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Abstract—This paper develops analytic models that charac-
terize the behavior of on-demand stored media content delery
using BitTorrent-like protocols. The models capture the efects
of different piece selection policies, including Rarest-Fst, two
variants of In-Order, and two probabilistic policies (Portion and
Zipf). Our models provide insight into system behavior, and
help explain the sluggishness of the system with strict In-@ier
streaming. We use the models to compare different retrieval
policies across a wide range of system parameters, includirpeer
arrival rate, upload/download bandwidth, and seed residene
time. We also provide quantitative results on the startup déays
and retrieval times for streaming media delivery. Our resuks
provide insights into the design tradeoffs for on-demand media
streaming in peer-to-peer networks. Finally, the models &
validated using both fluid-based and packet-level simulatins.

Index Terms—Peer-to-peer systems, BitTorrent, On-demand
streaming, Modeling

I. INTRODUCTION
Peer-to-peer (P2P) networks offer a promising approach

Internet-based media streaming. P2P networks are autarsomg
systems with the advantages of self-organization and sel
adaptation. P2P solutions can enable efficient and scala]
media streaming, as long as they can meet the sequentl

playback demands ofedia streamingapplications, which
differ from those offile downloading for which P2P file
sharing networks were originally created.

The P2P paradigm has been used successfullylifer

media case hagreater temporal diversityof requests. The
peer dynamics resemble those of file downloading, whilé stil
requiring low startup delays for the sequential playback of
large media objects. Finally, live streaming implicitlyaives
sustained content delivery at the intrinsiedia playback rate
while the stored media case is general: the retrieval ratkdco

be slower than, faster than, or the same as the media playback
rate, or even vary with time.

These characteristics can challenge the performance of
existing P2P protocols. For example, BitTorrent improves t
efficiency of file downloads by using a Rarest-First piece
selection policy to increase the diversity of pieces abédéa
in the network. However, streaming protocols require ideor
playback of media content, which naturally implies that in-
order retrieval of pieces is desirable (but not strictlyuieed).
In-order collection of pieces may reduce the spatial and
temporal diversity of pieces in a P2P network, resulting in
Rgor system performance.

In this paper, we analytically characterize the perforneanc
{_BitTorrent-Iike protocols for on-demand streaming afrsd

gdia files. Our models capture performance differences be-
ween various policies and configuration details (e.g.ceie
sé'j}ection policies, upload bandwidth) and allow us to amswe
guestions related to the efficency and user-perceived perfo
mance of BitTorrent-like on-demand streaming protocols.

The main contributions in our paper are the following:

o We show that the analysis of P2P media streaming is

media streaming, but the (more difficult) case of on-demand
streaming oktoredmedia has received relatively less attention.
The two scenarios share several common challenges, ingludi
the sequential playback demands of large media objects,
the geographic diversity of heterogeneous receivers, had t
dynamic churn of the media streaming population.
On-demand streaming of stored media files differs in subtle
but important ways from live media streaming. First, live
streaming typically involves only aingle streaming source,
whereas stored media streaming can invehamyproviders of
content. Second, the stored media case involves retriglimg
entire media object, while the live streaming case allows peers*®
to join at any time (i.e., mid-streamyjithoutretrieving earlier
portions of the stream. Thus the issue of “startup delayfedsf
in the two scenarios (i.e., joining an existing stream versu
starting a new stream). Third, the peers in a live streaming
scenario have shared temporal content foqushile the stored
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decomposable intadlownload progressand sequential
progress which can be analyzed separately. Furthermore,
improving one component can usually be done without
compromising the other.

We develop detailed analytical models that explicitly
consider piece selection policies. The models accurately
predict the transition rate of downloaders to seeds, as well
as the steady-state swarm population size and mix. The
models provide important insights into the efficiency of
on-demand media streaming in P2P networks.

The models explicitly consider the number of upload and
download connections, rather than just the total network
bandwidth [26], [29]. This formulation provides the flex-
ibility to model concurrent connections and consider the
effect of network asymmetry on the system performance.

« The models provide estimates of the expected retrieval

time for stored media objects, as well as its variability, so

that we can determine suitable tradeoffs between startup
delay and the likelihood of uninterrupted streaming.

The models are validated using both fluid-based and
packet-level simulations.



The remainder of the paper is organized as follows. Sec-This section introduces the concept ofedia streaming
tion Il presents a brief description of the BitTorrent syste progress (MSP)which is defined as the number of useful
as well as the concepts of download progress and sequeredia pieces obtained per unit time. Conceptually, the MSP
tial progress. Sections Il and IV explain the derivation ofan be separated into two parts: (1) tthewnload progress
basic models for sequential progress and download progre&), which is defined as the number of pieces retrieved
respectively, using different piece selection policiesct®n V  per unit time, and (2) theequential progress (SPyhich is
presents the analysis of startup delay, and also discusses defined as the number aefulin-order media pieces obtained
eral extensions of our model. Section VI presents simulatiper piece retrieved. The MSP is simply the product of these
results to validate the models. Section VIl summarizevegle two metrics. Equation 1 expresses this simple relationship
related work, while Section VIII concludes the paper.

MSP =DP x SP (1)

Il. BACKGROUND AND SYSTEM TRADEOFF ) .
. The download progress captures the generic notion of
A. BitTorrent . 2 . . .

_ ) ) ) throughput (i.e., a policy’s ability to download piecesaily),
BitTorrent [9] is a popular peer-to-peer file sharing systefpile the sequential progress refers to an applicatiotifipe
used to facilitate efficient downloads. BitTorrent splitesi roperty, namely the ability of a piece selection policy to
into pieces, which can be downloaded in parallel from défér 5cquire the initial pieces from the beginning of a file, as
peers. BitTorrent distinguishes between peers that hage fRqguired for streaming media playback. Note that sequentia

e_nt|re file (calledseed}, and peers that only have parts o_f th%rogress (the sequentiality of the pieces obtained) isejtoe
file (calledle_echersx)rdownloader;and are s_tlll down_loa_dmg ally independent of the download progress (the rate at which
the rest of it. The set of peers collaborating to distribute e pieces are obtained). In the following sections, weyaeal

particular file is known as a BitTorrerstvarm ~ these metrics separately, starting with sequential pesgre
A tracker maintains information about the peers partici-

pating in a swarm. New peers wanting to download a file
are directed (typically using information provided in a met
file available at an ordinary Web server) to a tracker, which In this section we analyze theequential progressf four
provides each new peer with the identity of a random set simple policies: strictn-Order retrieval, Randonpiece selec-
participating peers. Each peer typically establishesigters tion, and two probabilistic piece selection policigoition
connections with a large set of peers, consisting of peeamsd Zipf [3]). An example of sequential progress for each is
identified by the tracker as well as by other peers to whighown in Figure 1.
the peer is connected. The peer maintains detailed infasmat By definition, the strict In-Order policy is ideal in terms of
about which pieces the other peers have. sequential progress. Each peer simply retrieves the fileepie
While peers can typically request pieces frathconnected in numerical order from 1 toM. However, the download
peers that have useful pieces, each peer only uploads tpragress of this policy in a P2P network can be sluggish, as
limited number of peers at any given time. That is, mostill be seen in Section IV-D.
peers arechoked while a few peers that it is currently The Random piece selection policy provides poor sequential
willing to serve areunchoked To encourage peers to uploadrogress, as shown in Figure 1. While not the worst tase
pieces, BitTorrent uses a rate-basidor-tat policy, in which for sequential progress, the Random policy provides a usefu
downloaders give upload preference to peers that provigle hbound, since no practical piece selection policy would qrenf
download rates. To probe for better pairings (or in the cdseworse than Random. Also, we conjecture that Rarest-First
seeds, to allow a new peer to download pieces), each pperforms similarly to Random for sequential progress, esihc
periodically unchokes a randomly chosen peer. ignores the numerical ordering of the pieces. (Our simorfati
To ensure high piece diversity, unchoked peers use a Raressults are consistent with this hypothesis.)
First policy to determine which piece to request from the Finally, the two probabilistic piece selection policie(P
uploading peer [9]. This policy gives preference to pietet t tion and Zipf) are statistically biased towards earliercp®
are the least prevalent within a neighbourhood of coop®gatiThe Portion policy has a single control parameteAt each
peers (with ties broken randomly). This approach is vestep, it chooses pieces according to the In-Order polich wit
efficient for file downloading[17], [18], [26]. In this paper, probability p, and according to the Rarest-First policy with
we consider the efficiency of this and other piece selectigmobability 1 — p. With the Zipf policy, a Zipf distribution is
strategies foon-demand streaming used to skew the bias towards selecting earlier pieces.eThes
two policies are carefully defined and discussed in [3].

