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Insights on Media Streaming Progress using
BitTorrent-like Protocols for On-Demand Streaming

Nadim Parvez, Carey Williamson, Anirban Mahanti, and Niklas Carlsson

Abstract—This paper develops analytic models that charac-
terize the behavior of on-demand stored media content delivery
using BitTorrent-like protocols. The models capture the effects
of different piece selection policies, including Rarest-First, two
variants of In-Order, and two probabilistic policies (Port ion and
Zipf). Our models provide insight into system behavior, and
help explain the sluggishness of the system with strict In-Order
streaming. We use the models to compare different retrieval
policies across a wide range of system parameters, including peer
arrival rate, upload/download bandwidth, and seed residence
time. We also provide quantitative results on the startup delays
and retrieval times for streaming media delivery. Our results
provide insights into the design tradeoffs for on-demand media
streaming in peer-to-peer networks. Finally, the models are
validated using both fluid-based and packet-level simulations.

Index Terms—Peer-to-peer systems, BitTorrent, On-demand
streaming, Modeling

I. I NTRODUCTION

Peer-to-peer (P2P) networks offer a promising approach for
Internet-based media streaming. P2P networks are autonomous
systems with the advantages of self-organization and self-
adaptation. P2P solutions can enable efficient and scalable
media streaming, as long as they can meet the sequential
playback demands ofmedia streamingapplications, which
differ from those of file downloading, for which P2P file
sharing networks were originally created.

The P2P paradigm has been used successfully forlive
media streaming, but the (more difficult) case of on-demand
streaming ofstoredmedia has received relatively less attention.
The two scenarios share several common challenges, including
the sequential playback demands of large media objects,
the geographic diversity of heterogeneous receivers, and the
dynamic churn of the media streaming population.

On-demand streaming of stored media files differs in subtle
but important ways from live media streaming. First, live
streaming typically involves only asingle streaming source,
whereas stored media streaming can involvemanyproviders of
content. Second, the stored media case involves retrievingthe
entiremedia object, while the live streaming case allows peers
to join at any time (i.e., mid-stream),without retrieving earlier
portions of the stream. Thus the issue of “startup delay” differs
in the two scenarios (i.e., joining an existing stream versus
starting a new stream). Third, the peers in a live streaming
scenario have ashared temporal content focus, while the stored
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media case hasgreater temporal diversityof requests. The
peer dynamics resemble those of file downloading, while still
requiring low startup delays for the sequential playback of
large media objects. Finally, live streaming implicitly involves
sustained content delivery at the intrinsicmedia playback rate,
while the stored media case is general: the retrieval rate could
be slower than, faster than, or the same as the media playback
rate, or even vary with time.

These characteristics can challenge the performance of
existing P2P protocols. For example, BitTorrent improves the
efficiency of file downloads by using a Rarest-First piece
selection policy to increase the diversity of pieces available
in the network. However, streaming protocols require in-order
playback of media content, which naturally implies that in-
order retrieval of pieces is desirable (but not strictly required).
In-order collection of pieces may reduce the spatial and
temporal diversity of pieces in a P2P network, resulting in
poor system performance.

In this paper, we analytically characterize the performance
of BitTorrent-like protocols for on-demand streaming of stored
media files. Our models capture performance differences be-
tween various policies and configuration details (e.g., piece
selection policies, upload bandwidth) and allow us to answer
questions related to the efficency and user-perceived perfor-
mance of BitTorrent-like on-demand streaming protocols.

The main contributions in our paper are the following:
• We show that the analysis of P2P media streaming is

decomposable intodownload progressand sequential
progress, which can be analyzed separately. Furthermore,
improving one component can usually be done without
compromising the other.

• We develop detailed analytical models that explicitly
consider piece selection policies. The models accurately
predict the transition rate of downloaders to seeds, as well
as the steady-state swarm population size and mix. The
models provide important insights into the efficiency of
on-demand media streaming in P2P networks.

• The models explicitly consider the number of upload and
download connections, rather than just the total network
bandwidth [26], [29]. This formulation provides the flex-
ibility to model concurrent connections and consider the
effect of network asymmetry on the system performance.

• The models provide estimates of the expected retrieval
time for stored media objects, as well as its variability, so
that we can determine suitable tradeoffs between startup
delay and the likelihood of uninterrupted streaming.

• The models are validated using both fluid-based and
packet-level simulations.
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The remainder of the paper is organized as follows. Sec-
tion II presents a brief description of the BitTorrent system,
as well as the concepts of download progress and sequen-
tial progress. Sections III and IV explain the derivation of
basic models for sequential progress and download progress,
respectively, using different piece selection policies. Section V
presents the analysis of startup delay, and also discusses sev-
eral extensions of our model. Section VI presents simulation
results to validate the models. Section VII summarizes relevant
related work, while Section VIII concludes the paper.

II. BACKGROUND AND SYSTEM TRADEOFF

A. BitTorrent

BitTorrent [9] is a popular peer-to-peer file sharing system
used to facilitate efficient downloads. BitTorrent splits files
into pieces, which can be downloaded in parallel from different
peers. BitTorrent distinguishes between peers that have the
entire file (calledseeds), and peers that only have parts of the
file (calledleechersor downloaders) and are still downloading
the rest of it. The set of peers collaborating to distribute a
particular file is known as a BitTorrentswarm.

A tracker maintains information about the peers partici-
pating in a swarm. New peers wanting to download a file
are directed (typically using information provided in a meta-
file available at an ordinary Web server) to a tracker, which
provides each new peer with the identity of a random set of
participating peers. Each peer typically establishes persistent
connections with a large set of peers, consisting of peers
identified by the tracker as well as by other peers to which
the peer is connected. The peer maintains detailed information
about which pieces the other peers have.

While peers can typically request pieces fromall connected
peers that have useful pieces, each peer only uploads to a
limited number of peers at any given time. That is, most
peers arechoked, while a few peers that it is currently
willing to serve areunchoked. To encourage peers to upload
pieces, BitTorrent uses a rate-basedtit-for-tat policy, in which
downloaders give upload preference to peers that provide high
download rates. To probe for better pairings (or in the case of
seeds, to allow a new peer to download pieces), each peer
periodically unchokes a randomly chosen peer.

To ensure high piece diversity, unchoked peers use a Rarest-
First policy to determine which piece to request from the
uploading peer [9]. This policy gives preference to pieces that
are the least prevalent within a neighbourhood of cooperating
peers (with ties broken randomly). This approach is very
efficient for file downloading[17], [18], [26]. In this paper,
we consider the efficiency of this and other piece selection
strategies foron-demand streaming.

B. Basic System Tradeoff

As discussed in the introduction, there is a fundamental
tradeoff between maintaining high piece diversity versus the
in-order requirements of streaming. In general, the Rarest-
First policy achieves the highest piece diversity, while In-Order
policies are the most natural because of the inherent sequential
playback requirements associated with video streams.

This section introduces the concept ofmedia streaming
progress (MSP), which is defined as the number of useful
media pieces obtained per unit time. Conceptually, the MSP
can be separated into two parts: (1) thedownload progress
(DP), which is defined as the number of pieces retrieved
per unit time, and (2) thesequential progress (SP), which is
defined as the number ofusefulin-order media pieces obtained
per piece retrieved. The MSP is simply the product of these
two metrics. Equation 1 expresses this simple relationship.

