Twitch Chat Fingerprinting

David Hasselquist, Linköping University & Sectra Communications, Sweden
Christian Vestlund, Sectra Communications, Sweden
Niklas Johansson, Sectra Communications, Sweden
Niklas Carlsson, Linköping University, Sweden

Proc. IFIP Network Traffic Measurement and Analysis Conference (TMA), Enschede, The Netherlands, June 2022
Motivation

» Live streaming accounts for major part of internet activity

» Live streaming provides first viewer advantage and interaction

» Users should be able to freely browse the internet

» The streaming content we choose can reveal much about us

» An adversary capable of determining our activity presents a privacy threat
Examples: governmental monitoring/censorship

- Mass surveillance to identify protesters or users with specific opinions
Examples: governmental monitoring/censorship

China censored a top livestreamer on the eve of June 4. Now his fans are asking about the Tiananmen Square massacre

By Nectar Gan, CNN
Updated 0231 GMT (1031 HKT) June 7, 2022
Examples: governmental monitoring/censorship

CNN
China censored a top livestreamer
4. Now his fans are asking about
Square massacre
By Nectar Gan, CNN
① Updated 0231 GMT (1031 HKT) June 7, 2022

ZDNet
Kazakhstan government is
intercepting HTTPS traffic in
its capital
This marks the third time since 2015 that the Kazakh government is mandating the installation of a root certificate on its citizens’ devices.
Examples: political misinformation

» Campaigns targeting users with particular interests or biases with advertisements or (mis)information
Examples: political misinformation

Political ads during the 2020 presidential election cycle collected personal information and spread misleading information

Sarah McQuate and Rebecca Gourley

UW News

POSTED UNDER: ENGINEERING, INTERACTIVE, NEWS RELEASES, POLITICS AND GOVERNMENT, RESEARCH, TECHNOLOGY
Examples: political misinformation

Political ads during the 2020 presidential election cycle collected personal information and spread misleading information

Sarah McQuate and Rebecca Gourley
UW News

The New York Times

ON POLITICS

Political Campaigns Can Still Target You on Facebook

Meta announced changes to its ad-targeting policies, but they will do little to stop campaigns from reaching specific voters.
Examples: political misinformation

Political ads during the 2020 presidential election cycle collected personal information and spread misleading information

FINANCIAL TIMES

Amazon’s Twitch bans some channels after researchers find pro-Russia propaganda

Livestreaming platform has sought to block ‘harmful misinformation’ after Moscow’s invasion of Ukraine
Contributions

» First fingerprinting attack against Twitch
 » Identify viewers of live streams despite encryption using chat messages
 » 140,000 fingerprints (3,700 hours of labeled data)
Contributions

» First fingerprinting attack against Twitch
 » Identify viewers of live streams despite encryption using chat messages
 » 140,000 fingerprints (3,700 hours of labeled data)

» High accuracy by passively eavesdropping for short time
 » Further increase by interacting with stream
Contributions

» First fingerprinting attack against Twitch
 » Identify viewers of live streams despite encryption using chat messages
 » 140,000 fingerprints (3,700 hours of labeled data)

» High accuracy by passively eavesdropping for short time
 » Further increase by interacting with stream

» Demonstrate that naive use of HTTPS or VPN is not enough to protect users’ privacy
 » Packet sizes and their relative timing
Contributions

» First fingerprinting attack against Twitch
 » Identify viewers of live streams despite encryption using chat messages
 » 140,000 fingerprints (3,700 hours of labeled data)

» High accuracy by passively eavesdropping for short time
 » Further increase by interacting with stream

» Demonstrate that naive use of HTTPS or VPN is not enough to protect users’ privacy
 » Packet sizes and their relative timing

» Large-scale evaluation of countermeasures
 » VPN, new client based timing countermeasure, packet padding
Contributions

» First fingerprinting attack against Twitch
 » Identify viewers of live streams despite encryption using chat messages
 » 140,000 fingerprints (3,700 hours of labeled data)

» High accuracy by passively eavesdropping for short time
 » Further increase by interacting with stream