Ill. SEQUENTIAL PROGRESS

B. Basic System Tradeoff

As discussed in the introduction, there is a fundamental Random Piece Selection
tradeoff between maintaining high piece diversity verdues t
in-order requirements of streaming. In general, the Rareg
First policy achieves the highest piece diversity, whiledrder
policies are the most natural because of the inherent séglien 1The worst case is retrieving the pieces in reverse numeoiagr, from
playback requirements associated with video streams. M to 1, since playback cannot commence until /lfl pieces are retrieved.

The analysis of sequential progress for the Random piece
Election policy proceeds as follows. Assume that the file of
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interest hasM pieces, numbered from 1 td/. The down-
loader retrieves one piece per unit time using a BitTortiet-
protocol, with the pieces chosen uniformly at random.

- The sequential progress rate imanotonically increasing

function ofk. Progress is slow initially, but improves with
time as missing holes are filled and large portions of the
file become ready for playback. This is an encouraging
result: once the MSP reaches the threshold required for
playback, streaming can certainly commence, and should
be able to complete in an uninterrupted fashion.
Startup delay can be directly calculatddom the se-
quential progress. If the media playback rate igieces
per unit time, then a tangent line of slopeiouches the
(continuous) sequential progress curvekat M + 1 —
v/ (M + 1)/r. The sequential progress rate at this point
is /(M +1)r — 1 and the absolute startup delayis
(M + 1)r — 24/(M + 1)r + 1. For example, ifr = 1,
then the relative startup delay is:
2(v/(M+1)-1)
1 i . 4)

Startup delay gets worse a¥ increasesFor M = 1,
the relative startup delay above is effectively zero. For

M = 20, the delay would be about 60% (see Figure 1).
For M = 100, it is 80%. AsM approaches infinity, the
relative startup delay approaches 1. That is, streaming
degenerates to the download case if the Random policy
is used on a large media file with many pieces.

The question of interest is: “After having downloadéd
pieces, what is the probability that a peer has retrievedegie
1 throughy inclusive?” (i.e.,j consecutive pieces from the start
of the file, useful for streaming). This is called the “sedisdn

progress”. The answer is:
(M_j) Another observation from the foregoing analysis isldrge
k}\}j 1<j<k<M. (2) 9ap between the sequential progress curves for the Random
(k) and In-Order policies. There could be many piece selection

The denominator represents the number of distinct ways Rglicies that can provide lower startup delay than Randam (o
choose thek pieces equiprobably at random. The numeratéfarest-First), without requiring strict In-Order retragy
represents the number of ways to choose these pieces such

that j are useful pieces (at the start of the file) dnd j are B. Portion Piece Selection

“useless” piec&s(not at the start of the file). We next consider probabilistic policies with bias towards
The expected value of (given k pieces) is: earlier pieces, such as Portion and Zipf [3]. As in the case of

_ k the Random piece selection policy, our analysis considars t

Elj|k] = sequential progress achieved aftesut of M pieces have been

M —k+1 _ ol : ,
retrieved ( < k < M). More specifically, we are interested in

This is the expression plotted for the Random piece selecti . . .
policy in Figure 1. Note that after retrieving 1 piece, th({ehe expected sequential progrésg| k], where; is the number

. ; L g of useful pieces (at the start of the file). For simplicity, say
probability of having _th_e initial piece of the file IE.[JH] that a peer is in statéj, k) whenever it hag pieces in total,
1/M, as expected. Similarly, aftév/ pieces are retrieved, the X o , o T . :

) . . and the piece with indekj + 1) is its first missing piece (i.e.,
sequential progress from 1 f is complete E[j|M] = M). . T . L N
This analysis leads to several key insights for the Rando'Fnhas the firsy in-order pieces, but is missing pieger 1).
y y Insig Let P(j, k) be the probability that we have obtaingdn-

piece selection pohcy.: ) ) order pieces when the peer has retrievegieces in total.
- Abouthalfof the file ((_M+1)/2 pleces)_ must b_e re_trlevedc|ear|y, at any point in time, th@(j, k) values must satisfy
before E[j|k] > 1. This result has major implications ony~k o, P(j.k) = 1, for a givenk. The expected number of
j= 9 1 .

the expected startup delay. in-order piecesE[j|k] can be calculated as
- Even after retrievingd — 1 pieces, the (expected) se-

quential progressK[j|M — 1] = (M — 1)/2) is at most
half the file This is bad news for on-demand streaming,
since it again has implications on startup delay. However,
the result makes sense intuitively, since the sole missingFor simplicity, we (conservatively) assume that all pieces
piece is equally likely to be in either half of the file, andare equally likely to be in the possession of the uploading
in the middle on average. peer (as is the case with seeders, or when using the Random
policy, for example). In a real system, leechers downlogdin
from other leechers are more likely to have pieces that are
closer to its playback point, causing a somewhat stronges bi
towards earlier pieces.

P(j k) =

k
Elj|k] = > i'P(f, k). (5)
j'=0

2Technically, this expression gives the probability of mavat least the
first 7 useful pieces, since it is possible that pigce 1 is among the useless
pieces (and thus useful). Simple subtraction of the coordipg expressions
for j andj + 1 gives the probability of having exactly useful pieces.



. TABLE |
Furthermore, we assume that all pieces that already have MODEL NOTATION

been retrieved, and are not among the fjrét-order pieces,

Parameter| Definition

are uniformly distributed. With this assumption, a peertates [ 7 Number of pieces of the target file

(4,k) has each of the pieces in the ranfjej], does not | U Maximum number of simultaneous upload connections by a pesg
have piecej + 1, and has each of the pieces in the rangﬂg #’mg‘g“h”;urt‘ng:’igr?;;;?c:‘r'fa”eous download connections byea
[J_ + 2, M] W'th a probab|I|_ty M_J_-J_l- (With t_he Zipf _pollcy, P Arrival rate of new downioading peers into the system
discussed in the next section, this assumption providesdecr| 1/u Seed residence time in the system

approximation.) System efficiency (file sharing effectiveness)

Number of downloaders (leechers) in the system at #tme

|+
|

Let ¢;, be the probability that the first missing piece is Number of seeds in the system at tife

selected for retrieval next. With the Random poligy, = Download latency for retrieving the complete media file

Media playback rate of the file

SR SN

ﬁ. With the Portion policy, using a paramefer .
User-perceived startup delay before playback commences

G =P+ (1 =p)g—p (6)
This expression uses the assumption that the missing piecegs yith the Portion policy, we have validated that the model
(excluding the first missing piece) are uniformly distri@df gives the expected results for two special cases. The above

and each other piece is equally likely to be missing (and/g{,del matches the model for Random (Section 11I-A) when

selected). 3 6 — 0, and matches the In-Order policy whén— cc.
Let A ;. be the probability that we have exactly con-

secutive in-order pieces starting at positips 2 at the time
we also havg in-order pieces (starting at piece 1), piece 1 . ) ) ) ,
This section derives simple models to characterize the

is missing, and we have a total &fpieces. With the above _ _
assumption of — j uniformly distributed pieces in the rangePoWnload Progress properties of P2P on-demand media

[j + 2, M], we have streaming in BitTorrent-like networks.