MSP = DP × SP (1)

The download progress captures the generic notion of
throughput (i.e., a policy’s ability to download pieces quickly),
while the sequential progress refers to an application-specific
property, namely the ability of a piece selection policy to
acquire the initial pieces from the beginning of a file, as
required for streaming media playback. Note that sequential
progress (the sequentiality of the pieces obtained) is conceptu-
ally independent of the download progress (the rate at which
the pieces are obtained). In the following sections, we analyze
these metrics separately, starting with sequential progress.

III. SEQUENTIAL PROGRESS

In this section we analyze thesequential progressof four
simple policies: strictIn-Order retrieval,Randompiece selec-
tion, and two probabilistic piece selection policies (Portion
and Zipf [3]). An example of sequential progress for each is
shown in Figure 1.

By definition, the strict In-Order policy is ideal in terms of
sequential progress. Each peer simply retrieves the file pieces
in numerical order from 1 toM . However, the download
progress of this policy in a P2P network can be sluggish, as
will be seen in Section IV-D.

The Random piece selection policy provides poor sequential
progress, as shown in Figure 1. While not the worst case1

for sequential progress, the Random policy provides a useful
bound, since no practical piece selection policy would perform
worse than Random. Also, we conjecture that Rarest-First
performs similarly to Random for sequential progress, since it
ignores the numerical ordering of the pieces. (Our simulation
results are consistent with this hypothesis.)

Finally, the two probabilistic piece selection policies (Por-
tion and Zipf) are statistically biased towards earlier pieces.
The Portion policy has a single control parameterp. At each
step, it chooses pieces according to the In-Order policy with
probability p, and according to the Rarest-First policy with
probability 1 − p. With the Zipf policy, a Zipf distribution is
used to skew the bias towards selecting earlier pieces. These
two policies are carefully defined and discussed in [3].

A. Random Piece Selection

The analysis of sequential progress for the Random piece
selection policy proceeds as follows. Assume that the file of

1The worst case is retrieving the pieces in reverse numericalorder, from
M to 1, since playback cannot commence until allM pieces are retrieved.
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Fig. 1. Sequential Progress Example forM = 20

interest hasM pieces, numbered from 1 toM . The down-
loader retrieves one piece per unit time using a BitTorrent-like
protocol, with the pieces chosen uniformly at random.

The question of interest is: “After having downloadedk
pieces, what is the probability that a peer has retrieved pieces
1 throughj inclusive?” (i.e.,j consecutive pieces from the start
of the file, useful for streaming). This is called the “sequential
progress”. The answer is:

P (j, k) =

(

M−j
k−j

)

(

M
k

) 1 ≤ j ≤ k ≤ M. (2)

The denominator represents the number of distinct ways to
choose thek pieces equiprobably at random. The numerator
represents the number of ways to choose these pieces such
that j are useful pieces (at the start of the file) andk − j are
“useless” pieces2 (not at the start of the file).

The expected value ofj (given k pieces) is:

E[j|k] =
k

M − k + 1
. (3)

This is the expression plotted for the Random piece selection
policy in Figure 1. Note that after retrieving 1 piece, the
probability of having the initial piece of the file isE[j|1] =
1/M , as expected. Similarly, afterM pieces are retrieved, the
sequential progress from 1 toM is complete (E[j|M ] = M ).

This analysis leads to several key insights for the Random
piece selection policy:

- Abouthalf of the file ((M+1)/2 pieces) must be retrieved
beforeE[j|k] ≥ 1. This result has major implications on
the expected startup delay.

- Even after retrievingM − 1 pieces, the (expected) se-
quential progress (E[j|M − 1] = (M − 1)/2) is at most
half the file. This is bad news for on-demand streaming,
since it again has implications on startup delay. However,
the result makes sense intuitively, since the sole missing
piece is equally likely to be in either half of the file, and
in the middle on average.

2Technically, this expression gives the probability of having at least the
first j useful pieces, since it is possible that piecej + 1 is among the useless
pieces (and thus useful). Simple subtraction of the corresponding expressions
for j and j + 1 gives the probability of having exactlyj useful pieces.

- The sequential progress rate is amonotonically increasing
function ofk. Progress is slow initially, but improves with
time as missing holes are filled and large portions of the
file become ready for playback. This is an encouraging
result: once the MSP reaches the threshold required for
playback, streaming can certainly commence, and should
be able to complete in an uninterrupted fashion.

- Startup delay can be directly calculatedfrom the se-
quential progress. If the media playback rate isr pieces
per unit time, then a tangent line of sloper touches the
(continuous) sequential progress curve atk = M + 1 −
√

(M + 1)/r. The sequential progress rate at this point
is

√

(M + 1)r − 1 and the absolute startup delayτ is
(M + 1)r − 2

√

(M + 1)r + 1. For example, ifr = 1,
then the relative startup delay is:

1 −
2(

√

(M + 1) − 1)

M
. (4)

- Startup delay gets worse asM increases.For M = 1,
the relative startup delay above is effectively zero. For
M = 20, the delay would be about 60% (see Figure 1).
For M = 100, it is 80%. AsM approaches infinity, the
relative startup delay approaches 1. That is, streaming
degenerates to the download case if the Random policy
is used on a large media file with many pieces.

Another observation from the foregoing analysis is thelarge
gap between the sequential progress curves for the Random
and In-Order policies. There could be many piece selection
policies that can provide lower startup delay than Random (or
Rarest-First), without requiring strict In-Order retrieval.

B. Portion Piece Selection

We next consider probabilistic policies with bias towards
earlier pieces, such as Portion and Zipf [3]. As in the case of
the Random piece selection policy, our analysis considers the
sequential progress achieved afterk out ofM pieces have been
retrieved (1 ≤ k ≤ M ). More specifically, we are interested in
the expected sequential progressE[j|k], wherej is the number
of useful pieces (at the start of the file). For simplicity, wesay
that a peer is in state(j, k) whenever it hask pieces in total,
and the piece with index(j +1) is its first missing piece (i.e.,
it has the firstj in-order pieces, but is missing piecej + 1).

Let P (j, k) be the probability that we have obtainedj in-
order pieces when the peer has retrievedk pieces in total.
Clearly, at any point in time, theP (j, k) values must satisfy
∑k

j=0 P (j, k) = 1, for a givenk. The expected number of
in-order piecesE[j|k] can be calculated as

E[j|k] =

k
∑

j′=0

j′P (j′, k). (5)

For simplicity, we (conservatively) assume that all pieces
are equally likely to be in the possession of the uploading
peer (as is the case with seeders, or when using the Random
policy, for example). In a real system, leechers downloading
from other leechers are more likely to have pieces that are
closer to its playback point, causing a somewhat stronger bias
towards earlier pieces.
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Furthermore, we assume that all pieces that already have
been retrieved, and are not among the firstj in-order pieces,
are uniformly distributed. With this assumption, a peer in state
(j, k) has each of the pieces in the range[1, j], does not
have piecej + 1, and has each of the pieces in the range
[j + 2, M ] with a probability k−j

M−j−1 . (With the Zipf policy,
discussed in the next section, this assumption provides a crude
approximation.)

Let qj,k be the probability that the first missing piece is
selected for retrieval next. With the Random policy,qj,k =

1
M−k

. With the Portion policy, using a parameterp,

qj,k = p + (1 − p)
1

M − k
. (6)

This expression uses the assumption that the missing pieces
(excluding the first missing piece) are uniformly distributed,
and each other piece is equally likely to be missing (and/or
selected).

