless of metric.

There are, however, many other metrics that are much
less correlated with QoE and in-game performance than
the frame age. For example, the null hypothesis of ”no
correlation” is rejected (in favor of the alternative hypothesis
of ”non-zero correlation”) with 95% confidence (p < 0.05)
in only 44.97% (Pearson), 34.02% (Kendall) and 36.98%
(MIC) of the total pairwise cases shown in Figure 4.

Looking closer at the correlation matrices, we also ob-
serve strong correlations for the average ping time (with
QoE metrics) and the two transfer time metrics (with QoE
metrics). In contrast, we observe very small (individual)
correlations for the standard deviation of both frame size and
server bandwidth. As long as the averages were sufficiently
high, we did not observe big QoE penalties for sessions with
big variations in frame sizes or bandwidths.

We have not observed much difference between the best

Figure 5: QoE-to-QoE correlations

metrics when using the Pearson and Kendall correlations;
e.g., the same correlations show up in almost the same
order. One reason for this is that some of the relationships
indeed are of linear nature. Furthermore, the Pearson scores
typically are slightly higher than the corresponding Kendall
scores, indicating that the linear correlations are stronger
than the ordinal association measured by Kendall. Visually,
the MIC differs the most. This is primarily due to MIC using
a different scale (without negative values). However, in the
end, high values (dark cells) are observed for roughly the
same columns and the average frame age is still the best
predictor for three out of four QoE/performance metrics.

Finally, when interpreting the above results, it should
also be noted that the QoE and in-game performance met-
rics themselves are highly correlated. This is illustrated in
Figure 5. Here, we note that the opinion score (MOS) is
most strongly correlated with the interactive scores (pairwise
correlations of 0.97, 0.93 and 0.84), and relatively less
correlated with the graphical scores (0.85, 0.76, and 0.55).
This is most likely an effect of the game’s fast-paced nature.

In summary, the above results show that the frame age is
a prominent measurement to determine the players’ QoE



Table II: Top-5 highest QoS-QoE correlations using each correlation metric
Rank Pearson Kendall MIC

1 Avg. Frame Age & Gen. Op. Score Avg. Frame Age & Gen. Op. Score Avg. Frame Age & Gen. Op. Score
2 Avg. Frame Age & Inter. Score Avg. Frame Age & Inter. Score Avg. Frame Age & Inter. Score
3 St. Dev Frame Age & Inter. Score St. Dev. Frame Age & Inter. Score St. Dev Frame Age & Gen. Op. Score
4 St. Dev Frame Age & Gen. Op. Score St. Dev. Frame Age & Gen. Op. Score St. Dev Frame Age & Inter. Score
5 Avg. Ping Time & Gen. Op. Score Avg. Transfer Time & Gen. Op. Score Avg. Ping Time & Gen. Op. Score

Figure 6: QoE for different average frame ages (50 ms bins)

Figure 7: Normalized in-game performance for different
average frame ages (50 ms bins)

(regardless of QoE metric). We also note that some of
the QoS metrics making up the frame age also scores
high in some cases (e.g., the transfer time and encoding
time), making them promising components to optimize when
wanting to reduce the frame age and improve QoE.

B. Age-based QoE Analysis

Motivated by the above observations, we next present
a brief, initial characterization how the average frame age
impacts the three QoE metrics and the in-game performance.
The frame age is further analyzed in Sections VI and VII.

Figures 6 and 7 present box plots for the three QoE
measurements and the normalized in-game performance,
respectively, as a function of the average frame age. Here,
we use a bin size of 50 ms. As expected from the correlation
results above, all four metrics degrade significantly with
increasing frame age. For example, for the games with an av-
erage frame age of 0-50 ms we see a median normalized in-
game score of 0.872 (0.925 if including baselines), whereas
the median scores quickly drops to 0.203 when the frame
age is 150-200 ms. Furthermore, while we observe some
normalized scores above one (outperforming the baseline)
for all bins up to a frame age of 200 ms, most normalized
scores above one occur in the 0-50 ms bin.

Looking at the three QoE metrics, we can clearly see that
the opinion score and interactive score behave very similarly,
and that they both are much more affected by the frame age
than the graphical score is. The fast-paced nature of the game
is likely a contributing factor to these differences.
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Figure 8: Percentage of model occurrences for each predictor

The above observations again highlight that frame age is
a good QoS proxy for users’ in-game performance and QoE.