IV. DOWNLOAD PROGRESS

(1 - %) || s %a if j+n <k A Model Assumptions
Ajen =93 TS Syl if j+n =%k  We consider a single swarm (file) in a BitTorrent-like system
0, otherwise  with seeds and downloaders. Without loss of generality, we
(7) assume that this file is of unit size. The parameters and
Note that the series of factors in these expressions camespnotation used in our model are summarized in Table 1.
to conditional probabilities. Specifically, each factoves The target download file is divided intd/ pieces, and
the probability that piecg + 2 + 4 is (or is not) obtained, is encoded for playback at rate Each peer is allowed’
conditioned on all pieces in the rangje+ 2, j + 1 +1] having concurrent upload connections a2l concurrent download

been retrieved, in addition to the initiglin-order pieces.  connections. Each connection achieves mean throughput
Given the above notation, the probabili(j, k) can now \We assume thab > U.
be expressed as follows: We usez(t) to denote the number of downloaders in the

Pli k) — Plik—1)(1—ar g) System at any time, apdy(t) for_ the nu_mber of seeds [26].
(4, k) . (]; )L = qjp—1) + ®) For simplicity of notation, we will user instead ofz(¢) and
+2 250 [P k= 1)y i-14j j—1,—j—1)] - y instead ofy(t) when the context is clear. The downloaders

We have validated that the model gives the expected resif@vnioad as well as upload data. Seeds (by definition) have al
for two special cases. Whem — 0, the results match the M pieces of the target file, and only upload, with a maximum
model for Random in Section I1-A. Whep — 1, the results of U simultaneous uploads. We assume thats large so that

match those for In-Order. we can ignore the “end game” effects [20] for downloaders
with more thanM — D pieces.
) i ) One objective of our model is to assess the overall effec-
C. Zipf Piece Selection tiveness of different piece selection strategies for omaled
We now modify the above analysis to handle the Zipf pomedia streaming. For mathematical tractability, we introela
icy [3]. For simplicity, we again assume that the missingp& number of simplifying assumptions. We ignore detailedatffe
(except the first missing piece) are uniformly distributecf BitTorrent’s unchoking and “tit-for-tat” policies. Inatt,
Under this assumption, it can be shown that the correspgndiii-for-tat is not applicable in systems in which pieces are
expression forg; x (Equation (6) for the Portion policy) canretrieved strictly in-order (see Section IV-D for detail¥ye

be approximated as: also assume that peers download the entire file, and that they
1 are cooperative; that is, they upload to the best of thelitgbi
R M—b—1 ~~M—j 1° 9 and they do not try to cheat the system. While we make
1+ *
M—j-1 £vi=2 & these simplifying assumptions, we do, however, consider th

Here, the equal weights of the latter pieces are most ndéicabystem efficiency (calledfile sharing effectiveness [26]).
in the factor%:—’?j. The rest of the analysis remains the sam@pecifically,n represents the probability that available upload
as for the Portion policy. connections are effectively utilized.

D



New downloaders enter the system at a rgtand take time result demonstrates why BitTorrent-like systems are ity
T to complete the download of alif pieces of the file. The scalable [26]. As expected, we find that peers benefit when the
latency to begin playback is. Note that downloaders becomeupload capacity increases. We also find, as expected, that th
seeds at a rate/T". Seeds reside in the system for tirhgu, download latency decreases as the seed residence time (and
and then leave the system at a ratg thus the number of seeds in the system) increases. However,

We refer to the swarm system demand-drivensince the we do not allow the seed residence time to become arbitrarily
total demand for download connections exceeds the supplylafge, because our derivation assumes a demand-drivemsyst
upload connections; that is;D > (z + y)U. This assump-
tion is appropriate for most network environments, inahgdi

: ) C. System Efficiency
asymmetric network access technologies such as ADSL.

This section derives the system efficiengyalso called file
sharing effectiveness [26]) for the Rarest-First piecec@n
policy. The following derivation assumes that each peemgo

In this section, we characterize the system behavior wh@hich pieces are available at other peers in the system,
downloaders use the Rarest-First piece selection poliey (tand peers try to download the pieces they need. We are
default in BitTorrent). The derivation here follows the @ui jnterested in determining what fraction of the availabléoag
modeling approach of Qiu and Srikant [26], laying the fourconnections are usédwe will show that for most scenarios,
dation for our detailed models later in the paper. n is close to 1.

A downloader can hav® concurrent download connections The Rarest-First piece selection policy attempts to make
and U simultaneous upload connections. Each downloadgsch file piece equally prevalent amongst the peers. When a
sends requests to seeds and to other downloaders. At BB¥r connects with other peers, it tries to download a needed
given time, the downloading demand of each downloader figece that is rarest among the pool of pieces available from
D. However, due to the finite supply of upload connectiongs neighboring peers. The aforementioned strategy asympt
a downloader might only acquire download connections jcally results in a uniform and identical distribution oféfil
(0 < n < D). We assume that all' upload connections pieces at the peers. Neophyte peers have 0 pieces, while
are fully utilized for all peers. In other wordsg,is 1 in this the most senior peers have almdst pieces. Therefore, the
scenario. In the next section, we show thas close to 1 for probability of finding a particular piece at a (randomly ot
most practical cases. downloader peer ig /2.

The downloaders enter the swarm system at a katend ~ Consider a single piece of the file. Since the aggregate
get converted to seeds at a rate+ y)UC. Seeds serve the demand in the system at any timesi®, the average demand
system for the duration/. and depart at a ratey. Therefore, for any single piece ist?. This piece is available from all

B. Baseline Model: Rarest-First

the change of population can be expressed as: y seeds and, on average, from oniy2 downloaders. Hence,
dx the demand on the potential providers for each piece is:
— =A—(z+y)UC, (20)
dt 2xD
dy ds = — (14)
= = @+ UC = py. (11) (z +2y)

] ) ) ) Downloaders with only one piece receive demahdfrom
dySoIvmg the above differential equations féf = 0 and G peers. Downloaders with two pieces receive demand
ar =0, we can obtain the average number of downloadersy; and so on. Thus, the number of idle connections at

and seedg in steady-state. Specifically, we obtain: downloaders withi pieces isU — id,, where0 < i < k and
I T & n F=lal
T=A UC y= o (12) Due to the uniform distribution of pieces among the down-

loaders, it follows that the number of downloaders with

The steady-state results provide the foIIowmg.|n5|ghts: pieces isz/M, where0 < i < M. Therefore, the number
- The number of downloaders and seeds in the systemgiSigie connections across all downloaders is:

linearly dependenbn the peer arrival rata. L ) ,
- [ if k2ds U
The number of seeds in the systerifearly dependent Nidle — % Z(U—ids) T [kU B ]
=0

: . . ) ~ = 2
on the seed residence timé)( As the residence time M 2 4D (z+2y)

increases, the number of seeds also increases. (15)
- The total swarm populatiorr@7 = U—AC) is independent The system efficiency (file sharing effectiveness) is:
of the seed residence time; it depends only on the peer

. . n; U (x+2
arrival rate and the upload capacity of the peers. n=1- % =1- EH (16)
. T T
The average download laten@ycan be directly computed 4 4
using Little’s Law. Specifically: 30ur analysis of system efficiency é®nnection-centricThat is, given that
T 1 1 we know which piece we want from a given peer, we analyze thbalility
T=—=— ——. (13) that a connection is available for downloading this piece. &d Srikant [26]
A ucC i use apiece-centricanalysis, focusing on the probability of a peer finding a

. . . useful piece at another peer, given an existing connectébrden these peers.
This expression shows that the eXpeCted download time Their analysis ignores the effects of upload/download traims on system

steady-state is independent of the peer arrival rate. Thificiency. Asymptotically, both derivations provide siamiresults.