Let Ak,j,n be the probability that we have exactlyn con-
secutive in-order pieces starting at positionj + 2 at the time
we also havej in-order pieces (starting at piece 1), piecej+1
is missing, and we have a total ofk pieces. With the above
assumption ofk − j uniformly distributed pieces in the range
[j + 2, M ], we have

Aj,k,n =











(

1 − k−j−n
M−j−n−1

)

∏n−1
i=0

k−j−i
M−j−i−1 , if j + n < k

∏n−1
i=0

k−j−i
M−j−i−1 , if j + n = k

0, otherwise
(7)

Note that the series of factors in these expressions correspond
to conditional probabilities. Specifically, each factor gives
the probability that piecej + 2 + i is (or is not) obtained,
conditioned on all pieces in the range[j +2, j +1+ i] having
been retrieved, in addition to the initialj in-order pieces.

Given the above notation, the probabilityP (j, k) can now
be expressed as follows:

P (j, k) = P (j, k − 1)(1 − qj,k−1) + (8)

+
∑j−1

j′=0

[

P (j′, k − 1)qj′,k−1Aj′,k−1,(j−j′−1)

]

.

We have validated that the model gives the expected results
for two special cases. Whenp → 0, the results match the
model for Random in Section III-A. Whenp → 1, the results
match those for In-Order.

C. Zipf Piece Selection

We now modify the above analysis to handle the Zipf pol-
icy [3]. For simplicity, we again assume that the missing pieces
(except the first missing piece) are uniformly distributed.
Under this assumption, it can be shown that the corresponding
expression forqj,k (Equation (6) for the Portion policy) can
be approximated as:

qj,k ≈
1

1 + M−k−1
M−j−1

∑M−j
i=2

1
iθ

. (9)

Here, the equal weights of the latter pieces are most noticable
in the factorM−k−1

M−j−1 . The rest of the analysis remains the same
as for the Portion policy.

TABLE I
MODEL NOTATION

Parameter Definition
M Number of pieces of the target file
U Maximum number of simultaneous upload connections by a peer
D Maximum number of simultaneous download connections by a peer
C Throughput per connection
λ Arrival rate of new downloading peers into the system
1/µ Seed residence time in the system
η System efficiency (file sharing effectiveness)
x(t) Number of downloaders (leechers) in the system at timet
y(t) Number of seeds in the system at timet
T Download latency for retrieving the complete media file
r Media playback rate of the file
τ User-perceived startup delay before playback commences

As with the Portion policy, we have validated that the model
gives the expected results for two special cases. The above
model matches the model for Random (Section III-A) when
θ → 0, and matches the In-Order policy whenθ → ∞.

IV. D OWNLOAD PROGRESS

This section derives simple models to characterize the
Download Progress properties of P2P on-demand media
streaming in BitTorrent-like networks.

A. Model Assumptions

We consider a single swarm (file) in a BitTorrent-like system
with seeds and downloaders. Without loss of generality, we
assume that this file is of unit size. The parameters and
notation used in our model are summarized in Table I.

The target download file is divided intoM pieces, and
is encoded for playback at rater. Each peer is allowedU
concurrent upload connections andD concurrent download
connections. Each connection achieves mean throughputC.
We assume thatD > U .

We usex(t) to denote the number of downloaders in the
system at any timet, andy(t) for the number of seeds [26].
For simplicity of notation, we will usex instead ofx(t) and
y instead ofy(t) when the context is clear. The downloaders
download as well as upload data. Seeds (by definition) have all
M pieces of the target file, and only upload, with a maximum
of U simultaneous uploads. We assume thatM is large so that
we can ignore the “end game” effects [20] for downloaders
with more thanM − D pieces.

One objective of our model is to assess the overall effec-
tiveness of different piece selection strategies for on-demand
media streaming. For mathematical tractability, we introduce a
number of simplifying assumptions. We ignore detailed effects
of BitTorrent’s unchoking and “tit-for-tat” policies. In fact,
tit-for-tat is not applicable in systems in which pieces are
retrieved strictly in-order (see Section IV-D for details). We
also assume that peers download the entire file, and that they
are cooperative; that is, they upload to the best of their ability,
and they do not try to cheat the system. While we make
these simplifying assumptions, we do, however, consider the
system efficiencyη (called file sharing effectivenessin [26]).
Specifically,η represents the probability that available upload
connections are effectively utilized.
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New downloaders enter the system at a rateλ, and take time
T to complete the download of allM pieces of the file. The
latency to begin playback isτ . Note that downloaders become
seeds at a ratex/T . Seeds reside in the system for time1/µ,
and then leave the system at a rateµy.

We refer to the swarm system asdemand-driven, since the
total demand for download connections exceeds the supply of
upload connections; that is,xD > (x + y)U . This assump-
tion is appropriate for most network environments, including
asymmetric network access technologies such as ADSL.

B. Baseline Model: Rarest-First

In this section, we characterize the system behavior when
downloaders use the Rarest-First piece selection policy (the
default in BitTorrent). The derivation here follows the fluid
modeling approach of Qiu and Srikant [26], laying the foun-
dation for our detailed models later in the paper.

A downloader can haveD concurrent download connections
and U simultaneous upload connections. Each downloader
sends requests to seeds and to other downloaders. At any
given time, the downloading demand of each downloader is
D. However, due to the finite supply of upload connections,
a downloader might only acquiren download connections
(0 ≤ n ≤ D). We assume that allU upload connections
are fully utilized for all peers. In other words,η is 1 in this
scenario. In the next section, we show thatη is close to 1 for
most practical cases.

The downloaders enter the swarm system at a rateλ, and
get converted to seeds at a rate(x + y)UC. Seeds serve the
system for the duration1/µ and depart at a rateµy. Therefore,
the change of population can be expressed as:

dx

dt
= λ − (x + y)UC, (10)

dy

dt
= (x + y)UC − µy. (11)

Solving the above differential equations fordx
dt

= 0 and
dy
dt

= 0, we can obtain the average number of downloadersx
and seedsy in steady-state. Specifically, we obtain:

x = λ

[

1

UC
−

1

µ

]

y =
λ

µ
(12)

The steady-state results provide the following insights:
- The number of downloaders and seeds in the system is

linearly dependenton the peer arrival rateλ.
- The number of seeds in the system islinearly dependent

on the seed residence time (1
µ

). As the residence time
increases, the number of seeds also increases.

- The total swarm population (x+y = λ
UC

) is independent
of the seed residence time; it depends only on the peer
arrival rate and the upload capacity of the peers.

The average download latencyT can be directly computed
using Little’s Law. Specifically:

T =
x

λ
=

1

UC
−

1

µ
. (13)

This expression shows that the expected download time in
steady-state is independent of the peer arrival rate. This

result demonstrates why BitTorrent-like systems are inherently
scalable [26]. As expected, we find that peers benefit when the
upload capacity increases. We also find, as expected, that the
download latency decreases as the seed residence time (and
thus the number of seeds in the system) increases. However,
we do not allow the seed residence time to become arbitrarily
large, because our derivation assumes a demand-driven system.

C. System Efficiency

This section derives the system efficiencyη (also called file
sharing effectiveness [26]) for the Rarest-First piece selection
policy. The following derivation assumes that each peer knows
which pieces are available at other peers in the system,
and peers try to download the pieces they need. We are
interested in determining what fraction of the available upload
connections are used.3 We will show that for most scenarios,
η is close to 1.

