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Abstract—Cloud systems offer scalable and flexible infrastruc-
ture but can become expensive if the resource usage is not opti-
mized. To help reduce service delivery costs, this paper presents
cost-optimized load-balancing policies for several service classes
and uses these to provide valuable system insights. Leveraging
a comprehensive system model and considering diverse work-
load and system parameters, we explore the interplay between
resource allocation, request routing, and system performance.
Specifically, for each service class, our policies (1) determine
the ideal server allocation strategy and (2) identify the most
suitable replica site for each incoming request. By deriving
optimized policies for different service models and conducting
a comparative evaluation, we offer insights into optimal request
routing strategies as well as when basic policies are optimal,
perform close to optimal, or when more advanced policies are
needed. Our findings contribute to improved load-balancing tech-
niques in cloud computing, facilitating enhanced performance
and efficiency in distributed environments.

Index Terms—Cloud computing, Edge cloud, Replica servers,
Optimization, Server allocation, Request routing, M/M/1, M/D/oco

I. INTRODUCTION

Cloud-based systems are instrumental in the modern com-
puting landscape, offering scalable and flexible infrastructure
to meet diverse demands. However, cloud resources can be
expensive, making it important to optimize both resource
allocation and request routing across cloud service locations.

This paper provides an in-depth analysis and evaluation of
cost-optimized load-balancing policies across different service
classes. By leveraging a comprehensive system model and
considering various workload and system parameters, we
provide insights into the intricate interplay between resource
allocation, request routing, and overall system performance.

To achieve optimal performance in the context of replicated
cloud servers, it is important to strike a balance between de-
livery times and server resource utilization. Two fundamental
decisions underpin this optimization problem: (1) determining
the ideal server allocation strategy and (2) identifying the most
suitable replica site for each incoming request. These decisions
are further complicated by factors such as varying request
rates, server startup times, and cloud service costs.

To capture the intricate challenges of load balancing in
cloud-based systems, we adopt a holistic approach, consider
several service models and system configurations, and de-
rive insights into the relative performance of different load-
balancing strategies for these different conditions. Our model
assumes that each replica site is running one or more servers,
the servers can be turned on and off using deterministic

policies based on the current workload conditions and time
since the most recent event, requests are forwarded between
replica sites based on knowledge about the request rate, cloud
service costs are proportional to how much the servers are
used, and extra delays are associated with remote service.
To span a broad range of use cases, we derived optimized
policies for four general service models representing a wide
range of cloud service scenarios, varying in how servers are
provisioned, whether requests queue, and whether concurrent
processing is possible. By comparing the optimized solutions
across the service classes, as well as by comparing how well
basic load balancing policies perform relative to the optimal
solutions of each class, we provide valuable insights into how
to best optimize the request routing.

At a high level, the key contributions of our work are:

o Analysis and Derivation of Optimized Policies: We
present optimized load-balancing policies for different
service classes, offering insights into resource allocation
and request routing strategies tailored to specific system
configurations. To reach these goals, we first derive an
exact single-site analysis for each service class (in most
cases being the first to do so) and then use the optimal
policies derived there to define and prove optimized
multi-replica routing solutions.

o Comprehensive Evaluation and Comparison: We con-
duct a thorough evaluation and comparison of load-
balancing policies across multiple service classes, high-
lighting their relative performance and identifying scenar-
ios where certain policies excel or falter. Our (derived)
optimal policies allow the performance of simpler and
in some cases more practical policies to be presented as
relative performance gaps compared to an optimal policy.

« Insights into System Optimization: Our analysis yields
valuable insights into the optimization of cloud-based
systems, shedding light on the intricate interplay between
workload characteristics, system parameters, and load-
balancing strategies. Of particular value are the insights
derived from comparing the best solutions across the four
service classes considered here, which emphasize when
different basic policies may be optimal, close to optimal,
or when it may be better to implement more advanced
policies. Although the best policy varies across the pa-
rameter space, we found that a hybrid policy, selecting
the best from a few basic strategies (e.g., serve locally,
direct to the most loaded, or balance evenly) for each
workload, often achieves close to optimal performance.
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Relation to Prior Work: A subset of our single-site
analysis (Section IV) builds on results from our prior work [1],
which focused on dynamic server allocation at a single replica
under time-varying workloads. In particular, we reuse the
analytic results for the M/M/1 and unlimited server models
from [1], which serve as components in our broader study.
However, the scope and contributions of the present paper are
distinct. Here, we introduce a comparative framework across
four service models, derive new optimal routing strategies
for multi-site systems, and provide insights into how request
routing interacts with on-demand resource provisioning across
replicas. These extensions are neither addressed nor implied
in [1]. For completeness, brief derivations of reused results
are provided in the supplementary material, and the full prior
work is available via arXiv for transparency.

