
The Overhead of Confidentiality and Client-side
Encryption in Cloud Storage Systems

Eric Henziger, Linköping University

Niklas Carlsson, Linköping University

Proc. IEEE/ACM UCC, Auckland, New Zealand, Dec. 2019

Motivation and problem
• Popular services: Some with 100s of millions of active users each month

• Cloud services have change how users store and access data
• E.g., often transparently across multiple devices (or users)

• Most services require that users fully trust the provider
• Services gets access to all data and information

• May not be acceptable for all
• Also attacks and surveillance

backdoors (e.g., NSA)

Problem: Individual content provider that wants to minimize its delivery
costs under the assumptions that

• the storage and bandwidth resources it requires are elastic,

• the content provider only pays for the resources that it consumes, and

• costs are proportional to the resource usage.

Motivation and problem
• Popular services: Some with 100s of millions of active users each month

• Cloud services have changed how users store and access data
• E.g., often transparently across multiple devices (or users)

• Most services require that users fully trust the provider
• Services gets access to all data and information

• May not be acceptable for all
• Also attacks and surveillance

backdoors (e.g., NSA)

Problem: Individual content provider that wants to minimize its delivery
costs under the assumptions that

• the storage and bandwidth resources it requires are elastic,

• the content provider only pays for the resources that it consumes, and

• costs are proportional to the resource usage.

Motivation and problem
• Popular services: Some with 100s of millions of active users each month

• Cloud services have changed how users store and access data
• E.g., often transparently across multiple devices (or users)

• Most services require that users fully trust the provider
• Services gets access to all data and information

• May not be acceptable for all
• Also attacks and surveillance

backdoors (e.g., NSA)

Problem: Individual content provider that wants to minimize its delivery
costs under the assumptions that

• the storage and bandwidth resources it requires are elastic,

• the content provider only pays for the resources that it consumes, and

• costs are proportional to the resource usage.

Motivation and problem
• Popular services: Some with 100s of millions of active users each month

• Cloud services have changed how users store and access data
• E.g., often transparently across multiple devices or users

• Most services require that users fully trust the provider
• Services gets access to all data and information

• May not be acceptable for all
• Also attacks and surveillance

backdoors (e.g., NSA)

Problem: Individual content provider that wants to minimize its delivery
costs under the assumptions that

• the storage and bandwidth resources it requires are elastic,

• the content provider only pays for the resources that it consumes, and

• costs are proportional to the resource usage.

Motivation and problem
• Popular services: Some with 100s of millions of active users each month

• Cloud services have changed how users store and access data
• E.g., often transparently across multiple devices or users

• Most services require that users fully trust the provider
• Services gets access to all data and information

• May not be acceptable for all
• Also attacks and surveillance

backdoors (e.g., NSA)

Problem: Individual content provider that wants to minimize its delivery
costs under the assumptions that

• the storage and bandwidth resources it requires are elastic,

• the content provider only pays for the resources that it consumes, and

• costs are proportional to the resource usage.

Motivation and problem
• Popular services: Some with 100s of millions of active users each month

• Cloud services have changed how users store and access data
• E.g., often transparently across multiple devices or users

• Most services require that users fully trust the provider
• Services gets access to all data and information

• May not be acceptable for all
• Also attacks and surveillance

backdoors (e.g., NSA)

Problem: Individual content provider that wants to minimize its delivery
costs under the assumptions that

• the storage and bandwidth resources it requires are elastic,

• the content provider only pays for the resources that it consumes, and

• costs are proportional to the resource usage.

Motivation and problem
• Popular services: Some with 100s of millions of active users each month

• Cloud services have changed how users store and access data
• E.g., often transparently across multiple devices or users

• Most services require that users fully trust the provider
• Services gets access to all data and information

• May not be acceptable for all
• Also attacks and surveillance

backdoors (e.g., NSA)

Problem: Individual content provider that wants to minimize its delivery
costs under the assumptions that

• the storage and bandwidth resources it requires are elastic,

• the content provider only pays for the resources that it consumes, and

• costs are proportional to the resource usage.