The Rarest-First piece selection policy attempts to make
each file piece equally prevalent amongst the peers. When a
peer connects with other peers, it tries to download a needed
piece that is rarest among the pool of pieces available from
its neighboring peers. The aforementioned strategy asymptot-
ically results in a uniform and identical distribution of file
pieces at the peers. Neophyte peers have 0 pieces, while
the most senior peers have almostM pieces. Therefore, the
probability of finding a particular piece at a (randomly chosen)
downloader peer is1/2.

Consider a single piece of the file. Since the aggregate
demand in the system at any time isxD, the average demand
for any single piece isxD

M
. This piece is available from all

y seeds and, on average, from onlyx/2 downloaders. Hence,
the demand on the potential providers for each piece is:

ds =
2xD

(x + 2y)M
. (14)

Downloaders with only one piece receive demandds from
other peers. Downloaders with two pieces receive demand
2ds, and so on. Thus, the number of idle connections at
downloaders withi pieces isU − ids, where0 ≤ i ≤ k and
k = ⌊ U

ds
⌋.

Due to the uniform distribution of pieces among the down-
loaders, it follows that the number of downloaders withi
pieces isx/M , where0 ≤ i ≤ M . Therefore, the number
of idle connections across all downloaders is:

nidle =
x

M

k
∑

i=0

(U − ids) ≈
x

M

[

kU −
k2ds

2

]

=
U2

4D
(x+2y)

(15)
The system efficiency (file sharing effectiveness) is:

η = 1 −
nidle

(x + y)U
= 1 −

U

4D

(x + 2y)

(x + y)
(16)

3Our analysis of system efficiency isconnection-centric. That is, given that
we know which piece we want from a given peer, we analyze the probability
that a connection is available for downloading this piece. Qiu and Srikant [26]
use apiece-centricanalysis, focusing on the probability of a peer finding a
useful piece at another peer, given an existing connection between these peers.
Their analysis ignores the effects of upload/download constraints on system
efficiency. Asymptotically, both derivations provide similar results.
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From the demand-driven system assumption, the number of
uploadsU per peer is less than the number of downloadsD
per peer. Also, the number of seeds in the system is typically
a (small) fraction of the system population. Thus, for most
scenarios of interest,(x + 2y)U ≪ (x + y)4D, which makes
η close to 1. (Simulation experiments are consistent with this
claim, typically yieldingη values of 0.92 or higher.)

The following two sections present detailed fluid-flow mod-
els for two variants of the In-Order piece selection policy.
We characterize the steady-state system behavior, and discuss
startup delay and the variability of download latency.

D. Naive In-Order Piece Selection

In this section, we model a BitTorrent-like system for
streaming media where downloaders obtain pieces of the
media file in strictly sequential order. Downloaders use their
local knowledge to request pieces in (global) numerical order
from their connected peers.

The downloading process proceeds in rounds. In each time
step, a downloader can issueD concurrent requests (for the
next D pieces required). A subset of these requests may be
satisfied in a given round.

For this analysis, we make use of peer relationships in the
time domain. Each peer arrives at some arbitrary timet and
completes download at timet + T , on average. We assume
that all peers progress through the system in a statistically
similar fashion. From the viewpoint of any given peer, there
are “older” peers who arrived earlier, and “younger” peers who
arrived later.

One consequence of strict in-order download is that itbreaks
the “tit-for-tat” reciprocity of BitTorrent (at least within a
single swarm). That is, peer relationships are asymmetric,
and a downloader never uploads to its provider peer. The
asymmetry happens because a given peer can only download
from older peers (who have more pieces of the file), and can
only provide content toyoungerpeers (who have fewer pieces
of the file).

This simple In-Order model operates in a naive open-
loop fashion, and can generate significant load imbalance in
the system. Since all downloading requests have the same
priority, an uploader that receives more thanU requests simply
chooses at randomU recipients for service. To prevent an
infinite backlog from building up in the system, the remaining
unsatisfied requests arepurged from the system, and issued
anew in the next round. (Section IV-E considers the case where
the unsatisfied requests are queued.)

For simplicity, we consider the average behavior of the
system in steady-state, and disregard details of the end game.
Without loss of generality, consider a specific peer that has
been in the system for timetm, where 0 ≤ tm ≤ T . We
want to know the probability that such a peer is successful
in obtaining a download connection for its next desired piece.
That is, we want to compute:

p(tm) =
Ũ(tm)

D̃(tm)
, (17)

where Ũ(tm) and D̃(tm) are the connection supply and
demand, respectively, at timetm.

The peer of agetm requests download connections from
older peers (aget > tm), and from seeds. The total supply of
upload connections available for this peer is:

Ũ(tm) = (x + y − λtm)U. (18)

We need to determine the total demandD̃(tm) for these
connections to evaluatep(tm). The computation ofD̃(tm)
relies on two observations. First, the total number of download
requests in the system isxD. Second, downloading requests
areunevenlydistributed amongst the peers. In particular, peers
with more pieces (including seeds) receive higher demand.

D̃(tm) can be calculated indirectly by determining the total
number of download requests handled by peersyoungerthan
tm. Consider a small set ofλdt peers at an infinitesimal time
intervaldt at offsett < tm (i.e., they have been in the system
for t time units). Theseλdt peers generateλDdt requests, and
these requests are spread acrossx+y−λt peers (downloaders
and seeds) in the system. Therefore, the request load on peers
younger thantm (i.e., peers with age in the interval[t, tm])
from theλdt peers is:

λD dt

x + y − λt
(tm − t) λ. (19)

The first factor represents the demand per peer, while the
second factor represents the number of peers in the region
of interest (tm − t). Therefore, the total request load handled
by peers younger thantm is:

∫ tm

0

λ2 D (tm − t)

x + y − λt
dt (20)

= λDtm − (x + y − λtm)D ln
x + y

x + y − λtm
. (21)

This is the portion of the total demandxD that can be
ignored, since it does not compete for the supplyŨ(tm) of
upload connections for the reference peer at timetm. Thus:

p(t) =
(x + y − λt)U

xD − λDt + (x + y − λt)D ln x+y
x+y−λt

. (22)

For ease of presentation, we introduce into the numerator a
factor α ≥ 1 to approximate4 the pro-rated load effect in the
denominator of Equation 22. With this notational convenience,
the probability that a downloader of aget gets a download
connection is:

p(t) =
Ũ(t)

D̃(t)
= α

(x + y − λt)U

xD
. (23)

When the total download time forM pieces isT , the
average downloading rate for a downloader is:

γ =
1

T

∫ T

0

Dp(t)Cdt

=
1

T

∫ T

0

α

((

x + y

x

)

UC −
λtUC

x

)

dt

= α

(

x + y

x

)

UC − α
λTUC

2x

= αUC

[

(

1 +
y

x

)

−
λT

2x

]

.

4Numerical experiments in Maple show thatα is in the range [1.09,1.25]
for typical scenarios.
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Due to Little’s Law,x = λT . Hence,

γ = αUC

(

y

x
+

1

2

)

. (24)

Therefore, the change of the number of downloaders and
seeds in steady-state can be expressed as follows,

dx

dt
= λ − γx = λ − α

(

1
2x + y

)

UC, (25)

dy

dt
= γx − µy = α

(

1
2x + y

)

UC − µy. (26)

Solving these differential equations fordx
dt

= 0 and dy
dt

= 0,
we can obtain the steady-state results for downloaders and
seeds in the swarm. Specifically, we obtain:

x = 2λ

[

1

αUC
−

1

µ

]

y =
λ

µ
(27)

The average download timeT can be obtained as follows:

T =
x

λ
= 2

[

1

αUC
−

1

µ

]

(28)

Multiple insights emerge from this analysis:
- This naive In-Order piece selection policy issluggish

compared to Rarest-First. This is evident by comparing
Equation 25 to Equation 10; one term in the conversion
rate differs by approximately12x.