From the demand-driven system assumption, the number offhe peer of age€,, requests download connections from

uploadsU per peer is less than the number of downlo&ds older peers (agé > t¢,,), and from seeds. The total supply of

per peer. Also, the number of seeds in the system is typicallpload connections available for this peer is:

a (small) fraction of the system population. Thus, for most - o

scenarios of interest + 2y)U < (z + y)4D, which makes Ultm) = (x+y = Xm)U. . (18)

n close to 1. (Simulation experiments are consistent with thi e need to determine the total demabt,,) for these

claim, typically yieldingn values of 0.92 or higher.) connections to evaluate(t,,). The computation ofD(t.,)
The following two sections present detailed fluid-flow modrelies on two observations. First, the total number of doadl

els for two variants of the In-Order piece selection policyequests in the system isD. Second, downloading requests

We characterize the steady-state system behavior, andsdis@reunevenlydistributed amongst the peers. In particular, peers

startup delay and the variability of download latency. with more pieces (including seeds) receive higher demand.
D(t,,) can be calculated indirectly by determining the total
D. Naive In-Order Piece Selection number of download requests handled by pesensngerthan

In this section, we model a BitTorrent-like system fofm- Consider a small set Qfdt peers at an infini.tesimal time
streaming media where downloaders obtain pieces of tfiervaldi at offsett <., (i.e., they have been in the system
media file in strictly sequential order. Downloaders usdrthd' ¢ ime units). Thesedt peers generateDdt requests, and
local knowledge to request pieces in (global) numericaeordtheSe requests are spread actossy — At peers (downloaders
from their connected peers. and seeds) in the system. Therefore, the request load os peer

The downloading process proceeds in rounds. In each ti¥Runger thani,, (i.e., peers with age in the intervél, ¢,,])
step, a downloader can issu2 concurrent requests (for theffom the Adt peers is:
next D pieces required). A subset of these requests may be AD dt (b — ) A (19)
satisfied in a given round. r+y—x " '

For this analysis, we make use of peer relationships in thfe first factor represents the demand per peer, while the
time domain. Each peer arrives at some arbitrary tined second factor represents the number of peers in the region

completes download at time+ 7', on average. We assumeof interest (,, — ). Therefore, the total request load handled
that all peers progress through the system in a statlsncaﬂy peers younger thaf, is:

similar fashion. From the viewpoint of any given peer, there tn \2 D)
are “older” peers who arrived earlier, and “younger” peehe®w / Mdt (20)
0

arrived later. Tty — A\
One consequence of strict in-order download is thiatatiks = MDtp, — (z+y—Mn)D In rry (1)
the “tit-for-tat” reciprocity of BitTorrent (at least with a ' T+y—Am

single swarm). That is, peer relationships are asymmetric,This is the portion of the total demandD that can be
and a downloader never uploads to its provider peer. Tignored since it does not compete for the supglyt,,) of
asymmetry happens because a given peer can only downlgatbad connections for the reference peer at tipe Thus:

from older peers (who have more pieces of the file), and can (x+y—\)U 27
g;llt)r/]grfo"\g)de content tyoungerpeers (who have fewer pieces P 2D —ADt + (z +y — A)D szf;yM (22)

This simple In-Order model operates in a naive open- FOr ease of presentation, we introduce into the numerator a

loop fashion, and can generate significant load imbalanceff#ftor @ > 1 to approximaté the pro-rated load effect in the
the system. Since all downloading requests have the safif@ominator of Equation 22. With this notational convenegn
priority, an uploader that receives more tHamequests simply the probability that a downloader of agegets a download
chooses at randorty recipients for service. To prevent ancOnnection is: 3

infinite backlog from building up in the system, the remagnin U(t) (x+y—X)U

unsatisfied requests apurgedfrom the system, and issued p(t) = D(t) -« xD ' (23)
anew in the next round. (Section IV-E considers the casee’/vherWhen the total download time fol/ pieces isT, the

the unsgﬂsﬂ_et_j requests are queued.) , average downloading rate for a downloader is:
For simplicity, we consider the average behavior of the

. . . T
system in steady-state, and disregard details of the en@é.gam _ l/ Dp(t)Cdt
Without loss of generality, consider a specific peer that has T Jo
been in the system for time,,, where0 < ¢,, < T. We 1 [T T4y MUC
want to know the probability that such a peer is successful - f/o o (< - ) ve - - >dt
in obtaining a download connection for its next desired @iec 4y \TUC
That is, we want to compute: = < - ‘ ) UC -« o

_ Ul(tm) Y AT

where U(t,,) anq D(ty) are the connection supply and a\ymerical experiments in Maple show thatis in the range [1.09,1.25]
demand, respectively, at tinig,. for typical scenarios.



Due to Little’s Law,z = AT'. Hence, from, and progress quickly. However, progress becomessslow
y 1 as peers get older, since there are fewer providers availabl
vy = aUC (; + 5) (24)  (In their simulation results, the authors of [3] note thag th
swarm population exhibits sawtooth behavior, with highlg-s
Therefore, the change of the number of downloaders apfonized conversions of downloaders to seeds. Our asalysi

seeds in steady-state can be expressed as follows, helps explain this phenomenon.)
The next section studies a variant of the In-Order policy
d
d_ftc A —qz=A—a(iz+y)UC, (25) that overcomes these problems.
dy ) E. In-Order Piece Selection (FCFS)
o TR =a (32 +9) UC - py. (26) | this section, we consider a closed-loop version of the

Solving these differential equations f%f _0and® — o foregoing In-Order piece selection model. Specificallye th
dt ' arﬂadel presented here assumes that the uploading peers do
no

we can obtain the steady-state results for downloaders .
: o o purge the unfulfilled requests after each round. Rather, the
seeds in the swarm. Specifically, we obtain: ; - X
pending requests at a providing peer gueueduntil they are
= — 9\ 1 1 A 27) serviced. The request queues are serviced using First-Come
First-Serve (FCFS).