Overall, our research contributes to advancing the under-
standing and refinement of load-balancing techniques in cloud-
based systems, paving the way for enhanced performance and
efficiency in distributed computing environments.

Outline: After presenting our system model (Section II)
and the service classes (Section III) considered, Section IV
presents our exact single-site analysis (for each service class)
and Section V presents the optimal multi-replica routing poli-
cies (for each service class) when taking into account transfer
costs. We next present numeric comparisons with baseline
policies (Section VI) and discuss related works (Section VII),
before concluding the paper in Section VIII.

II. SYSTEM MODEL AND SERVICE CLASSES

In this section, we describe our system model, the service
classes considered, and our workflow. Table I lists our notation.

High-level problem and workflow overview: We consider
a cloud-based system comprising multiple replica sites, with
the objective of optimizing overall system performance by
balancing delivery times and the total server resource usage.
Achieving this goal hinges on two critical decisions:

1. determining when it is best to allocate and deallocate
server resources at each replica site, and

2. determining the most suitable replica site to direct each
incoming request.

The first problem focuses on server allocation while the second
focuses on request routing. In this paper, we address both
problems jointly. First, we consider four idealized service
classes, and derive optimized variations for two of them.
Second, we formulate and prove the properties of the optimal
request routing strategies for each of these service classes.
Request routing and load assumptions: We consider
a system with N server sites and M client locations, and
denote the corresponding sets of locations by A/ and M. For
simplicity, we assume that every client location ¢ € M is
local to one server location i*(¢) € N and remote to all other
server locations ¢ # i*(c),i € N. Here, "local” should be
interpreted as the site with the smallest transfer time from the
client, and we assume for analytical tractability that all clients
have the same minimal "’local” transfer time Dj, and a uniform
“remote” transfer time D g to all other sites. Furthermore, each
client location ¢ has a request rate A\, and A.; of this request

TABLE I
SUMMARY OF NOTATION.
Notation Description
M Set of client locations.
N Set of server locations.
Ac Requests generated by clients from client location c.
Acyi Request rate from client location c directed to server location
i (Note: Ae = > icpr Acyi)-
Yi Combined request rate directed to server location <. (Note:
Yi = Zc M )\c,i»)
i*(c) Server location local to client location c.
)\C]i Request rate from client location c that are served locally (i.e.,
AL = Acsix(e)-
Dy, Local transfer time (when ¢ = :*(c)).
Dgr Remote transfer time (when ¢ # i*(c)).
R; = R(~;) | Load-dependent response time. Differ between classes.
C; = C(vi) | Load-dependent cloud-service usage. Differ between classes.
B Relative cost per time unit that a server is used.
A Average time required to start a server.
S Average service time.
T Policy parameter determining when to shut down a server.

rate is directed to replica location ¢. Under these assumptions,
each replica site sees a combined load of v; = Zce M Aeyie

Total delivery time: We consider a simple additive model
in which the total delivery time associated with a client request
is equal to the sum of the transfer time D and the response
time R of the server. As noted above, to capture the tradeoff
between local and remote service, we assume that the transfer
time Dy, from a local replica is smaller than the transfer time
Dpg from a remote replica (i.e., Dy, < Dg). Furthermore,
for each service class, we consider a load dependent response
time R(7;). We call the rate at which total delivery time delay
is incurred the request delay cost. Taking the sum over all
replicas, the request delay cost is given by:

SOADL+Y (A= M)Dr+ D wiR(w), (D)

where A\l = Ac,i*(c) 18 the request rate corresponding to the
requests from client location c that are served locally.

Average cloud service costs: Motivated by current cloud
costs and most offloaded services being processing-intensive
rather than bandwidth intensive, we ignore network costs (as-
sumed much smaller than processing costs under the scenarios
of interest here). Summing over all replica locations, the total
cloud cost is then:

ﬁZC(%), 2)

where C'(y;) is the fraction of time server i is active (including
setup times, busy times, and delayed off periods) and (
is its relative cost per time unit the server is used. Here,
the parameter [ allows any desired relative weightings in
importance between request delay cost and cloud service cost.