- The average download latencyalmost doublescompared
to Rarest-First (assumingα ≈ 1.1). This is a large price
to pay for the benefit of In-Order retrieval. Similar to the
baseline model, latency improves when upload bandwidth
and seed residence time are increased.

- The number of downloaders in steady-statealmost dou-
bles compared to Rarest-First. However, the number of
seeds remains the same as in Rarest-First.

- Unlike the Rarest-First policy, thetotal swarm popula-
tion depends on the seed residence time. In particular,
increasing the seed residence time increases the number
of seeds in steady-state, butdecreasesthe overall swarm
population.

Intuitively, the sluggishness of the In-Order policy arises
for two reasons. First, the request load is unevenly distributed
throughout the network. Older peers with many pieces receive
requests from many younger peers, but can only serveU of
them; the remaining requests are unfulfilled, and could be re-
issued many times before they are served. Conversely, young
peers with few pieces receive few requests from even younger
peers; their idle upload connections are wasted, and system
efficiency suffers. Second, the purging model allowsall peers
to competeequally for service at providers (including seeds),
sinceD requests are issued in each time slot and recipients
are chosenrandomly. As a result, young peers can consume
scarce upload connections at seeds and senior peers, impeding
the progress of middle-aged peers.

As an aside, the notion of “steady-state” for the strict In-
Order policy is debatable. Analysis shows that the number of
successful downloads per round by a peer depends on the age
of the downloader. Young peers have many providers to choose

from, and progress quickly. However, progress becomes slower
as peers get older, since there are fewer providers available.
(In their simulation results, the authors of [3] note that the
swarm population exhibits sawtooth behavior, with highly syn-
chronized conversions of downloaders to seeds. Our analysis
helps explain this phenomenon.)

The next section studies a variant of the In-Order policy
that overcomes these problems.

E. In-Order Piece Selection (FCFS)

In this section, we consider a closed-loop version of the
foregoing In-Order piece selection model. Specifically, the
model presented here assumes that the uploading peers do
not purge the unfulfilled requests after each round. Rather, the
pending requests at a providing peer arequeueduntil they are
serviced. The request queues are serviced using First-Come-
First-Serve (FCFS).

Unlike the previous model, where peers were serviced
randomly, here a peer is guaranteed to obtain service after a
finite waiting period (because the request maintains its position
in the request queue). Another difference is the intensity with
which requests are generated by peers. In the purging model,
each downloader issuesD requests per round; in the queue-
based model, downloaders operate in a closed-loop fashion,
with at mostD outstanding requests at any time.

If we observe this BitTorrent-like system at any given time,
we will find peers with differing degrees of progress. Peers
that arrived earlier will have obtained more pieces. The more
pieces that a peer has, the more younger peers it can serve.
Consequently, we expect to see longer request queues at older
peers (and seeds) than at younger peers. Younger peers will
provide faster response to requests, although they have fewer
pieces available to provide.

Both the finite queue and the FCFS service model5 are
crucial aspects of this system. These mechanisms conserve
the (finite) request load in the system, ensuring bounded delay
and fair progress for all downloaders, without any starvation.
Furthermore, young peers that indiscriminately send many
requests to seeds will experience slow response time for
these requests; the closed-loop policy provides a built-inself-
regulation mechanism to protect other peers.

In such a P2P network, an emergent phenomenon that we
call the “daisy-chain effect” is possible. Imagine a systemin
which peers of aget download their needed pieces from peers
of aget + ∆, and those peers in turn download their needed
pieces from peers of aget + 2∆, and so on. Such a system
is still demand-driven, but highly efficient, since all upload
connections can potentially be used. This clustering of peers
based on their download preferences has been studied by Gai
et al. [11], where this phenomenon is called “stratification”;
the reader may refer to their paper for detailed analytic
characterization of this effect.

Our model does not mandate this structure, but we believe
that it is a natural outcome for a self-organizing P2P system.
Regardless of the actual peer relationships formed, we expect

5For example, a “highest numbered piece” service model also exhibits poor
system performance, since it impedes the progress of young downloaders.
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all peers to be busy uploading, and therefore, the system
efficiency η is close to 1. Sinceη is 1, we can assume
that peers entering the swarm get converted to seeds at rate
(x+y)UC, similar to the Rarest-First model. Since seeds serve
the system for the duration1/µ and depart at rateµy, the
change of population is identical to that for the Rarest-First
Model (cf. Equations 9 and 10). Consequently, the steady-
state swarm population and the average download latency of
this In-Order model match those of the Rarest-First model
(cf. Equations 11 and 12).

x = λ

[

1

UC
−

1

µ

]

y =
λ

µ
T =

1

UC
−

1

µ
. (29)

The primary difference with respect to the Rarest-First model
is the ideal sequential progress achieved during the download.
This In-Order policy can achieve low startup delay for stream-
ing media playback, without being sluggish.

While it is easy to see that In-Order (FCFS), given suffi-
cient seed capacity, can improve both sequential progress and
average download latency, it should be noted that low piece
diversity can degrade performance under other scenarios. For
example, in scenarios without peer seeding, the rate at which
peers can obtain the last piece of the file will always be limited
by the rate at which the server can serve the piece (since no
other downloaders can provide this piece). A more detailed
discussion of the impact of the order in which peers are served
using In-Order policies is provided in [30].

F. Probabilistic Policies: Portion and Zipf

Similar to the analysis of the strict In-Order policy, we
consider the average behavior of the system in steady-state,
and disregard details of the end game. Again, considering a
specific peer that has been in the system for timetm, we note
that such a peer always could request download connections
from any older peer (aget > tm) or from the seeds. From any
younger peer (aget < tm) such a peer could request download
connections with a probabilityQ(tm); i.e., the probability that
such a peer has at least one piece that the peer wants. Given
this notation, the total supply of upload connections available
for this peer is:

Ũ(tm) = (x + y − λtm(1 − Q(tm)))U. (30)

As in our In-Order analysis, we use a constantα, which takes
into acount the portion of the total demandxD that can be
ignored.6 Using our previous notation, the probability that a
downloader of aget gets a download connection can now be
approximated as:

p(t) =
Ũ(t)

D̃(t)
= α

(x + y − λt(1 − Q(t)))U

xD
. (31)

Using the above expression we can now express the average

6While α may be policy dependent, we note thatα typically is very close
to one, using both the Zipf and the portion policy.

download rateγ of a downloader as:

γ =
1

T

∫ T

0

Dp(t)Cdt

= αUC

[

(

x + y

x

)

−
λ

xT

∫ T

0

tdt +
λ

xT

∫ T

0

tQ(t)dt

]

= αUC

[

1 +
y

x
−

1

2
+

1

T 2

∫ T

0

tQ(t)dt

]

≈ αUC

[

1 +
y

x
−

1

2
+

1

K2

K
∑

k=1

kQ(k)

]

.

For the final step of this derivation (in which we transform
an integral in the time domain to a summation in the piece
domain), we make the simplifying assumption that pieces are
retrieved at roughly constant rate.