The average download timiE can be obtained as follows: ~Unlike the previous model, where peers were serviced
randomly, here a peer is guaranteed to obtain service after a

_T_ 2 [L - l} (28) finite waiting period (because the request maintains itipos
A alC in the request queue). Another difference is the intensitit w
Multiple insights emerge from this analysis: which requests are generated by peers. In the purging model,

- This naive In-Order piece selection policy #uggish each downloader issud3 requests per round; in the queue-
compared to Rarest-First. This is evident by comparilﬁf‘sed model, downloaders operate in a clo_sed—loop fashion,
Equation 25 to Equation 10; one term in the conversigifith at mostD outstanding requests at any time. _
rate differs by approximatelgx. If we observe this BitTorrent-like system at any given time,

- The average download lateneymost doublesompared We will find peers with differing degrees of progress. Peers
to Rarest-First (assuming ~ 1.1). This is a large price that arrived earlier will have obtained more pieces. Theenor
to pay for the benefit of In-Order retrieval. Similar to thdi€Ces that a peer has, the more younger peers it can serve.
baseline model, latency improves when upload bandwidiPnsequently, we expect to see longer request queues at olde
and seed residence time are increased. peers (and seeds) than at younger peers. Younger peers will

- The number of downloaders in steady-statmost dou- provide faster response to requests, although they haver few

bles compared to Rarest-First. However, the number §€Ces available to provide. _
seeds remains the same as in Rarest-First. Both the finite queue and the FCFS service modek

- Unlike the Rarest-First policy, theotal swarm popula- crucial aspects of this system. These mechanisms conserve

tion depends on the seed residence tifime particular, the (fir!ite) request load in the system, en_suring boundelyo_lel
increasing the seed residence time increases the nunfied fair progress for all downloaders, without any staorati

of seeds in steady-state, llgcreaseshe overall swarm Furthermore, young peers that indiscriminately send many

population. requests to seeds will experience slow response time for

Intuitively, the sluggishness of the In-Order policy a,tsisethese r_equests; th? closed-loop policy provides a budeift
regulation mechanism to protect other peers.

for two reasons. First, the request load is unevenly disteith | h a P2P network t oh that
throughout the network. Older peers with many pieces receiv h such a network, an emergent pnenomenon that we

requests from many younger peers, but can only séhef cal! the “daisy-chain effect” is pqssible. Imagine a system
them; the remaining requests are unfulfilled, and could be P@h'Ch peers of age download their needed pieces from peers

issued many times before they are served. Conversely, yo get+ A, and those peers in turn download their needed

. . . ieces from peers of a 2/\, and so on. Such a system
peers with few pieces receive few requests from even youn&: il demarrl)d-driven ﬁhighly efficient. since all l)J/pﬂ)

peers; their idle upload connections are wasted, and systén? : ) : :
efficiency suffers. Second, the purging model allalispeers connections can potentially be used. This clusterlng_ ofpee _
to competeequallyfor service at providers (including seeds,),bas'(lad 10 1” ther']r dog]ryloa?‘ preference; has”bse“ntstltjl:(j}edt. by“'Ga|
since D requests are issued in each time slot and recipieﬁt]éa'[ ], where this p enomenon IS called “stratrication’,

are chosemandomly As a result, young peers can consum e reader may refer to their paper for detailed analytic

scarce upload connections at seeds and senior peers, hgpeapgracterléatll?jn of th'? eﬁe(i;' te this struct but beli
the progress of middle-aged peers. ur model does not mandate this structure, but we believe

that it is a natural outcome for a self-organizing P2P system

As an aside, the notion of “steady-state” for the strict Ir‘:-e dl f th tual lationshios f d -
Order policy is debatable. Analysis shows that the number pfgardiess ot the actual peer relationships formed, wecexpe

successful downloads per round by a peer depgnds on the agkor example, a “highest numbered piece” service model adsibiés poor
of the downloader. Young peers have many providers to chogsem performance, since it impedes the progress of yoanwgldaders.



all peers to be busy uploading, and therefore, the systelownload ratey of a downloader as:
(z+y)UC, similar to the Rarest-First model. Since seeds serve
T T
(“y) - i/ tdt + i/ tQ(t)dt]
: T T J, zT J,
Model (cf. Equations 9 and 10). Consequently, the steady- -
(cf. Equations 11 and 12). -

efficiency n is close to 1. Sinceyp is 1, we can assume T
that peers entering the swarm get converted to seeds at rate— %/ Dp(t)Cdt
0
the system for the duratiot/;, and depart at ratey, the
change of population is identical to that for the RaresstFir aUC
. T
state swarm population and the average download latency of uc y 1 1
. . = 1+=—-4+ = tQ(t)dt
this In-Order model match those of the Rarest-First model “ + x 2 + T2 J @)
y 1 1 &
alUC 1+———+—ZkQ(k)] .
1 1 A 1 1 2
_ [ ] g=2 p-L _1 (29 v 2 K
w

Q

: ve For the final step of this derivation (in which we transform

The primary difference with respect to the Rarest-First elodan integral in the time domain to a summation in the piece
is the ideal sequential progress achieved during the d@adnlodomain), we make the simplifying assumption that pieces are
This In-Order policy can achieve low startup delay for stnea retrieved at roughly constant rate.
ing media playback, without being sluggish. For simlglicity, let us introduce a constamt = 1

While it is easy to see that In-Order (FCFS), given suffis + = >, kQ(k). Clearly, 1 < g < 1, with 3 = 1
cient seed capacity, can improve both sequential progress aorrsponding to in-order piece selection (as with- oo or
average download latency, it should be noted that low pietiee portion constant = 1) andg ~ 1 corresponding to using
diversity can degrade performance under other scenarars. Fess aggresive piece slection policies (such as Rarestt-Eipf
example, in scenarios without peer seeding, the rate athwhigith a small, or portion with a smalp) for which the piece
peers can obtain the last piece of the file will always be Bahit diversity is higher.
by the rate at which the server can serve the piece (since n&ith this notation, we can now express the steady state
other downloaders can provide this piece). A more detailedjuations of the system as:
discussion of the impact of the order in which peers are serve
using In-Order policies is provided in [30]. A—a(fr+y)UC =0, (32)

=

a(fx+y)UC — py = 0. (33)
F. Probabilistic Policies: Portion and Zipf
o ) ) ) Solving for the average number of downloaders, seeds, and
Similar to the analysis of the strict In-Order policy, Weygwnload time. we obtain the following results:
consider the average behavior of the system in steadystate

and disregard details of the end game. Again, considering a _ 1 1 . _ A
. . ) T==-A\|—x—— g=— (34)
specific peer that has been in the system for tiipewe note g |aUC I
that such a peer always could request download connections T 1 1 1
from any older peer (age> t,,) or from the seeds. From any A B laUC ﬁ

younger peer (age< t,,) such a peer could request download )

connections with a probabilit(t,,,); i.e., the probability that AS expected, these equations show that a largdgreater
such a peer has at least one piece that the peer wants. GRi§ige diversity) improves download times.

this notation, the total supply of upload connections a@é  We next show hows can be approximated for the Zipf

for this peer is: policy and the Portion policy. First, we must calculate the
sum Zszl kQ(k). For this purpose, we need to calculate the
U(tm) = (x+y— Ml —Q(t,)))U. (30) probabilityQ(k) that a peer wittk pieces can download pieces

from a peer with fewer thak pieces. Under our assumption
As in our In-Order analysis, we use a constantvhich takes of roughly constant download rate, this probability can be
into acount the portion of the total demand that can be calculated as:
ignored® Using our previous notation, the probability that a k—1
downloader of age gets a download connection can now be Q(k) = 1 Z QK k), (35)
approximated as: k=

U(t) (z+y— M1 -QE)U whereQ(k', k) is the probability that a peer witkf pieces has
p(t) = D) =« ) . (31) at least one piece needed by another peer witieces. Utiliz-
ing our analysis of the sequential progress, these pratiesil