Client-side encryption (CSE)
• Confidential: Private, secret

• Who can see the originals?

Client-side encryption (CSE)
• Confidential: Private, secret

• Who can see the originals?

Client

Server

Client-side encryption (CSE)
• Confidential: Private, secret

• Who can see the originals?

Client

Server

Client-side encryption (CSE)
• Confidential: Private, secret

• Who can see the originals?

Client

Server

Client-side encryption (CSE)
• Confidential: Private, secret

• Who can see the originals?

Client

Server

However, CSE complicates some bandwidth saving features
such as deduplication and delta encoding …

14

Contributions
Empirically investigate the potential overhead penalty associated with CSE
through comparisons of four CSEs and four non-CSEs

1. Controlled experiments to compare and contrast the security and
bandwidth saving features implemented

2. Performance tests to compare non-traffic related client-side
overheads (e.g., CPU, disk, memory)

3. Targeted example experiments to demonstrate some weaknesses in
existing delta encoding solutions

To the best of our knowledge, this is the first research paper that focuses
on the difference between CSE and non-CSE supporting services

Baseline methodology

1. Start cloud storage application
2. Capture network traffic
3. Measure CPU, memory, disk utilization
4. Place file in sync folder
5. Wait for synchronization to finish
6. Process capture files and measurements

E. Bocchi, I. Drago, and M. Mellia, “Personal Cloud Storage

Benchmarks and Comparison,” IEEE Transactions on Cloud

Computing, vol. 5, no. 4, pp. 751–764, 2017.

macOS
campus LAN

Baseline methodology

1. Start cloud storage application
2. Capture network traffic
3. Measure CPU, memory, disk utilization
4. Place file in sync folder
5. Wait for synchronization to finish
6. Process capture files and measurements

E. Bocchi, I. Drago, and M. Mellia, “Personal Cloud Storage

Benchmarks and Comparison,” IEEE Transactions on Cloud

Computing, vol. 5, no. 4, pp. 751–764, 2017.

macOS
campus LAN

vs

Baseline methodology

1. Start cloud storage application
2. Capture network traffic
3. Measure CPU, memory, disk utilization
4. Place file in sync folder
5. Wait for synchronization to finish
6. Process capture files and measurements

 netifaces

 pcapy

 psutil

 numpy

 scipy E. Bocchi, I. Drago, and M. Mellia, “Personal Cloud Storage

Benchmarks and Comparison,” IEEE Transactions on Cloud

Computing, vol. 5, no. 4, pp. 751–764, 2017.

macOS
campus LAN

vs

Baseline methodology

1. Start cloud storage application
2. Capture network traffic
3. Measure CPU, memory, disk utilization
4. Place file in sync folder
5. Wait for synchronization to finish
6. Process capture files and measurements

 netifaces

 pcapy

 psutil

 numpy

 scipy E. Bocchi, I. Drago, and M. Mellia, “Personal Cloud Storage

Benchmarks and Comparison,” IEEE Transactions on Cloud

Computing, vol. 5, no. 4, pp. 751–764, 2017.

macOS
campus LAN

vs

19

Performance costs; client overheads

• CPU, memory, disk, network traffic
Our results show that a window-based cache on 2nd request policy (with
parameter selected based on the best worst-case bounds) provides good average
performance across the different distributions and the full parameter ranges of
each considered distribution

Basic security properties

• All services except Mega use HTTPS (** Mega defaults to HTTP, but has HTTPS)

• Mega and SpiderOak use TLS 1.0; rest TLS 1.2

• All use reasonable signatures (e.g., SHA256+RSA or SHA256+ECC) and
encryption for transfer RSA 2048 + AES 128/256 (or corresponding EC)

• In Nov. 2017, three non-CSEs (Dropbox, iCloud, and Google Drive)
supported SCT for certificate transparency (CT), but none of the CSEs