For simplicity, let us introduce a constantβ = 1 −
1
2 + 1

K2

∑K
k=1 kQ(k). Clearly, 1

2 ≤ β ≤ 1, with β = 1
2

corrsponding to in-order piece selection (as withθ → ∞ or
the portion constantp = 1) andβ ≈ 1 corresponding to using
less aggresive piece slection policies (such as Rarest-First, Zipf
with a smallθ, or portion with a smallp) for which the piece
diversity is higher.

With this notation, we can now express the steady state
equations of the system as:

λ − α (βx + y)UC = 0, (32)

α (βx + y)UC − µy = 0. (33)

Solving for the average number of downloaders, seeds, and
download time, we obtain the following results:

x =
1

β
λ

[

1

αUC
−

1

µ

]

; y =
λ

µ
(34)

T =
x

λ
=

1

β

[

1

αUC
−

1

µ

]

As expected, these equations show that a largerβ (greater
piece diversity) improves download times.

We next show howβ can be approximated for the Zipf
policy and the Portion policy. First, we must calculate the
sum

∑K
k=1 kQ(k). For this purpose, we need to calculate the

probabilityQ(k) that a peer withk pieces can download pieces
from a peer with fewer thank pieces. Under our assumption
of roughly constant download rate, this probability can be
calculated as:

Q(k) =
1

k

k−1
∑

k′=0

Q(k′, k), (35)

whereQ(k′, k) is the probability that a peer withk′ pieces has
at least one piece needed by another peer withk pieces. Utiliz-
ing our analysis of the sequential progress, these probabilities
can be calculated as:

Q(k′, k) =

k′

∑

j′=0

k
∑

j=0

P (j′, k′)P (j, k)φ(j′, j, k′, k), (36)
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where

φ(j′, j, k′, k) =

{

1, if j′ > j

1 − ( j−j′

K−j′
+ k−j

K−j′
)(k

′
−j′), otherwise

(37)

G. Model Extensions

Our detailed models can also be extended to capture re-
trieval time variability, TCP throughput, and peer hetero-
geneity [25]. In this section, we briefly describe two such
extensions: one for peers who abort downloads early, and one
for TCP effects. While the extensions are discussed in the
context of Random and/or In-Order policies, they also apply
to other piece selection policies.

We first consider partial downloaders, who consume swarm
resources, but depart prematurely before download is com-
plete. More specifically, assume that there are three types of
peers: complete downloaders (x1), partial downloaders (x2),
and seeds (y). The combined arrival rate of peers isλ, where
a fraction δ are partial downloaders, and these peers only
download a fractionφ of the file pieces. Furthermore, we
assume that peers are in steady-state, and the two classes of
peers on average see similar download performance.

We derive a set of five equations to characterize this system
model. First, based on our assumptions, the ratio of the
download times of complete and partial downloaders must be
T2

T1

= φ. Now, using Little’s Law for each of the classes, we
can obtain two more equations for the number of peers of
each type; i.e.,x1 = (1−δ)λT1 andx2 = δλT2. Furthermore,
the seed departure rate is also equal to the arrival rate of
complete downloaders. Thus,y = (1−δ)λ

µ
. The fifth and final

equation can be obtained by observing that the download rate
( 1
T1

= φ
T2

) of the downloaders is equal to(x1+x2+y)UC

x1+x2

. Using
these five independent equations, we can now solve for the five
unknowns:x1, x2, y, T1, andT2.

Solving the above equation system we obtain:

T1 =
1

φ
T2 =

1

UC
−

1 − δ

1 − (1 − φ)δ

1

µ
. (38)

As expected, this expression reduces to the previous (single
class) model whenδ → 0 (complete downloaders only), or
φ → 0 (partial downloaders leave immediately and never affect
the system behavior). Whenφ → 1, on the other hand, the
download times are at their longest (withT1 = 1

UC
), since

there are no peers willing to seed. Finally, we note that the seed
bandwidth decreases linearly withδ when partial downloaders
download a complete file, but do not cooperate as a seed (i.e.,
φ → 1). For this case, we haveT1 = 1

UC
− (1 − δ) 1

µ
.

Similar multi-class fluid models have previously been pro-
posed in the contexts of seed incentives [4] and peer hetero-
geneity [8]. However, neither of these works considers partial
downloaders. More detailed extensions are also possible for
cases with lower request rates [4].

Finally, we consider TCP effects. Thus far, we have assumed
perfect link utilization, using a fluid assumption for our
analysis. We now show how this model can be generalized
to take TCP effects into consideration. In particular, we use
analytic expressions for TCP throughput, developed by Parvez

et al. [24], to replace the capacity terms (C) in the foregoing
equations. These models have the form:

C′ =
1/p

√

2
3p

R + DFR(W, m)
, (39)

where p and R are the loss event rate and round-trip time,
respectively, andDFR(W, m) is used to capture the average
fast recovery period of the TCP version of interest. See [24]
for details.

V. STARTUP DELAY CHARACTERIZATION

In this section, we characterize the startup delay: the time
since the arrival of a peer into the swarm until it begins
playback. Once playback begins, uninterrupted operation is
desired. However, many streaming applications can tolerate a
small fraction of the pieces arriving too late for playback.

Consider a peer that has been in the system for time
t. The expected amount of data downloaded by this peer
is

∫ t

0 DCp(g)dg, where p(g) is the probability that a peer
successfully obtains a download connection at timeg ≤ t.
With startup delayτ and playback rater, the amount of data
that must be available at the peer by timet is (t − τ)r. If a
(tunable) fraction,ε, of the total data is allowed to arrive late,
the downloading rate should obey the following inequality:

∫ t

0

DCp(g)dg ≥ (1 − ε)(t − τ)r. (40)

Let us first consider the case of In-Order (naive) download
with random peer selection. Substitutingp(g) from Equa-
tion 31 provides:

αUC

[

(1 +
y

x
)t −

λ

2x
t2

]

≥ (1 − ε)(t − τ)r. (41)

Note that the time to download the first piece of the media
file places a lower bound on the achievable startup delay.
Therefore, the startup delayτ must satisfy the following
inequality for strict In-Order downloading:

τ ≥ max
∀t

[

1

MC
, t −

αUC((1 + y
x
)t − λ

2x
t2)

(1 − ε)r

]

. (42)

The amount of data downloaded by timet is αUC((1 +
y
x
)t − λ

2x
t2), which is a concave monotonically increasing

function of t for 0 ≤ t ≤ T . Settingt = T , we obtain:

τmin = max

[

1

MC
, 2

(

1

αUC
−

1

µ

)

−
1

(1 − ε)r

]

. (43)

For the In-Order (naive) policy, we have the following
insights:

- As in other media streaming systems,startup delay is
determined by the download latency and the playback
duration of the file. For cases where the expected time
to download the file exceeds the playback duration of
the media, the startup delay equals the maximum of the
difference between the aforementioned times, and the
time to download the first piece of the media file.

- Startup delaydecreaseswith increases in the upload
capacity of the peers and the seed residence time. Note
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that as the expected time to download the file decreases,
the startup delay is bounded by the time to download the
first piece of the media file.

- Startup delay isindependentof the peer arrival rate. This
demonstrates that on-demand streaming scales well in this
type of P2P environment.