Allocation times and de-allocation polices: We foresee
a system in which each server instance takes some time A
to start up (when requests are made to a server replica that
currently does not have an active VM for the service) and that
the service provider only pays for the VMs when they are
in use (i.e., either are starting up or running). Two important
aspects to consider when considering the total system cost are
(1) the extra time that a request needs to wait while a new



server instance (regardless of service model) is allocated (e.g.,
a server or VM is started up) and (2) the time that it takes
to de-allocate a server (or VM). Startup times are variable in
practice, and we model these as exponentially distributed with
mean A. Furthermore, shutdown policies would typically be
deterministic in practice, and so we assume that de-allocation
times are deterministic with shut-down times 7.

Combined optimization problem: For each of the above
service classes, we derive optimized request routing solutions
that balance the two competing objectives. For this purpose,
use a combined objective function that uses a factor /3 to weigh
the tradeoff between the total request delay cost (incorporating
response time due to data processing + network delays) and
the total cost of running the replica servers. In particular, we
aim to minimize:

Z ADp + Z(Ac —A\)Dr + Z YiR(vi) + 8 Z C (i)
) ) l G

Now, recognizing that we can restructure some terms (i.e.,
break out 7. in the sums instead of A.; here leveraging that
the total load > A, = >, 7; can be rewritten as > _ 7.
under our assumption that every client location c is local to
one server location i*(c)) and that we can subtract Dj, from
every request’s delay without impacting the optimal solution
(since the subtracted sum EC ~.Dyp, is independent of to which
replica c that each request is directed), we rewrite the objective
function (after this subtraction) as:

> (re = A)D+ 3 uR(w) + 83 Clw)s 4

c

where D}, = (Dr— Dy,). To see this, note that AL Dy, + (v, —
)\f)DR*’)/CDL = (VC*A(%)(DR*DL) = (WCfx\g)Dg%. While
these restructurings of the first term in the objective function
were done to better fit with the simplest interpretations of
later derivations, we note the first sum of Equation (4), using
the same arguments, also can be written and interpreted as
>.(Ae = AL)DY,. For the reminder of our multi-site analysis,
we will use Equation (4) as our primary objective function.

Remark on locality assumptions: While the one-to-one
mapping (that each client is local to one serve site) and the
uniform remote access penalty (Dy and Dpg delays) may not
fully reflect all real-world scenarios—where clients can be
similarly close to multiple replicas or distances may be hetero-
geneous—it serves as a useful abstraction. These assumptions
simplify the analysis, enabling us to derive provable structural
properties based on closed-form expressions that would be
intractable under more general proximity models.

We emphasize that ”local” in our model reflects the site with
minimal expected transfer time, not necessarily geographic
proximity. For tractability, we assume homogeneous local and
remote transfer times across clients, which enables derivation
of closed-form expressions and optimal routing strategies.
This abstraction makes it possible to analyze fundamental
tradeoffs between latency and resource usage. Exploring more
detailed models (e.g., heterogeneous client distributions or
multiple low-latency options) would be a valuable direction

for future work, particularly for understanding policy behavior
in scenarios with ambiguous proximity.

Remark on processing-oriented workloads and general-
ized remote penalty modeling: Our focus is on services that
are primarily compute-bound or subject to startup overheads,
common in modern cloud environments such as serverless
computing, ML inference platforms, or analytics workloads.
In such systems, response time and cost are often dominated
by compute delays, queuing, or cold-start latency, rather than
data transfer volume. However, while we do not explicitly
model bandwidth-based pricing or network congestion, the
remote delay penalty term Dpg can also capture a broader
range of real-world cost or performance impact associated with
remote service. For example, in addition to added latency, this
abstraction may reflect provisioning overhead, cross-region
transfer costs, or policy-driven constraints. The model is thus
flexible: depending on deployment context, Dr may represent
latency, monetary cost, or both. This generality allows our
framework to reflect realistic tradeoffs for a variety of geo-
distributed scenarios while keeping the analysis tractable.

III. SERVICE CLASSES

Within the above system model, we consider four basic
service classes. Each model represents a different cloud service
paradigm, balancing tractability with practical relevance. The
models vary in how servers are provisioned, whether requests
queue, and whether concurrent processing is possible. These
distinctions are central to the performance and cost tradeoffs
studied in later sections.