Using the above expression we can now express the avergg8 Pe calculated as:

Kk
SWhile o may be policy dependent, we note thatypically is very close Q(kl, k) = Z Z P(jlv kl)P(ja k)¢(j/a Js kl7 k)a (36)
to one, using both the Zipf and the portion policy. §/=0 j=0



where et al. [24], to replace the capacity term&’) in the foregoing
equations. These models have the form:

SRR = =)
DB E A - (2 4 L) (=0 otherwise = Lp (39)
(37) \/ 5B+ Drr(W,m)

wherep and R are the loss event rate and round-trip time,
respectively, and (W, m) is used to capture the average

‘Our detailed models can also be extended to capture fgst recovery period of the TCP version of interest. See [24]
trieval time variability, TCP throughput, and peer hetergy, yetails.

geneity [25]. In this section, we briefly describe two such
extensions: one for peers who abort downloads early, and one V. STARTUP DELAY CHARACTERIZATION
for TCP effects. While the extensions are discussed in the , ) ) )
context of Random and/or In-Order policies, they also apply !N this section, we characterize the startup delay: the time
to other piece selection policies. since the arrival of a peer |n_to the ‘swarm until it be_glns_
We first consider partial downloaders, who consume swafifyPack. Once playback begins, uninterrupted operason i

resources, but depart prematurely before download is coffgSired. However, many streaming applications can t@eaat
sgnall fraction of the pieces arriving too late for playback.

plete. More specifically, assume that there are three types ¢ . )
peers: complete downloaders, |, partial downloadersa), Consider a peer that has been in the system for time
t. The expected amount of data downloaded by this peer

and seedsy). The combined arrival rate of peersiswhere ', . «
a fraction § are partial downloaders, and these peers onfy Jo DCp(g)dg, wherep(g) is the probability that a peer

download a fractiong of the file pieces. Furthermore, weStccessfully obtains a download connection at tine: t.
assume that peers are in steady-state, and the two classe'§ji Startup delayr and playback rate, the amount of data
peers on average see similar download performance. that must be available at the peer by times (¢ — 7)r. If a

We derive a set of five equations to characterize this systémnable) fract.|ong, of the total data is aIIoweq to.arrlve I_ate,
model. First, based on our assumptions, the ratio of ﬂt’%e downloading rate should obey the following inequality:

download times of complete and partial downloaders must be t

::ﬁ—f = ¢. Now, using Little’s Law for each of the classes, we /0 DCp(g)dg = (1 —e)(t —7)r. (40)
can obtain two more equations for the number of peers of , . .
each type; i.e.q1 — (1—3)AT) andzs — SAT,. Furthermore, Let us first consider the case of In-Order (naive) download

the seed departure rate is also equal to the arrival rateVY)'Fh random peer selection. Substitutingg) from Equa-

complete downloaders. Thug,= (1_% The fifth and final UoN 31 provides:

equation can be obtained by observing that the download rate Yy, Ao > (1_ _
(£ = Ti;) of the downloaders is equal W Using aUC |(1+ x)t 5l | 2 (L=e)(t=m)r. (41)

these five independent equations, we can now solve for the fjy§: that the time to download the first piece of the media

unknowns:a, z, y, T1, andTs. _ file places a lower bound on the achievable startup delay.
Solving the above equation system we obtain: Therefore, the startup delay must satisfy the following

1 1 1-9 1 inequality for strict In-Order downloading:

By o (38)
¢ 7 UC 1-(1-¢)u 1 AUC((1+ L)t — 2 42)
As expected, this expression reduces to the previous ésingl 7 = max Mot T 1—e)r

Vvt
class) model whed — 0 (complete downloaders only), or
¢ — 0 (partial downloaders leave immediately and never affect The amount of data downloaded by timdas «UC((1 +

G. Model Extensions

T =

1 . (42)

the system behavior). Whep — 1, on the other hand, the £)t — %ti’), which is a concave monotonically increasing
download times are at their longest (with = %), since function oft¢ for 0 < ¢ < T. Settingt = T, we obtain:
there are no peers willing to seed. Finally, we note that éeels 1 1 1 1
bandwidth decreases linearly withwhen partial downloaders — 7min =max |—,2( — - — | — ——|. (43)
: . MC aUC  p (1—=e)r
download a complete file, but do not cooperate as a seed (i.e.,
¢ — 1). For this case, we havg, = % —(1-20)L. For the In-Order (naive) policy, we have the following

Similar multi-class fluid models have previously been prdnsights:
posed in the contexts of seed incentives [4] and peer hetero- As in other media streaming systenstartup delay is
geneity [8]. However, neither of these works considersiglart determined by the download latency and the playback
downloaders. More detailed extensions are also possilble fo duration of the file. For cases where the expected time
cases with lower request rates [4]. to download the file exceeds the playback duration of
Finally, we consider TCP effects. Thus far, we have assumed the media, the startup delay equals the maximum of the
perfect link utilization, using a fluid assumption for our  difference between the aforementioned times, and the
analysis. We now show how this model can be generalized time to download the first piece of the media file.
to take TCP effects into consideration. In particular, we us - Startup delaydecreaseswith increases in the upload
analytic expressions for TCP throughput, developed bydZzarv ~ capacity of the peers and the seed residence time. Note
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that as the expected time to download the file decreasase drawn from a normal distribution. The default peer airiv
the startup delay is bounded by the time to download thate is 50 per media playback duration.
first piece of the media file. The parameter settings in the simulation experiments are as
- Startup delay isndependenof the peer arrival rate. This follows. The media file had/ = 100 pieces, each28 KB in
demonstrates that on-demand streaming scales well in thige. The media playback rate is 2000 Kbps. The peer upload
type of P2P environment. bandwidth ranges fron600 Kbps to 2000 Kbps, while the
We now extend the above analysis to the In-Order (FCFBymber of upload connectiori ranges from 3 to 15, with a
policy. In this case, the probability(t), that a peer will obtain default of 4. Unless stated otherwise, the download barttiwid
a download connection at timeis roughly independent of is 3200 Kbps for D = 16 connections (i.e., each connection

and can be approximated B%f’%i ThUS, the Startup |atencygets 200 KbpS) The default seed residence time is 20 seconds
T must satisfy: ‘ All download times and startup delays are normalized to the

veQ + ﬂ)t] media playback duration in the default configuration.
T > max z

1
t —
Vi LV[C’ (1—e)r

Because the amount of data downloadéd;(1+ £)t, by time
t is a linearly increasing function of, we can simplify the
above by substituting = 7' to obtain the following:

(44)
A. Fluid Model Validation

Consider first the fluid case, in which we ignore TCP effects,
and peers can fully utilize their upload bandwidth whenever
there is sufficient piece diversity and demand. For this case
Tonin = MBX [ 1 7 (L _ l) _ 1 ] (45) we present ns-2 fluid simula?ion experiments to validate the

MC'\UC pu (1—¢e)r analytical models developed in Sections Ill, IV and V.