We now extend the above analysis to the In-Order (FCFS)
policy. In this case, the probability,p(t), that a peer will obtain
a download connection at timet is roughly independent oft
and can be approximated by(x+y)U

xD
. Thus, the startup latency

τ must satisfy:

τ ≥ max
∀t

[

1

MC
, t −

UC(1 + y
x
)t

(1 − ε)r

]

. (44)

Because the amount of data downloaded,UC(1+ y
x
)t, by time

t is a linearly increasing function oft, we can simplify the
above by substitutingt = T to obtain the following:

τmin = max

[

1

MC
,

(

1

UC
−

1

µ

)

−
1

(1 − ε)r

]

. (45)

This analysis of In-Order (FCFS) piece selection provides
the following insights:

- The In-Order (FCFS) policy achieves thelowest startup
delayamong the policies considered, because of its low
download latency and excellent sequential progress. As
with the In-Order (naive) policy, startup delay is depen-
dent on the expected time to download the file and the
media playback duration.

- Similar to other policies, startup delay is independent of
the peer arrival rate. Startup delay decreases when upload
bandwidth or seed sojourn time are increased.

For the Portion and Zipf policies, a more general analysis
is needed. However, given the above assumptions (including
separation of sequential progress and download progress),we
can estimate the average startup delay that peers could have
using the estimated timeT k

K
to retrieveE[j|k] in-order pieces

(referred to as the combined media download rate). More
specifically, we estimate this startup delay as:

τ = maxk

[

k

K
T − r

E[j|k]

K
L

]

, (46)

where r is the playback rate andL is the total file size.
Here, the expression within the max brackets corresponds to
the time difference between downloadingk pieces, at which
time we are expected to haveE[j|k] in-order pieces, and the
time it takes to play out theseE[j|k] in-order pieces. Clearly,
the startup delay must be at least this large for playback
interruption to be avoided.

VI. SIMULATION VALIDATION

In this section, we present ns-2 simulation experiments
to validate our analytical models. In these experiments, we
assume a homogeneous swarm, in which all peers have
identical configuration parameters. Peers arrive to the system
continuously, perform a complete download, and remain for
a short duration before leaving the system. The peer inter-
arrival times are exponential, while the seed residence times

are drawn from a normal distribution. The default peer arrival
rate is 50 per media playback duration.

The parameter settings in the simulation experiments are as
follows. The media file hasM = 100 pieces, each128 KB in
size. The media playback rate is 2000 Kbps. The peer upload
bandwidth ranges from600 Kbps to 2000 Kbps, while the
number of upload connectionsU ranges from 3 to 15, with a
default of 4. Unless stated otherwise, the download bandwidth
is 3200 Kbps for D = 16 connections (i.e., each connection
gets 200 Kbps). The default seed residence time is 20 seconds.
All download times and startup delays are normalized to the
media playback duration in the default configuration.

A. Fluid Model Validation

Consider first the fluid case, in which we ignore TCP effects,
and peers can fully utilize their upload bandwidth whenever
there is sufficient piece diversity and demand. For this case
we present ns-2 fluid simulation experiments to validate the
analytical models developed in Sections III, IV and V.

Figure 2 presents the results from our simulation experi-
ments. The top row of graphs shows swarm population, while
the other two rows show results for download latency and
startup delay, respectively.

The simulation results for swarm population show good
agreement with the analytical models. Figure 2(a) shows
that the total swarm population is linearly dependent on the
peer arrival rate, as expected. The three analytical models
are presented using lines, as labeled in the graph key. The
corresponding simulation results appear as points on the
graph, with ‘+’ for Rarest-First, circles for In-Order (Naive),
and squares for In-Order (FCFS). In-Order (FCFS) behaves
similarly to Rarest-First, while In-Order (Naive) is sluggish:
its swarm population increases at twice the rate of the others.
Figure 2(b) shows the swarm population versus the seed
residence time. The In-Order (Naive) policy has a higher
swarm population, but the swarm population decreases (as
predicted) when the seed residence time increases. For large
seed residence times, the swarm population increases for all
three models as seeds become plentiful (i.e., the system is
no longer demand-driven). Figure 2(c) shows that the swarm
population decreases as the upload bandwidth is increased.
Beyond a certain upload bandwidth, the population remains
constant, since the download bandwidth becomes the system
bottleneck.

The second row of graphs in Figure 2 shows the results
for download latency. The analytical models predict that the
download time is independent of the peer arrival rate. The
simulation results in Figure 2(d) show a similar trend, though
the In-Order (Naive) policy deviates somewhat from the model
prediction. Figure 2(e) considers the effect of seed residence
time. For all three models, more seeds in the system means
faster downloads. The effect of upload bandwidth is illustrated
in Figure 2(f). As expected, increasing the upload bandwidth
reduces the download time, until the download bandwidth
becomes the bottleneck.

The third row of graphs in Figure 2 shows the startup
delay for media playback. The analytical models predict that
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Fig. 2. Fluid Model Validation Results (analytic results use lines; simulation results use points, with ‘+’ for Rarest-First; circles for In-Order (Naive); and
squares for In-Order (FCFS)). Top row: Swarm Population. Middle row: Download Latency. Bottom row: Startup Delay.

the startup delay is independent of the peer arrival rate. The
simulation results in Figure 2(g) confirm this. Also, the startup
delay of In-Order (FCFS) is lower than that of Rarest-First,
while In-Order (Naive) is much worse. The impact of seed
residence time is shown in Figure 2(h). In general, increasing
the seed residence time reduces the startup delay. In-Order
(FCFS) has the lowest startup delays among the policies
evaluated. For both In-Order policies, the startup delay is
lower bounded by the piece retrieval time, once the seed
residence time is large enough. Rarest-First never reaches
this point, because of its poor sequential progress, and the
download bandwidth bottleneck in this scenario. Figure 2(i)
shows similar trends for the effect of upload bandwidth. In
general, increasing the upload bandwidth reduces the startup
delay. For both In-Order policies, the startup delay equalsthe

piece retrieval time once the upload bandwidth is high enough.

B. Packet-Level TCP Model

We next usens-2packet-level simulation experiments to val-
idate the TCP extension of our analytical models. For simplicty
we consider the Random policy, but the other experimental
parameters and settings remain the same.

Figure 3 presents the results from simulation experiments
for swarm population. ’Model’ refers to the case of BitTorrent
system prediction considering the impact of TCP throughput.
‘Model(NoTCP)’ refers to the case where the impact of TCP
is ignored, that is, the bottleneck bandwidth is divided equally
among competing flows without considering the impact of
TCP behaivor.