« Individual service: With this service class, a separate
server instance (e.g., VM or container) is dynamically
allocated for each new request and then released when
the request is completed. This service class do not allow
queuing and captures serverless or traditional Function-
as-a-Service (FaaS) environments with strict one-request-
per-instance behavior [2], [3].!

o Dynamic M/M/1 server: With this service class, each
replica location is running a single queue-based M/M/1
server. To reduce service costs, we assume a scenario
in which the server can be dynamically de-allocated
when there are no requests being served and then re-
allocated when new requests arrive. Unlike Individual
Service, requests may queue if the server is busy. This
service class models single-threaded VM-based services
with startup overhead and latency-sensitive queuing.

¢ Reactive Unlimited server system: With this service
class, new server instances are spun up reactively, with
the goal of always matching the number of active servers
to the number of requests in the system. To do so, we
(1) initiate allocation of a new server instance whenever
a new request arrives while there is not a new server
allocation already in progress, (2) constrain the total
number of servers (active or in process of being allocated)

'While many FaaS platforms historically enforce strict one-request-per-
instance behavior, modern “Serverless 2.0” systems increasingly support
concurrency within a container and allow for provisioned warm instances [4],
[5], in some cases making them better captured by our M/D/oco service class.



to be at most equal to the number of requests currently
in the system, and (3) cancel ongoing allocations and de-
allocate servers as needed to adhere to this constraint.
Unlike Dynamic M/M/I, this class allows multiple con-
current servers, and the class differs from Individual
Service by allowing short queuing during startup and by
not requiring one-to-one request-server mapping.

o Dynamic M/D/co server: With this service class, each
replica location is running a single M/D/oo server that can
be dynamically de-allocated and re-allocated. The use of
an M/D/oco model, means that a server can process all in-
coming requests in parallel without queuing. This model
captures highly parallel systems such as stateless mi-
croservices or cloud APIs with high concurrency support
(e.g., default container concurrency of 100 in serverless
platforms [4]), or autoscaled systems like Google Cloud
Run [6], IBM Code Engine [7], and Azure Functions [5].

Why these models? These four classes span a wide
spectrum of realistic cloud behaviors: from strictly serialized
(M/M/1) to infinitely parallel (M/D/oco); from stateless per-
request allocation (Individual) to responsive scaling (Reac-
tive Unlimited). They capture key operational modes found
in practice—such as serverless computing, virtual machine
hosting, microservices, and autoscaling APIs—while allowing
for closed-form analysis.

We selected these four service models because they col-
lectively represent a diverse and practically relevant cross-
section of cloud deployment strategies, yet remain analytically
tractable. This tractability is essential for deriving provably op-
timal request-routing and resource-allocation policies, and for
enabling head-to-head comparisons with simpler or heuristic
strategies. In contrast, more general models such as G/G/k of-
fer broader modeling flexibility, but they typically lack closed-
form expressions and are analytically intractable, making them
unsuitable for the kind of structural analysis and optimality
proofs we pursue in this paper.

For example, even the M/M/1 expressions used in this
paper were not previously available and were derived in our
earlier work [1] (summarized in the appendix). By focusing
on models that support such derivations, we strike a balance
between realism and rigor—yielding both actionable system
insights and provable guarantees across a range of cloud
service scenarios.

Relation to real-world systems: The service models stud-
ied here abstract key mechanisms used in real-world cloud
platforms such as AWS, Azure, and Google Cloud. For ex-
ample, serverless computing platforms like AWS Lambda or
Azure Functions [2], [5] often use per-request instance allo-
cation, though recent extensions (termed “Serverless 2.0” [4])
support concurrent handling and warm container pools. VM-
based services use keep-alive policies (captured by Dynamic
M/M/I) to reduce idle costs [3]. Orchestrated microservice
platforms such as OpenWhisk [8], Knative [9], or Kubernetes-
based autoscalers follow reactive resource-matching behavior
similar to our Reactive Unlimited or M/D/oo models. While
commercial platforms introduce additional complexity (e.g.,
batching, cold-start suppression [10], predictive scaling), our
simplified models capture the essential tradeoffs in queuing,

concurrency, and cost—making them broadly representative of
real deployments while remaining analytically tractable.

IV. EXACT SINGLE-SITE ANALYSIS

In this section, we derive exact single-site expressions
for each service class and derive optimal shut-down policy
thresholds for the service models for which this is applicable
(i.e., Dynamic M/M/I server and Dynamic M/D/co server). For
the single-site case, our model reduces to YR(y) + SC (7).