Basic security properties

MITM proxy

Set application to trust MITM proxy (add proxy certificate to root store)
• All applications except Mega prevent TLS interception
• Reason: certificate pinning or similar techniques used
Same, but using their respective interfaces
• Interception successful for all services (except SpiderOak, who does not

have a web interface)
• What we see appears to match services CSE claims

22

Bandwidth saving features

Feature 1: Compression
eric@Zipper:/tmp$ ls -l big.txt

-rw-rw-r-- 1 eric eric 6488666 big.txt

eric@Zipper:/tmp$ gzip big.txt

eric@Zipper:/tmp$ ls -l big.txt.gz

-rw-rw-r-- 1 eric eric 2385263 big.txt.gz

Feature 1: Compression

Test procedure
● Create files of sizes 10-28 MB containing random English words
● Determine amount of uploaded bytes
● If uploaded bytes < file size, then compression

eric@Zipper:/tmp$ ls -l big.txt

-rw-rw-r-- 1 eric eric 6488666 big.txt

eric@Zipper:/tmp$ gzip big.txt

eric@Zipper:/tmp$ ls -l big.txt.gz

-rw-rw-r-- 1 eric eric 2385263 big.txt.gz

Feature 1: Compression

• Dropbox, SpiderOak and Tresorit do compression

• Google Drive does compression if file size is <224 bytes
(limit found with binary search)

Feature 1: Compression

• Dropbox, SpiderOak and Tresorit do compression

• Google Drive does compression if file size is <224 bytes
(limit found with binary search)

Feature 2: Deduplication

Feature 2: Deduplication

Test procedure
● Store two files with identical content
● If second file is synced without significant upload, then deduplication

Feature 2: Deduplication

● Store two files with identical content
○ Different file names
○ Different folders
○ Different file name and folder
○ By deleting the file and then re-uploading it

Feature 2: Deduplication

● Store two files with identical content
○ Different file names
○ Different folders
○ Different file name and folder
○ By deleting the file and then re-uploading it

Feature 2: Deduplication

● Store two files with identical content
○ Different file names
○ Different folders
○ Different file name and folder
○ By deleting the file and then re-uploading it

Feature 2: Deduplication

● Store two files with identical content
○ Different file names
○ Different folders
○ Different file name and folder
○ By deleting the file and then re-uploading it

Feature 2: Deduplication

● Store two files with identical content
○ Different file names
○ Different folders
○ Different file name and folder
○ By deleting the file and then re-uploading it

Feature 2: Deduplication

● Store two files with identical content
○ Different file names
○ Different folders
○ Different file name and folder
○ By deleting the file and then re-uploading it

Feature 3: Delta encoding

Test method
• Make sequence of changes
• Measure size of updates (full vs part)

File modifications considered

● Append

● Prepend

● Insert

● N random byte changes

Feature 3: Delta encoding

Test method
• Make sequence of changes
• Measure size of updates (full vs part)

File modifications considered

● Append

● Prepend

● Insert

● N random byte changes

Yes No

N
o
n
-C

S
E

C
S

E

Feature 3: Delta encoding

Test method
• Make sequence of changes
• Measure size of updates (full vs part)

File modifications considered

● Append

● Prepend

● Insert

● N random byte changes

Yes No

N
o
n
-C

S
E

C
S

E

Feature summary

● No clear difference between CSE vs non-CSEs
● Instead, large variations within each group
● Only Dropbox (non-CSE) and SpiderOak (CSE) has all three features
● All services implement at least some feature (but different)

Feature summary

● No clear difference between CSE vs non-CSEs
● Instead, large variations within each group
● Only Dropbox (non-CSE) and SpiderOak (CSE) has all three features
● All services implement at least some feature (but different)

Feature summary

● No clear difference between CSE vs non-CSEs
● Instead, large variations within each group
● Only Dropbox (non-CSE) and SpiderOak (CSE) has all three features
● All services implement at least some feature (but different)

Feature summary

● No clear difference between CSE vs non-CSEs
● Instead, large variations within each group
● Only Dropbox (non-CSE) and SpiderOak (CSE) has all three features
● All services implement at least some feature (but different)

Feature summary

● No clear difference between CSE vs non-CSEs
● Instead, large variations within each group
● Only Dropbox (non-CSE) and SpiderOak (CSE) has all three features
● All services implement at least some feature (but different)

Feature summary

● No clear difference between CSE vs non-CSEs
● Instead, large variations within each group
● Only Dropbox (non-CSE) and SpiderOak (CSE) has all three features
● All services implement at least some feature (but different)

Feature summary

● No clear difference between CSE vs non-CSEs
● Instead, large variations within each group
● Only Dropbox (non-CSE) and SpiderOak (CSE) has all three features
● All services implement at least some feature (but different)
● Furthermore: Delta encoding efficiency differ substantially …

Delta encoding efficiency ...