The simulation results for swarm population show good
agreement with the analytical models. Figure 3(a) shows



12

 0

 100

 200

 300

 400

 500

 0  20  40  60  80  100

T
ot

al
 S

w
ar

m
 P

op
ul

at
io

n

Normalized Peer Arrival Rate

Model
Simulation

Model(NoTCP)

 0

 100

 200

 300

 400

 0  0.5  1  1.5  2  2.5  3

T
ot

al
 S

w
ar

m
 P

op
ul

at
io

n

Normalized Seed Residence Time

Model
Simulation

Model(NoTCP)

 0

 50

 100

 150

 200

 250

 300

 350

 0.25  0.5
� ���

 1

T
ot

al
 S

w
ar

m
 P

op
ul

at
io

n

Normalized Upload Bandwidth

Model
Simulation

Model(NoTCP)

(a) Effect of Arrival Rate (b) Effect of Seed Residence Time (c) Effect of Upload Bandwidth

 0

 1

 2

 3

 4

 5

 6

�
 25  50

��
 100  125  150 ���  200

N
or

m
al

iz
ed

 D
ow

nl
oa

d 
T

im
e

Normalized Peer Arrival Rate

Model
Simulation

Model(NoTCP)

 0

 1

 2

 3

 4

 5

 0.4  0.8  1.2  1.6  2  2.4  2.8

N
or

m
al

iz
ed

 D
ow

nl
oa

d 
T

im
e

Normalized Residence Time

Model
Simulation

Model(NoTCP)

 0

 1

 2

 3

 4

 5

 0.3  0.5
� �� � ��N

or
m

al
iz

ed
 D

ow
nl

oa
d 

T
im

e

Normalized Upload Bandwidth

Model
Simulation

Model(NoTCP)

(d) Effect of Arrival Rate (e) Effect of Seed Residence Time (f) Effect of Upload Bandwidth

Fig. 3. Packet-level TCP Model Validation Results (analytic results use lines; simulation results use points). Top row: Swarm Population. Middle row:
Download Latency.

that the total swarm population is linearly dependent on the
peer arrival rate, as expected. Figure 3(b) shows the swarm
population versus the seed residence time. Figure 3(c) shows
that the swarm population decreases as the upload bandwidth
is increased. Note that models that consider TCP behavior
predict the system quite satisfactorily, while the model without
TCP is very inaccurate. This behavior justifies the use of a
TCP model to explain system behavior.

The graphs in the second row of Figure 3 show the results
for download latency. The analytical models predict that the
download time is independent of the peer arrival rate. The
simulation results in Figure 3(d) show a similar trend. Fig-
ure 3(e) considers the effect of seed residence time. The effect
of upload bandwidth is illustrated in Figure 3(f). As expected,
increasing the upload bandwidth reduces the download time,
until the download bandwidth becomes the bottleneck. For
all cases, the model with TCP predicts performance more
accurately than the model without TCP.

VII. R ELATED WORK

Prior work on peer-to-peer (or peer-assisted) streaming
can be classified into eitherlive streamingor on-demand
streaming. These systems typically use either atree-basedor
a data-drivenapproach. Tree-based approaches are typically
based on application-level multicast architectures, in which
the data is propagated through one or more relatively static
spanning trees. Such application-level solutions have mainly
been used for live streaming [6], [14]. Related tree-based
approaches using cache-and-relay [2], [10], [21], [27] have
also been proposed for on-demand streaming. In cache-and-
relay systems, each peer receives content from one or more
parents and stores it in a local cache, from which it can later

be forwarded to clients that are at an earlier playback point
of the file. The tree-based approaches work best when peer
connections are relatively stable.

In the data-driven approach, distribution paths are dynam-
ically determined based on data availability. By splittingthe
file into smaller parts, each of which may take a completely
different path, data-driven protocols can function effectively in
dynamic environments (e.g., where peers may join and/or leave
the system frequently, and peer connections are heterogeneous,
with highly time-varying bandwidths). While most such pro-
tocols have been designed for live streaming [19], [31], [32],
recently protocols and policies for on-demand streaming have
also been proposed [1], [3].

With most peers at similar playback points, peers in live
streaming can typically exchange pieces effectively using
a relatively small window of pieces. In contrast, with on-
demand streaming systems, peers may be at very different
playback points. Whiledownloadsystems benefit from high
piece diversity (as achieved by the Rarest-First policy), in the
streamingcontext it is more natural to download pieces in
sequential order. To achieve a compromise between these two
objectives, Annapureddyet al. [1] propose splitting each file
into sub-files, with each encoded using distributed network
coding [12], and downloaded using a BitTorrent-like approach.
By downloading sub-files sequentially, playback can begin
after the first sub-file has been retrieved.

Rather than statically splitting each file into sequentially
retrieved sub-files, Carlsson and Eager [3] propose a proba-
bilistic piece selection policy with bias to earlier pieces. Using
simulations, the authors show that a Zipf-based selection pol-
icy achieves a good compromise between high piece diversity
and sequential progress. Alternative probabilistic approaches
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have also been proposed [7]. In this paper, we provide an
analytic framework to capture the streaming performance of
piece selection policies, including probabilistic approaches.

Many analytic fluid models have been developed to cap-
ture the average and transient performance of BitTorrent-like
download systems [8], [13], [26]. Assuming that the upload
bandwidth is evenly shared among all downloading peers (of
a particular class), these models typically consider the steady-
state performance, or use differential equations to capture the
evolution of the peers (and their performance), given some set
of initial conditions or boundary constraints. Other analytic
models have captured the interaction of peers at different
stages of their download progress [28], characteristics related
to the user behavior and peer selection strategies [20], [22],
and the minimum time it takes to distribute the file from a
server to a set of leechers [16]. Designed for the download
context, these models do not capture the order in which pieces
are retrieved and therefore cannot be used to compare different
piece selection policies.

Closely related to the analysis in this paper are a stochastic
fluid model [15] and a probabilistic model [33] used to capture
the performance oflive streaming systems. By capturing the
buffer requirements of the average peer, these models can
be used to determine how long a newly-arrived client must
buffer data before commencing playback. In contrast to the
aforementioned, we characterize the system behavior of peer-
to-peer on-demand streaming systems. Our models consider
both the file sharing effectiveness (which is typically improved
by increased piece diversity [17], [20]) and the sequential-
order requirements of the streaming media player. Our analysis
focuses on the startup delay that can be achieved when using
policies in which pieces are retrieved in order. Our models
also predict the average download times and the steady-state
system population.

Other works have shown that policies that takes the play-
back deadlines of each request into account (serving the
earliest deadlines first, for example) can achieve even better
overall user-perceived performance [5], [30]. In particular, they
show that our original conjecture about the MSP optimality
of In-Order in [23] was incorrect. Yanget al. [30] provides
a detailed discussion about the impact of peer selection (as
used by BitTorrent’s unchoke rule, for example), when using
In-Order piece selection policies.

VIII. C ONCLUSIONS

In this paper, we developed detailed analytical models
to characterize the behavior of BitTorrent-like protocolsfor
on-demand stored media streaming. Our analysis was made
possible by the fundamental insight thatmedia streaming
progress(i.e., the rate at which useful pieces are obtained
by a peer for media playback) is essentially the product of
download progress(i.e., the rate at which pieces are success-
fully obtained from the P2P network) andsequential progress
(i.e., the usefulness of the obtained pieces for media playback).
Our models explicitly capture the effects of different piece
selection policies, including Rarest-First, two variantsof In-
Order, and two probabilistic policies.

Our models provide insight into the behavior of a P2P net-
work used for on-demand streaming. We demonstrate the poor
sequential progress characteristics of Random (and Rarest-
First) piece selection policies, and motivate the need for In-
Order piece selection. We use our model to explain the slug-
gishness of naive In-Order streaming. In particular, we identify
the reduced system efficiency in the purging model with
random peer selection, and use these insights to explore the
In-Order (FCFS) policy. The latter policy provides the same
download latency as Rarest-First, with substantially lower
startup delay for media streaming. We also provide analysisof
probabilistic piece selection policies which provides more of
a balance between in-order requirements and piece diversity.

Simulation results are used to validate the models. We com-
pare different retrieval policies across a wide range of system
parameters, including peer arrival rate, seed residence time,
and upload/download bandwidth. We also provide quantitative
results on the startup delays and retrieval times for streaming
media delivery. The simulation results show close agreement
with the analytical models.

In summary, our results provide valuable insights into on-
demand media streaming using BT-like protocols in P2P
networks.
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