A. Individual Service

This service class can be seen as a function-as-a-service type
of approach without any caching of server process instances.
Therefore, each service instance will see a startup-period of A
and an average service time S, resulting in an average response
time R = A+ .S and average cloud service usage C' = y(A+
S), where C' simply equals the average number of servers that
are active or in startup as calculated using Little’s law.

Combined single-replica cost: Now, combining these
costs, the total single-replica cost can be calculated as:

Y1+ B)(A+5). (5)

B. Dynamic M/M/1 Server

As shown in [1] and outlined in Appendix B, we can derive
exact closed-form expressions for both the average response
time R and the average cloud service usage C' for an M/M/1
server with Erlang distributed server de-allocation times (with
Erlang shape parameter k), and then letting £ — oo to obtain
the deterministic shut-down policy results.? In this case:

S A(1+~A) 1—+8

R= - —.
L—7S T +~yA7 T + A

C:

(6)

Singe-replica optimization: Consider now the optimal T’
when ~ is known and stable. In this case, the combined cost
function has the derivative:

d ve T

——(YR+BC) = -

T (7T +~A)

)

We note that the sign of the derivative depends on ~. Solving
for the v* for which the derivative is zero (and changes sign),
we find only one positive root to the equation:

. VABATT (BS+ A2 — (BS+A)
v= 9A?

Keeping track of the sign, we note that the derivative is non-
negative whenever 0 < v < ~* and negative otherwise.
Given these properties, the objective function is always non-
decreasing (with T') when 0 < v < ~* and non-increasing
(with T) for v* < ~. Therefore, it is optimal to use 7' = 0
when v < ~* and T' = oo otherwise.

. (8)

2In [1] the definition of “C™ differs slightly from that used here, resulting
in expressions that differ by a factor of S.

5 (VAL +~7A) = B(1 —~5)).



Key observation (M/M/1 case): When ~ is known
and stable, it is optimal to use 7" = 0 when v < ~*,

VABAZ+(BSH+A)2—(BS+A)

oAz and T = o0

where v* =
otherwise.

Combined single-replica cost: Now, combining these
costs, the minimized total single-replica cost becomes:

s A+S
=3 +7A+571+§A’
s + 6,

if v <o~ ©)

otherwise.

C. Reactive Unlimited Server System

As derived in [1] and outlined in Appendix A, this service
class has a response time and average cloud service usage of

R=A+S, C=+(S+

T8 (19)

The response time is equivalent to using a separate server per
request, but with lower server usage. This is explained by the
efficiency that results from taking a newly-free existing server
for a waiting request instead of always requiring a new server.

Combined single-replica cost: Combining the costs, the
total single-replica cost can be calculated as:

A 11
1+~vA)° (b

7(A+S)+57<S+

D. Dynamic M/D/>o Server

For this analysis, we consider a renewal period that starts
(and ends) with the initial request triggering a new setup
period. Considering such a renewal period, we recognize that
(1) the one request triggering the setup period will endure a
waiting time of S+A, (2) there will be on average YA requests
per renewal period that will arrive during the setup period, (3)
these requests on average will endure an extra waiting time of
A} and (4) the rest of the requests arriving during a renewal
period arrive after setup and can be served as soon as they
arrive (i.e., only enduring the service time .5).

To calculate how long a busy period is (including the
delayed off periods), we note that such time period can be
modeled using an inflated service time of S + 7. In this case,
the average busy period F[B] is %(67(5 +T) —1). Given these
observations, the average response time can be calculated as:

R—S4 (1+~A)A _g4 (I+~vA)A .

1+~A +yE[B] YA + ST

Furthermore, the fraction of time that the server is either in
setup phase (time A), actively servicing requests, or in delayed

turn-off mode can easily be calculated as:
A+ FE[B] B YA + 5+
 1/y+A+E[B] yA+e(S+TD)

Note that the above analysis relies on S+7 being determin-
istic. In this case, even when there are m clients in the system

12)

(13)

3Note: If considering fixed (rather than exponential) setup period, then the
~A arrivals that (on average) arrive during the setup period have an average
extra waiting time of A/2 (rather than A).

when the busy period starts, one can consider it as if there
is only a single client that starts the busy period. In contrast,
in the case that S would be variable, then the “first” request
would need to be considered as the one with the maximum .S
of all m requests in the system at that time. However, in this
case no exact analysis is easily attainable.