C. Model-based Parameter Selection

The frame age is not the only good predictor of QoE
and in-game performance. In fact, the frame age itself can
be seen as the sum of multiple timing-related QoS metrics.
Some of these QoS metrics are themselves correlated, while
others may help explain complementing aspects. In this
section, we use multivariate regression models to identify
the set of QoS variables that together best model the three
QoE metrics and the normalized in-game performance.

For this analysis, we performed a best subset regression
analysis on the data. To ensure that collinearity has the
smallest possible impact, we have used Mallow’s Cp to
assess the models. For the remaining models, we have
calculated how often each predictor variable occurs. Figure 8
shows the percentage of times that each QoS metric occurs
in the models obtained using the above method. Note that
higher percentages (darker boxes) suggest that the metric
typically is included in the corresponding multivariate re-
gression model, and that the variable (together with the
other frequently occurring variables) are among the best
predictors.

Interestingly, while the average frame age does show up
in many models, it is not the most frequently occurring QoS
metrics. Instead, there are other metrics that individually cor-
relate less strongly with the QoE (or in-game performance)
that are included in more models. These metrics provides
complementing information to the other metrics included
in the models and therefore allow the combined models
to explain more of the variations in the QoE. Examples of
such metrics are the average and standard deviation of the
server bandwidth and frame sizes. These metrics have much
weaker individual correlations, but are included more fre-
quently than the frame age as they contribute complementing
information not contributed by other included metrics. We
also note that some of the timing metrics that make up the



frame age (i.e., capture time, convert time, encode time,
transfer time, decode time, upload time, and complete time;
see breakdown in Section VII) have many model occurrences
for at least one of the four QoE/performance metrics.

In many cases, the secondary metrics provide comple-
menting information for different models and their weights
therefore differ between the models of the four QoE and
in-game performance measures. (See metrics with big fre-
quency differences; covering a span from light to dark colors
in the same column.) Examples of QoS metrics that only are
frequently included in the models of one QoE/performance
metric are the link bandwidth (only in-game performance)
and the upload time (in-game performance) and the encoding
time (graphical score).

VI. NON-QOS FACTORS IMPACTING QOE

Thus far we have seen that frame age is the QoS metric
that best explains the three QoE metrics and in-game perfor-
mance, and that some of the sub-components making up the
frame age may provide added value to multivariate models
(as they contribute complementing information). In this
section, we consider the impact that some important non-
QoS metrics have on these observations, and in Section VII
we provide a breakdown of the frame age and analyze
autocorrelations, cross correlations, and other relationships
between the components making up the frame age.

While QoE and in-game performance clearly depend on
various QoS factors, they are also impacted by non-QoS
factors. Here, we extend our analysis to account and control
for player-specific biases and (in the multiplayer context)
whether a player wins or loses.

A. Player Differences

Clearly, the opinions and performance of any two players
will never be the same. It is therefore valuable to take into
account the impact that each individual player has on the
model. For this purpose, we (i) repeated the analysis for
each player individually and (ii) extend the regression-based
analysis using categorical variables, allowing us to account
for player identity within a single model. Both these analysis
methods are well suited for our dataset, as such analysis is
best performed on datasets including only a few players that
play many games. (As should be clear now, our methodology
and dataset was designed with the analysis presented in
Section VI in mind.)

Figure 9 presents a per-player breakdown of the QoE
metrics and normalized in-game performance as a function
of the average frame age. While this plot highlight some
differences in the QoE scoring of the two players (e.g.,
player 1 tends to provide higher graphics scores compared
to player 2, for which we see a sharper decline in opinion
scores), the general trends are relatively similar. When
looking at the in-game performance, we observe some
differences that might be related to skill differences between

Figure 9: QoE and in-game performance for the two players
during games with different average frame age (50 ms bins)

Figure 10: Individual model occurrences of predictors bro-
ken down for player 1 (PL1) and player 2 (PL2)

the players. For example, for almost all frame ages, player
1 has noticeably larger variation in its normalized in-game
performance compared to player 2. This also results in player
1 having more instances where the player outperforms the
baseline tests within the same session.