» Demonstrate that naive use of HTTPS or VPN is not enough to protect users’ privacy
 » Packet sizes and their relative timing

» Large-scale evaluation of countermeasures
 » VPN, new client based timing countermeasure, packet padding

» Provide insights for websites and users to better protect their privacy
Fingerprinting

» Related work has identified on-demand video using Variable Bit Rate (VBR) encoding

» Twitch uses Constant Bit Rate (CBR) encoding by default
 » Video patterns does not leak information

» Encrypted chat messages as a side-channel
 » Allows interaction with stream
Twitch chat
Twitch chat

» Distinguishable patterns between streams
 » Packet size
 » Packet timing (relative)

» Two users watching the stream have similar network patterns

» Users identifiable based on their encrypted network patterns
System overview
Data extraction: Twitch

» Video and chat data are delivered separately

» IP addresses for chat messages resolve to ec2-[ip].us-west-2.compute.amazonaws.com

» Internet Relay Chat and WebSocket Secure protocol with URL irc-ws.chat.twitch.tv

» Periodical resolve request URL

» Packet size distribution if IP addresses not available
Edit distance

» 3 operations
 » Substitution
 » Insertion
 » Deletion
Edit distance

- **3 operations**
 - Substitution
 - Insertion
 - Deletion

<table>
<thead>
<tr>
<th>6</th>
<th>8</th>
<th>0</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>8</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>
Edit distance

\[C_i = \frac{|GT_i - ED_i|}{GT_i} = 0.25 \]
Edit distance

\[C_i = \frac{|GT_i - ED_i|}{GT_i} = 0.25 \]
Edit distance

\[C_i = \frac{|GT_i - ED_i|}{GT_i} = 0.25 \]

\[C_i = \min(\text{left, mid, right}) \]
Edit distance

\[C_i = \frac{|\text{GT}_i - \text{ED}_i|}{\text{GT}_i} = 0.25 \]

\[C_i = \min(\text{left, mid, right}) \]
Edit distance

\[C_i = \frac{|GT_i - ED_i|}{GT_i} = 0.25 \]

\[C_i = \min(\text{left, mid, right}) \]

Offset up to 10 seconds
Fingerprint comparison

» Each ED compared to all GT
 » \(d = \{d_1, d_2, \ldots, d_{1000}\} \)

» Relative classifier
 » \(d_2 / d_1 > \mu \)

» Absolute classifier
 » \(d_1 < \lambda \)
Fingerprint comparison

» Each ED compared to all GT
 » \(d = \{d_1, d_2, \ldots, d_{1000}\} \)

» Relative classifier
 » \(\frac{d_2}{d_1} > \mu \)

» Absolute classifier
 » \(d_1 < \lambda \)

Example:

\(d = \{20, 180, 185, \ldots\} \quad \mu = 2.00 \quad \lambda = 10 \)

Relative: \(\frac{180}{20} > 2.00 \)

Absolute: \(20 \not\leq 2.00 \)
Example results: attack duration

- Relative classifier
- Diminishing improvements
- F1-score 0.966 for 90 seconds

- Absolute classifier
- F1-score 0.953 for 90 seconds
Stream popularity: Twitch

» Viewer distribution is heavy tailed
 » Pareto principle

<table>
<thead>
<tr>
<th>Viewers per stream</th>
<th>≤ 200</th>
<th>201-500</th>
<th>501-1000</th>
<th>1001-5000</th>
<th>>5000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Streams (%)</td>
<td>98.24</td>
<td>0.91</td>
<td>0.35</td>
<td>0.41</td>
<td>0.09</td>
</tr>
<tr>
<td>Viewers (%)</td>
<td>22.77</td>
<td>8.59</td>
<td>7.48</td>
<td>26.78</td>
<td>34.38</td>
</tr>
</tbody>
</table>
Stream popularity: Twitch

- Viewer distribution is heavy tailed
 - Pareto principle
- 98% of channels have less than 200 viewers and 23% of viewers