Large differences among service implementing (some) delta encoding
• SpiderOak (CSE) performs much worse than iCloud (non-CSE) and

Dropbox (non-CSE)

Note: More detailed delta-encoding analysis and optimized delta
encoding policies for CSE in our IEEE CloudCom 2019 paper (next week)

46

Performance evaluation

Performance: CPU

Performance: CPU

Performance: CPU

25

Performance: CPU

Performance: CPU

Synchronization phases

● Idle
● Pre-processing
● Transfer
● Cooldown

Performance: CPU

Synchronization phases

● Idle
● Pre-processing
● Transfer
● Cooldown

Performance: CPU

Synchronization phases

● Idle
● Pre-processing
● Transfer
● Cooldown

Performance: CPU

Synchronization phases

● Idle
● Pre-processing
● Transfer
● Cooldown

Note: Some values above 100%, due to
multithreaded service using at least 2 cores

100%

Performance: CPU

CPU Volume = (Mean “extra” CPU * Phase duration),
where “extra” is relative the “idle” baseline

● Highest among feature rich services (e.g., Dropbox and SpiderOak)
● SpiderOak does most pre-processing (incl. storing copy to disk)
● Other services’ CPU usage dominated by transfer

Performance: CPU

CPU Volume = (Mean “extra” CPU * Phase duration),
where “extra” is relative the “idle” baseline

● Highest among feature rich services (e.g., Dropbox and SpiderOak)
● SpiderOak does most pre-processing (incl. storing copy to disk)
● Other services’ CPU usage dominated by transfer

Performance: CPU

CPU Volume = (Mean “extra” CPU * Phase duration),
where “extra” is relative the “idle” baseline

● Highest among feature rich services (e.g., Dropbox and SpiderOak)
● SpiderOak does most pre-processing (incl. storing copy to disk)
● Other services’ CPU usage dominated by transfer

Performance: CPU
Default scenario

Performance: CPU (matching conditions)
Default scenario

Capped bandwidth and adjusted RTTs

● Increase CPU volumes somewhat, but relative overheads remain …

Performance: HTTP vs HTTPS

● Small extra HTTPS
overhead compared to
most other service

● CPU volume seems
more dependent on
what other features
are implemented

Performance: HTTP vs HTTPS

● Small extra HTTPS
overhead compared to
most other service

● CPU volume seems
more dependent on
what other features
are implemented

Performance: HTTP vs HTTPS

● Small extra HTTPS
overhead compared to
most other service

● CPU volume seems
more dependent on
what other features
are implemented

Performance: HTTP vs HTTPS

● Small extra HTTPS
overhead compared to
most other service

● CPU volume seems
more dependent on
what other features
are implemented

Performance: HTTP vs HTTPS

● Small extra HTTPS
overhead compared to
most other service

● CPU volume seems
more dependent on
what other features
are implemented

Performance: HTTP vs HTTPS

● Small extra HTTPS
overhead compared to
most other service

● CPU volume seems
more dependent on
what other features
are implemented

Performance: HTTP vs HTTPS

● Small extra HTTPS
overhead compared to
most other service

● CPU volume seems
more dependent on
what other features
are implemented

Performance: Disk usage

● Example writing 300 MB to cloud
● Note: Can’t measure per process here (so, noise from other processes …)

● SpiderOak temporarily writes entire file to disk; others do not ...

300 MB

Performance: Disk usage

● Example writing 300 MB to cloud
● Note: Can’t measure per process here (so, noise from other processes …)

● SpiderOak temporarily writes entire file to disk; others do not ...