We next look at the model occurrences of each QoS metric
when we use data from one player at a time. Figure 10
presents these results. Interestingly, the most frequent QoS
metrics differ substantially between the players but are
relatively more similar for the different QoE models of the
same player. However, in all cases, both players have at
least some metric included that is highly correlated with or
contribute significantly to the frame age (e.g., average ping
time, transfer time). For player 1, the frame age was, in fact,
frequently included for the three QoE metrics. These results
are consistent with our main observations for the aggregate
model, which showed that despite frame age having the
strongest individual correlation, several other factors are
more frequently occurring in the multivariate models.

We also performed a step-wise regression analysis to
select the best model when allowing for categorical predictor
variables to separate player biases in the scoring. With this
analysis only the normalized in-game performance model
ended up including a player category. However, when using



Table III: Linear regression with categorical player variable.
All values non-zero with 95% confidence except one (”*”).

Model Intercept Slope Player
Opinion 5.958± 0.140 −0.013± 0.001 −0.323± 0.144

Interactive 5.885± 0.151 −0.014± 0.001 −0.175± 0.156 (*)
Graphics 6.204± 0.144 −0.010± 0.001 −0.901± 0.149
In-game 1.171± 0.060 −0.003± 0.000 −0.276± 0.062

Figure 11: Player 1’s frame age advantage (yellow using 20
ms bins) and cumulative normalized win count

categorical variables together only with the frame age, we
did observe bigger differences. Table III presents the esti-
mated constants for the four regression models when using a
categorical variable to distinguish between players. We note
that the player category was statistically significant in 3 out
of 4 models (the interaction model being the exception) and
that the biggest differences (between the players) again was
observed for the graphical opinion score.

B. Multiplayer results & impact of wins/losses

Due to the adaptive algorithm used to equalize win
probabilities, the multi-player experiments were performed
using a much narrower span of network conditions. For
example, we did not introduce any packet losses, and the
largest average latencies were typically less than half of the
maximum latencies in the single-player experiments. This
can also be seen in Figure 11. Here, we show the number
of games that player 1 had a certain average advantage in
the frame age (using 20 ms bins) and the conditions under
which it accumulated its wins (using CDF). At this time, we
can also note that only player 2, who was the better player
during our experiments, ever experienced average frame ages
above 100 ms.

Due to lack of space and this much narrower parameter
range, in this section, we limit our analysis to demonstrate
the relative impact of player differences, their skills, and the
impact of winning or losing games may have on the QoE
scores. To illustrate this, Figure 12 shows the QoE scores
(using a box plot) for different average frame ages (50 ms
bins), broken down both per player (1 vs. 2), and whether
a player won or lost the game. It is worth noting that there
are very few results for the 100-150 ms bin. (The 150-200
ms bin was removed as it only contained one data point.)

In addition to general player differences such as those
that we observed before (e.g., player 1 giving higher QoE
scores than player 2, for the same conditions) and generally
declining QoE scores as the frame age increases, the most
striking observation is the impact of a player winning/losing

Figure 12: QoE scores dependence of win/loss and for
different average frame ages (50 ms bins)

a game. For example, when winning the game, both players
give significantly higher QoE scores for all three QoE
metrics, including for the graphical score, which one may
have expected would not be affected. This is interesting as
it shows a clear bias introduced due to the emotions that
a win/loss may cause. This result helps further explain the
high correlations observed between the in-game performance
and the general opinion score seen for the single-person
game (see Figure 5). The above results also show the value
of balancing the conditions so to provide both players a
similar opportunity to win. Having said that, in the end,
with our current method, player 2 still won 58.5% of the
games. While longer play sessions may further reduce the
win imbalance, the better player will always have a better
chance of winning at the start of the sessions (as both players
start with the same network conditions before the penalty can
be adaptively adjusted; see Section III). A perfect balance
should, therefore, not be expected.

VII. FRAME-BY-FRAME ANALYSIS

A. Frame age breakdown

Figure 13 shows an example trace from one of the baseline
tests. Here, we show both the absolute time (top) and relative
fraction of the time (bottom) consumed by each step in
the end-to-end process making up the frame age. Both sub-
figures are stacked in the order that the steps take place in
the end-to-end process: (i) capture time, (ii) convert time,
(iii) encode time, (iv) transfer time, (v) decode time, (vi)
upload time, and (vii) complete time. The first three steps
happen at the server, and the last three happen at the client.