This analysis of In-Order (FCFS) piece selection provides Figuré 2 presents the results from our simulation experi-
the following insights: ments. The top row of graphs shows swarm population, while

- The In-Order (FCFS) policy achieves thawest startup the other two rows show results for download latency and

delayamong the policies considered, because of its |o§&artup delay, respectively.

download latency and excellent sequential progress. AsThe 5|mulaft|on results fo_r swarm popul_atlon show good
agreement with the analytical models. Figure 2(a) shows

ith the In-Ord i licy, startup delay is d -
w e In-Order (naive) policy, startup delay is deper at the total swarm population is linearly dependent on the

dent on the expected time to download the file and th . .
media playback duration. peer arrival rate, as expected. The three analytical models

- Similar to other policies, startup delay is independent &e presented using lines, as labeled in the graph key. The

the peer arrival rate. Startup delay decreases when u I&g&respo_nding simulation Tesu't? appear as points on the
P P y P graph, with ‘+’ for Rarest-First, circles for In-Order (Naj),

bandwidth d soj ti i d.
andwidin or Seed Sojotrn AiMe are Nerease and squares for In-Order (FCFS). In-Order (FCFS) behaves

For the Portion and Zipf policies, a more general analysé?milarly to Rarest-First, while In-Order (Naive) is slugh:

is needed. However, given the above assumptions ('ndUd'i@ swarm population increases at twice the rate of the sther

separation of sequential progress and download prognva;es),Fi ure 2(b) shows the swarm population versus the seed

can estimate the average startup delay that peers could h|ae dence time. The In-Order (Naive) policy has a higher

using the estimated tirriE%to retrieveE[j|k] in-order pieces swarm population, but the swarm population decreases (as

(refe_rr_ed to as the Comb'md media download rate). Moﬁ?edicted) when the seed residence time increases. Fa larg

specifically, we estimate this startup delay as: seed residence times, the swarm population increasesl|for al

k Eljlk three models as seeds become plentiful (i.e., the system is

T = max, ET -r [;(l ]L ’ (46) no longer demand-driven). Figure 2(c) shows that the swarm

. : ) . population decreases as the upload bandwidth is increased.

where r is the ple_lybac_k _rate and is the total file size. Beyond a certain upload bandwidth, the population remains

Here, the expression within the max brackets correspondsc Shstant, since the download bandwidth becomes the system
the time difference between downloadikgpieces, at which bottleneek
time we are expected to have[j|k] in-order pieces, and the |

time it takes to play out thesE[j|k] in-order pieces. Clearly, The second row of graphs in _Flgure 2 shows -the results
. f?<r download latency. The analytical models predict that th
the startup delay must be at least this large for playba

interruption to be avoided a_ownloed time is _independent of the peer. arrival rate. The
' simulation results in Figure 2(d) show a similar trend, thiou

the In-Order (Naive) policy deviates somewhat from the nhode

VI. SIMULATION VALIDATION prediction. Figure 2(e) considers the effect of seed reside
In this section, we present ns-2 simulation experimentisne. For all three models, more seeds in the system means

to validate our analytical models. In these experiments, Vi@ster downloads. The effect of upload bandwidth is illatstd

assume a homogeneous swarm, in which all peers hamedrigure 2(f). As expected, increasing the upload bandwidt

identical configuration parameters. Peers arrive to theesys reduces the download time, until the download bandwidth

continuously, perform a complete download, and remain foecomes the bottleneck.

a short duration before leaving the system. The peer inter-The third row of graphs in Figure 2 shows the startup

arrival times are exponential, while the seed residencegindelay for media playback. The analytical models predict tha
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Fig. 2. Fluid Model Validation Results (analytic resultseumes; simulation results use points, with ‘+' for Rar&4tst; circles for In-Order (Naive); and
squares for In-Order (FCFS)). Top row: Swarm PopulationddW& row: Download Latency. Bottom row: Startup Delay.

the startup delay is independent of the peer arrival rate. Thiece retrieval time once the upload bandwidth is high ehoug

simulation results in Figure 2(g) confirm this. Also, thergip

delay of In-Order (FCFS) is lower than that of Rarest-FirsB- Packet-Level TCP Model

while In-Order (Naive) is much worse. The impact of seed We next usas-2packet-level simulation experiments to val-

residence time is shown in Figure 2(h). In general, increpsiidate the TCP extension of our analytical models. For siotypli

the seed residence time reduces the startup delay. In-Ondeer consider the Random policy, but the other experimental

(FCFS) has the lowest startup delays among the policiparameters and settings remain the same.

evaluated. For both In-Order policies, the startup delay isFigure 3 presents the results from simulation experiments

lower bounded by the piece retrieval time, once the seéal swarm population. 'Model’ refers to the case of BitTarte

residence time is large enough. Rarest-First never reackgstem prediction considering the impact of TCP throughput

this point, because of its poor sequential progress, and tModel(NoTCP)' refers to the case where the impact of TCP

download bandwidth bottleneck in this scenario. Figurg 2(is ignored, that is, the bottleneck bandwidth is dividedadiyu

shows similar trends for the effect of upload bandwidth. lamong competing flows without considering the impact of

general, increasing the upload bandwidth reduces theuptarT CP behaivor.

delay. For both In-Order policies, the startup delay eqtteds ~ The simulation results for swarm population show good
agreement with the analytical models. Figure 3(a) shows
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Fig. 3. Packet-level TCP Model Validation Results (analyisults use lines; simulation results use points). Top. I8warm Population. Middle row:
Download Latency.

that the total swarm population is linearly dependent on the forwarded to clients that are at an earlier playback point
peer arrival rate, as expected. Figure 3(b) shows the swanithe file. The tree-based approaches work best when peer
population versus the seed residence time. Figure 3(c) shawennections are relatively stable.

that the swarm population decreases as the upload bandwidtfy the data-driven approach, distribution paths are dynam-
is increased. Note that models that consider TCP behavijgilly determined based on data availability. By splittithg
predict the system quite satisfactorily, while the modeheut  fjle into smaller parts, each of which may take a completely
TCP is very inaccurate. This behavior justifies the use of fifferent path, data-driven protocols can function effesy in
TCP model to explain system behavior. dynamic environments (e.g., where peers may join and/eelea
The graphs in the second row of Figure 3 show the resuiige system frequently, and peer connections are heterogsne
for download latency. The analytical models predict tha& thyjth highly time-varying bandwidths). While most such pro-
download time is independent of the peer arrival rate. Thgcols have been designed for live streaming [19], [31]],[32
simulation results in Figure 3(d) show a similar trend. Figecently protocols and policies for on-demand streaming ha
ure 3(e) considers the effect of seed residence time. Tketeff|so been proposed [1], [3].
of upload bandwidth is illustrated in Figure 3(f). As expatt With most peers at similar playback points, peers in live

increasing the upload ban(_1W|dth reduces the download t'”%?reaming can typically exchange pieces effectively using
until the download bandwidth becomes the bottleneck. Fgrrelatively small window of pieces. In contrast, with on-
all cases, the model with TCP predicts performance mogeang streaming systems, peers may be at very different
accurately than the model without TCP. playback points. Whiledownloadsystems benefit from high
piece diversity (as achieved by the Rarest-First poliay}hie
VII. RELATED WORK streamingcontext it is more natural to download pieces in