<table>
<thead>
<tr>
<th>Viewers per stream</th>
<th>≤ 200</th>
<th>201-500</th>
<th>501-1000</th>
<th>1001-5000</th>
<th>>5000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Streams (%)</td>
<td>98.24</td>
<td>0.91</td>
<td>0.35</td>
<td>0.41</td>
<td>0.09</td>
</tr>
<tr>
<td>Viewers (%)</td>
<td>22.77</td>
<td>8.59</td>
<td>7.48</td>
<td>26.78</td>
<td>34.38</td>
</tr>
</tbody>
</table>
Stream popularity: Twitch

» Viewer distribution is heavy tailed
 » Pareto principle

» 98% of channels have less than 200 viewers and 23% of viewers

» 0.5% of channels have more than 1000 viewers and 61% of all viewers
Example results

- Accuracy much lower for less popular streams
Example results

- Accuracy much lower for less popular streams
- Accuracy can be increased by interacting with the stream
- F1-score improves from 0.90 to 0.97 by inserting two additional chat messages
Countermeasures

» Five countermeasures
 » Campus-based off-the-shelf VPN
 » OpenVPN
 » Client timing
 » OpenVPN + padding
 » OpenVPN + padding + client timing
Countermeasure: client timing

» TCP Zero Window packets
 » Modification of TCP receive window

» Two random parameters
 » Silent/zero period \(t_z \)
 » Normal period \(t_n \)

» Burst of packets at start of \(t_n \)

» Larger silent period decreases accuracy at the cost of data freshness and traffic bursts
Countermeasure: client timing

- TCP Zero Window packets
 - Modification of TCP receive window

- Two random parameters
 - Silent/zero period t_z
 - Normal period t_n

- Burst of packets at start of t_n

- Larger silent period decreases accuracy at the cost of data freshness and traffic bursts
Countermeasure: padding
Countermeasure: results

- Best F1-scores
 - Default: 0.966
 - OpenVPN: 0.826
 - Campus VPN: 0.810
 - Client timing (5, 2): 0.637
 - OpenVPN + padding: 0.152

- Best protection achieved using a combination of countermeasures
Conclusions

» First fingerprinting attack against Twitch
 » Identify viewers of live streams despite encryption using chat messages
 » 140,000 fingerprints (3,700 hours of labeled data)
Conclusions

» First fingerprinting attack against Twitch
 » Identify viewers of live streams despite encryption using chat messages
 » 140,000 fingerprints (3,700 hours of labeled data)

» High accuracy by passively eavesdropping for short time
 » Further increase by interacting with stream
Conclusions

» First fingerprinting attack against Twitch
 » Identify viewers of live streams despite encryption using chat messages
 » 140,000 fingerprints (3,700 hours of labeled data)

» High accuracy by passively eavesdropping for short time
 » Further increase by interacting with stream

» Demonstrate that naive use of HTTPS or VPN is not enough to protect users’ privacy
 » Packet sizes and their relative timing
Conclusions

» First fingerprinting attack against Twitch
 » Identify viewers of live streams despite encryption using chat messages
 » 140,000 fingerprints (3,700 hours of labeled data)

» High accuracy by passively eavesdropping for short time
 » Further increase by interacting with stream

» Demonstrate that naive use of HTTPS or VPN is not enough to protect users’ privacy
 » Packet sizes and their relative timing

» Large-scale evaluation of countermeasures
 » VPN, new client based timing countermeasure, packet padding
Conclusions

» First fingerprinting attack against Twitch
 » Identify viewers of live streams despite encryption using chat messages
 » 140,000 fingerprints (3,700 hours of labeled data)

» High accuracy by passively eavesdropping for short time
 » Further increase by interacting with stream

» Demonstrate that naive use of HTTPS or VPN is not enough to protect users’ privacy
 » Packet sizes and their relative timing

» Large-scale evaluation of countermeasures
 » VPN, new client based timing countermeasure, packet padding

» Provide insights for websites and users to better protect their privacy
Twitch Chat Fingerprinting

David Hasselquist
Christian Vestlund
Niklas Johansson
Niklas Carlsson

David Hasselquist (david.hasselquist@liu.se)