For this scenario, the complete time (last step on the
client), transfer time, and encode time (last step on the
server) are responsible for the majority of the frame age.
While these components often dominate also in other sce-
narios, both the absolute values and the relative fractions
may differ. This is illustrated in Table IV, where we provide
summary statistics for the average (and standard deviation)
of the time spent in each step of the end-to-end process
for four different example scenarios: ”low-low”, ”low-high”,
”high-low”, and ”high-high”. The first tag in each scenario
label corresponds to the added latency (low = 0 ms or high =



Figure 13: Example trace using both absolute and relative
per-frame times to break down the frame age

Table IV: Scenario-based frame age breakdown. All reported
values are measured in milliseconds (ms) and shown using
the mean (µ) and standard deviation (σ) as µ(σ).

Low-low Low-high High-low High-high
Capture 0.78 (0.26) 0.73 (0.21) 0.77 (0.26) 0.77 (0.24)
Convert 0.39 (2.68) 0.37 (2.68) 0.29 (0.09) 0.28 (0.08)
Encode 5.10 (0.28) 5.11 (0.18) 4.86 (0.17) 4.88 (0.20)
Transfer 3.47 (3.69) 3.44 (3.40) 204.81(3.78) 211.35(35.61)
Decode 2.66 (3.40) 1.74 (3.32) 2.01 (2.86) 7.89 (7.70)
Upload 1.62 (0.40) 1.16 (0.58) 1.29 (0.68) 2.02 (0.47)
Complete 10.41 (2.81) 9.75 (2.70) 10.05(2.81) 71.03(122.34)
Other 1.78 (1.18) 1.82 (1.35) 1.54 (1.71) 35.74 (66.68)
Frame age 26.21(6.84) 24.14(6.97) 225.60(6.21) 334.18 (120.15)

200 ms), and the second tag corresponds to the added packet
loss rate (low = 0% and high = 1%). Here, we have used
all per-frame data for the single-player sessions associated
with these conditions.

To validate that system constraints and data collection
does not impact our results, we also monitored memory,
disk, bandwidth, and CPU utilization. Figure 14 provides
some example traces for the example scenario above. These
measurements are made at 60 Hz. For the CPU trace, we use
a moving average (with standard deviations marked using
shading), whereas, for the others, we use the raw sample
values. First, note that the special data collection frames,
seen as periodic spikes in client’s send rate (top-right sub-
figure) and bytes written to disk by the server (bottom-right),
do not appear to significantly impact any other performance
metric and the spikes do not appear to coincide with the
frame age spikes. Second, note that both the client and server
operate at relatively intermediate CPU utilization and have
relatively stable memory utilization. We have not found the
CPU and memory constraints to impact our performance,
and they themselves do not appear to be impacted much by
any of the frame-age related spikes.

The reverse saw-tooth pattern observed in Figure 13 is
mainly due to sudden spikes in the decode time, which then
slowly taper off. Some of the most extreme spikes are due to
a few frames with particularly high transfer times. We stress

Figure 14: Example performance logs at server and client
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Figure 15: Auto-correlations for different QoS metrics (sub-
plots) and time lags (x-axis) under four different network
conditions (colors).

that these spikes typically are associated with transfers from
the server to the client, not the data collection frames sent
from the client to the server (every 10 seconds). To better
understand temporal time dependencies, we next present
auto-correlation and cross-correlation analysis.

B. Auto- and cross-correlation analysis

The semi-periodic pattern observed in Figure 13 (top)
suggests that the per-frame times are not independent and
that there are temporal dependencies. To better understand
if there are temporal dependencies within the processing
times of each step, we have calculated the auto-correlations
for the frame age, the frame size, and each of the seven
steps making up the frame age. Figure 15 presents these
auto-correlations using lags of 1-to-40 frames for the four
example scenarios: ”low-low”, ”low-high”, ”high-low”, and
”high-high” (as defined above). For each metric, we also
include a 95% confidence interval for the auto-correlation
(represented by the colored cones around the value 0).