Prior work on peer-to-peer (or peer-assisted) Streamiﬁgquential order. To achieve a compromise between these two
can be classified into eithdive streamingor on-demand Objectives, Annapureddgt al. [1] propose splitting each file
Streaming These systems typ|ca||y use eithetrae-basedr into Sub'ﬁles, with each encoded USing distributed network
a data-drivenapproach. Tree-based approaches are typicafi9ding [12], and downloaded using a BitTorrent-like apjstoa
based on application-level multicast architectures, irictvh By downloading sub-files sequentially, playback can begin
the data is propagated through one or more relatively sta@itier the first sub-file has been retrieved.
spanning trees. Such application-level solutions havenlpai Rather than statically splitting each file into sequentiall
been used for live streaming [6], [14]. Related tree-baseeltrieved sub-files, Carlsson and Eager [3] propose a proba-
approaches using cache-and-relay [2], [10], [21], [27]ehawilistic piece selection policy with bias to earlier piecEsing
also been proposed for on-demand streaming. In cache-asidhulations, the authors show that a Zipf-based selectidn p
relay systems, each peer receives content from one or mimeachieves a good compromise between high piece diversity
parents and stores it in a local cache, from which it can latand sequential progress. Alternative probabilistic apphes
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have also been proposed [7]. In this paper, we provide anOur models provide insight into the behavior of a P2P net-
analytic framework to capture the streaming performance wbrk used for on-demand streaming. We demonstrate the poor
piece selection policies, including probabilistic apmie@s.  sequential progress characteristics of Random (and Rarest
Many analytic fluid models have been developed to capirst) piece selection policies, and motivate the need ffer |
ture the average and transient performance of BitToriigat-l Order piece selection. We use our model to explain the slug-
download systems [8], [13], [26]. Assuming that the uploadishness of naive In-Order streaming. In particular, weiife
bandwidth is evenly shared among all downloading peers (e reduced system efficiency in the purging model with
a particular class), these models typically consider teadst- random peer selection, and use these insights to explore the
state performance, or use differential equations to capghg In-Order (FCFS) policy. The latter policy provides the same
evolution of the peers (and their performance), given soete slownload latency as Rarest-First, with substantially lowe
of initial conditions or boundary constraints. Other amialy startup delay for media streaming. We also provide anabfsis
models have captured the interaction of peers at differgrobabilistic piece selection policies which provides mof
stages of their download progress [28], characteristizde@ a balance between in-order requirements and piece diyersit
to the user behavior and peer selection strategies [20], [22 Simulation results are used to validate the models. We com-
and the minimum time it takes to distribute the file from gare different retrieval policies across a wide range ofesys
server to a set of leechers [16]. Designed for the downlogdrameters, including peer arrival rate, seed residemae, ti
context, these models do not capture the order in which pie@nd upload/download bandwidth. We also provide quantéati
are retrieved and therefore cannot be used to comparedtifferesults on the startup delays and retrieval times for stirggm
piece selection policies. media delivery. The simulation results show close agre¢émen
Closely related to the analysis in this paper are a stochastiith the analytical models.
fluid model [15] and a probabilistic model [33] used to captur In summary, our results provide valuable insights into on-
the performance ofive streaming systems. By capturing thalemand media streaming using BT-like protocols in P2P
buffer requirements of the average peer, these models catworks.
be used to determine how long a newly-arrived client must
buffer data before commencing playback. In contrast to the
aforementioned, we characterize the system behavior af pee
to-peer on-demand streaming systems. Our models consid&r S. Annapureddy, C. Gkantsidis, and P. Rodriguez. Piogid/ideo-on-

: ; ; inh i ; ; Demand using Peer-to-Peer Networks. Rroc. Workshop on Internet
both the file sharing effectiveness (which is typically iroped Protocol TV (IPTV) ‘06 Edinburgh. Scotland. May 2006,

by increas_ed piece diversity [1?], [20]).and the Sequ?‘mial[Z] A. Bestavros and S. Jin. OSMOSIS: Scalable Delivery ofalRe
order requirements of the streaming media player. Our aizaly  time Streaming Media in Adhoc Overlay Networks. Rroc. ICDCS

focuses on the startup delay that can be achieved when usiE? Workshops '03pages 214-219, Providence, RI, May 2003.

.. . . . . . N. Carlsson and D. L. Eager. Peer-assisted On-demanshr8ing
policies in which pieces are retrieved in order. Our modelS™ ¢t stored Media using BitTorrent-like Protocols. Rroc. IFIP/TC6

also predict the average download times and the steady-stat Networking ‘07 pages 570-581, Atlanta, GA, May 2007.
system population. [4] N. Carlsson and D. L. Eager. Modeling Priority-based eimive
.. Policies for Peer-assisted Content Delivery System®rte. IFIP/TC6
Other works have shown that policies that takes the play- networking ‘08 pages 421-432, Singapore, May 2008.
back deadlines of each request into account (serving th& N. Carlsson, D. L. Eager, and A Mahanti. Peer-assistesd@nand
earliest deadlines first, for example) can achieve everebett Video Streaming with Selfish Peers. Rroc. IFIP/TC6 Networking

. . ‘09, pages 586-599, Aachen, Germany, May 2009.
overall user-percewed performance [5]’ [30]' In pariaxruthey [6] M. Castro, P. Druschel, A. Rowstron, A.-M. Kermarrec, &ingh,

show that our original conjecture about the MSP optimality = and A. Nandi. SplitStream: High-Bandwidth Multicast in Qevative
of In-Order in [23] was incorrect. Yangt al. [30] provides Environments.  InProc. ACM SOSP '03 pages 298-313, Bolton

. . . . . Landing, NY, October 2003.
a detailed discussion about the impact of peer selection (28 v R choe, D. L. Schuff, J. M. Dyaberi, and V. S. Pai. Imyirg VoD

used by BitTorrent’s unchoke rule, for example), when using  Server Efficiency with BitTorrent. IProc. ACM MULTIMEDIA 07
In-Order piece selection poIicies. pages 117-126, Augsburg, C_;ermany, September‘2007.

[8] F. Clevenot-Perronnin, P. Nain, and K. Ross. Multicl&P Networks:

Static Resource Allocation for Service DifferentiationdaBandwidth

Diversity. In Proc. IFIP Performance pages 32-49, Juan-les-Pins,
VIII. CONCLUSIONS France, October 2005.

; ; ; ] B. Cohen. Incentives Build Robustness in BitTorrentPhoc. Workshop
In this pgper, we deV?IOped qeta"ed a.‘nalytlcal mOdelgg on Economics of Peer-to-Peer Systems, '‘Ba8rkeley, CA, June 2003.
to characterize the behavior of BitTorrent-like protoctds [10] v. cui, B. Li, and K. Nahrstedt. ostream: Asynchronouseaming

on-demand stored media streaming. Our analysis was made multicast in application-layer overlay networksIEEE Journal on

; inai ; ; Selected Areas in Communications (Special Issue on Rechmtnées
possible by the fundamental insight thatedia streaming in Service Overlays)22(1):91-106, Jantiary 2004,

progress(i.e., the r?te at WhiCh. useful p?eces are obtainggh) A -T. Gai, F. Mathieu, F. de Montgolfier, and J. ReyniBtratification in

by a peer for media playback) is essentially the product of P2P Networks: Application to BitTorrent. IRroc. ICDCS '07 Toronto,

download progressi.e., the rate at which pieces are success- Canada, June 2007.

fullv obtai pd?‘ $ h K pr ial F12] C. Gkantsidis and P. R. Rodriguez. Network Coding forgeaScale
ully obtained from the P2P network) arsgquential progress ™~ content Distribution. IrProc. IEEE INFOCOM '05 pages 2235-2245,
(i.e., the usefulness of the obtained pieces for media plei) Miami, FL, March 2005.

Our models explicitly capture the effects of different giec[13] L. Guo, S.Chen, Z. Xiao, E. Tan, X. Ding, and X. Zhang. Me@ment,
lecti lici includi R t-Eirst. tw ianfs| Analysis, and Modeling of BitTorrent-like Systems. Rroc. ACM
Se€lection poficies, Including karest-Hirst, two varnaotsin- Internet Measurement Conference (IMC) ;Q8ages 35-48, Berkeley,

Order, and two probabilistic policies. CA, October 2005.
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