300 MB

Performance: Memory usage

Test description
• Consecutively upload five different files of 300 MB each

Performance: Memory usage

Test description
• Consecutively upload five different files of 300 MB each

Performance: Memory usage

Test description
• Consecutively upload five different files of 300 MB each

25

Performance: Memory usage

Test description
• Consecutively upload five different files of 300 MB each

25
Dropbox SpiderOak Sync.com

Examples …

Performance: Memory usage

25
Dropbox SpiderOak Sync.com

Examples …

Observations
• None keep full copy in memory (e.g., 3% here is 240 MB)
• Dropbox, SpiderOak again stand out: most memory (with Google Dr.)
• Service unique patterns (e.g., sync.com have some drift)
• Memory increases relative idle are small for all (less than 20MB)

Performance: Memory usage

25
Dropbox SpiderOak Sync.com

Examples …

Observations
• None keep full copy in memory (e.g., 3% here is 240 MB)
• Dropbox, SpiderOak again stand out: most memory (with Google Dr.)
• Service unique patterns (e.g., sync.com have some drift)
• Memory increases relative idle are small for all (less than 20MB)

3% or 240 MB

Performance: Memory usage

25
Dropbox SpiderOak Sync.com

Examples …

Observations
• None keep full copy in memory (e.g., 3% here is 240 MB)
• Dropbox, SpiderOak again stand out: most memory (with Google Dr.)
• Service unique patterns (e.g., sync.com have some drift)
• Memory increases relative idle are small for all (less than 20MB)

Performance: Memory usage

25
Dropbox SpiderOak Sync.com

Examples …

Observations
• None keep full copy in memory (e.g., 3% here is 240 MB)
• Dropbox, SpiderOak again stand out: most memory (with Google Dr.)
• Service unique patterns (e.g., sync.com have some drift in example)
• Memory increases relative idle are small for all (less than 20MB)

Performance: Memory usage

25
Dropbox SpiderOak Sync.com

Examples …

Observations
• None keep full copy in memory (e.g., 3% here is 240 MB)
• Dropbox, SpiderOak again stand out: most memory (with Google Dr.)
• Service unique patterns (e.g., sync.com have some drift in example)
• Memory increases relative idle are small for all (less than 20MB)

Performance: Memory usage

25
Dropbox SpiderOak Sync.com

Examples …

Observations
• None keep full copy in memory (e.g., 3% here is 240 MB)
• Dropbox, SpiderOak again stand out: most memory (with Google Dr.)
• Service unique patterns (e.g., sync.com have some drift in example)
• Memory increases relative idle are small for all (less than 20MB)

Performance: Memory usage

25
Dropbox SpiderOak Sync.com

Examples …

Observations
• None keep full copy in memory (e.g., 3% here is 240 MB)
• Dropbox, SpiderOak again stand out: most memory (with Google Dr.)
• Service unique patterns (e.g., sync.com have some drift)
• Mem. increases relative idle small: 4 with > 20MB; max 0.68% (Dropbox)

80

Conclusions

Conclusions
• First empirical comparison of the overheads of CSEs and non-CSEs

• Set of security and bandwidth saving features implemented

• Performance overheads (e.g., CPU volume, disk writes, memory)

• Overheads depend on set of bandwidth saving features implemented

• Bandwidth saving features such as compression and deduplication come
with low additional overhead and achieve similar efficiency

• Main penalty associated with CSE appears to be due to bandwidth,
storage, and processing overheads associated with implementing (or not
implementing) different forms of delta encoding together with CSE

• Significant differences between the CSE (SpiderOak) and the two non-CSEs
(Dropbox, iCloud) implementing delta encoding

• SpiderOak comes with higher storage footprint on the client and servers,
has higher bandwidth overhead for uploaders and downloaders, and
implements less effective delta encoding than Dropbox and iCloud

• Follow-up work: More detailed delta-encoding analysis and optimized delta
encoding policies for CSE in our IEEE CloudCom 2019 paper (next week)

Niklas Carlsson (niklas.carlsson@liu.se)

Thanks for listening!

The Overhead of Confidentiality and Client-side
Encryption in Cloud Storage Systems

Eric Henziger and Niklas Carlsson