Interestingly, only the convert time and capture time fall
within the 95% confidence interval (curves within cones)
for all scenarios; meaning that they are not auto-correlated.
The transfer time also satisfies this independence property,
but only for the low latency scenarios (low-low and low-
high). All other metrics have clear time dependencies for
most scenarios.

The highest auto-correlations with large lags (right-hand-
side of curves) are observed in high latency scenarios (green



Figure 16: Cross-correlations for different QoS metrics un-
der different conditions: low (blue) or high (yellow) ping

and red curve) with the transfer time, frame age, and frame
size metrics. Here, it should be noted that a lag of 15
frames corresponds to 250 ms of game playing (60 frames
per second) and that these lags, therefore, are of similar
order-of-magnitude in size as the average transfer times
when considering the high-low (205 ms) and high-high (211
ms) scenarios. For most other metrics and scenarios, the
auto-correlations decrease noticeably with increasing lags,
showing that such time dependencies may be ephemeral.

The above auto-correlation results clearly indicate that
per-frame measurements can not be treated as independent
samples. Therefore, a per-frame based correlation analysis
of the different QoS metrics is not suitable from a statistical
standpoint. To better understand the correlation between the
dominating steps of the frame age (transfer time, complete
time, decode time, encode time) and the frame age itself,
we instead performed a cross-correlation analysis. Figure 16
shows the average cross correlation between each of these
metrics as calculated using all time series for the low-
low (blue, below diagonal) and high-low (yellow, above
diagonal) scenario. Here, we have first calculated the cross-
correlations for each session falling into these two scenarios
and then reported the averages across all such sessions.
While the averaging reduces some initial spikes and most
cross correlations are relatively constant across lags, we
do observe a small spike around a lag of zero between
complete time and frame age. This spike is in part due to
the sharp (and very short) spikes in complete times (pink)
that immediately follow sharp spikes in transfer times (red)
seen if zooming in very closely in figures such as Figure 13.
We also observe somewhat more noticeable cross-correlation
spikes between the frame age and the individual processing
steps for the low-low scenario (blue). However, in general it
can be noted that the cross-correlations are all positive and
many of the values are relatively high (close to 1); in the
case of cross-correlations with frame age, again highlighting
their significant impact on the frame age.

VIII. CONCLUSIONS

This paper presented the evaluation results from targeted
user-based experiments in which we collected detailed per-

frame statistics during user tests in which we manipulated
the network conditions experience by cloud gamers. Of
special interest was the relationship between objective and
easier to collect QoS factors and more subjective quality of
experience (QoE) metrics and the players’ in-game perfor-
mance (only available to the client and server, not a network
operator or third-party cloud provider, for example). Using
a range of correlation-based metrics, different classes of
regression models, and a detailed breakdown of the frame
age (the QoS metric that we find is most strongly correlated
with the users’ QoE and in-game performance), we provide
new insights into the impact of network conditions on the
gamers’ QoE and the different QoS metrics impact on the
frame age and QoE under different network conditions.

The paper provides a strong empirical case for the impor-
tance of maintaining a low frame age, shows that end-to-
end latencies typically impact QoE more than packet losses,
and provides examples how temporary spikes in frame age
caused by one end-to-end-processing step can have extended
negative impact through the impact this can have on other
processing steps (e.g., transfer time spikes translating into
complete time spikes, followed by decode time backlogs).
Our results emphasize developers’ need to consider and
optimize the different parts making up the frame age and
reduce time dependencies between them. By ensuring stable,
low frame age developers and providers can provide cloud
gamers with enjoyable, high-quality gaming experiences.
Promising mitigation approaches that may reduce temporal
performance degradation and even help handle cloud service
failures include distributed solutions that allow the rendering
to be moved between VMs and clients [18].

Interesting future work include applying the analysis
methodology presented here also to the context of cloud-
based delivery of mixed reality [31]. Another seemingly
promising direction for future work, derived from our multi-
player observations, is the development of more advanced,
adaptive techniques that account for various aspects that
may impact the user’s perceived experience (e.g., winning a
game, achieving certain levels within the game, or otherwise
scoring within a game) that may help compensate for
temporal degradation in the frame age, for example.
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