Single replica optimization: Similar as for the M/M/1 ser-
vice class, we can obtain the optimized policy by considering
the derivative of the combined cost function:

d (VAL +A) — B)erSHD)
—(YR+pC) =— (A + G )

0T (14)

From this expression, it is then easy to see that %(’yR +
BC) > 0 whenever 3 > yA(1 4+ yA) and -4 (yR + BC) <
0 otherwise. The point where the derivative (and hence the
optimal T being used) changes happens when v2A2 + yA —
B = 0, which only has one (positive) solution v* = 7“1522171
(and A # 0). It is therefore optimal to use 7' = 0 when v < v*
and T' — oo otherwise.

Key observation (M/D/oo case): When v is known
and stable, it is optimal to use 7' = 0 when v < ~*,
where v* = 7“1%21_1, and T' = oo otherwise.

Combined single-replica cost: Combining the above re-
sults, we find that the minimized total delivery cost associated
with a single replica can be calculated as:

(1+yA)A Ate’S—1
{ ! <S+ "YAle”S ) +677A—T—e75 ’
7S + B,

otherwise.

E. Numeric Single-Replica Comparison

Throughout the paper, without loss of generality, we normal-
ize units by setting the average service time S = 1. With this
choice, all time-based quantities (e.g., startup time A, response
time R, and server usage C) are measured relative to the time
required to serve a single request. This allows the request
rate v to be interpreted as the average number of arrivals per
service time unit, which corresponds to server utilization in the
M/M/1 case. The cost function combines expected response
delay and server usage, both expressed in normalized time
units. The parameter 3 controls their relative importance: for
example, setting 5 = 1 assigns equal cost to one unit of delay
and one unit of server usage. This normalization is standard
in analytical modeling and enables us to highlight the tradeoff
structure while maintaining generality.

High-level service class comparison: Figure 1 compares
the total cost for the four service classes using the default
case of A =1 and 8 = 1. We observe a clear cost ordering:
the Dynamic M/M/I class saturates at v = 1 as utilization
approaches full capacity, while the other classes maintain
acceptable response times beyond this point. This is achieved
by either starting new servers as more requests come in (e.g.,
with Individual Service and Reactive Unlimited) or through
use of servers able to serve multiple requests in parallel
without inflating response times (i.e., Dynamic M/D/>o). Of
these service classes, the Dynamic M/D/co class (which may
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Costs are plotted in normalized time units for each service class. Observation:
The discontinuity observed for both dynamic service classes (M/M/1 and
M/D/oo) for the A = 10 curves captures the operation point where the
optimal policy of each of these classes switches from using 7" = 0 to always
keeping the servers on (i.e., using 7" — 00).

be reflective of large multicore servers, for example) would
provide the most attractive cost tradeoff assuming a fixed value
of /3, and the Reactive Unlimited class is seen as a significant
improvement over the more naive Individual Service class, as
it avoids de-allocating servers when there are waiting requests
(i.e., servers can be reused).

Relative impact of parameters: We next consider the
impact of high vs. low startup times (A) and high vs. low
cloud-service cost weights (8). Figure 2 summarizes these
results. We note that a large cloud-service cost (e.g., 5 = 10
curves) relatively consistently has the most adverse effect on
the optimal costs of the four services. For both dynamic service
classes (M/M/1 and M/D/oc0o) there is a clear discontinuity for
the A = 10 curves. This captures the operation point where
the optimal policy of each of these classes switches from using
T = 0 to always keeping the servers on (i.e., using 7" — 00).
Otherwise, for these service classes, the startup time A seems
to have a relatively smaller impact than the cloud-service cost
weight /3, as a factor 10 up or down on A impacts the total
cost less than applying the same factor to .

V. MULTI-REPLICA ROUTING WITH TRANSFER COST

Let us now consider the full cost model in Equation (4).
For this analysis, without loss of generality, we assume that
the replicas are enumerated from the replica with the biggest
to the smallest local request rate; i.e., Ay > Ao > ... > Ap.

A. Service-Independent Optimality Property

Before deriving the optimal request routing strategies for
each specific service class, we begin by establishing a basic
monotonicity property that holds independently of the service
model. Although this result is intuitive—clients with higher
local demand should be assigned higher load—it serves as a
useful foundation for proving more complex properties in later
sections In particular, we show that there exists an optimal
solution in which ~; > «; whenever \; > A;. This is
formalized and proved in the following theorem.

Theorem 1. There exists an optimal solution to the load
allocation problem in which ~y; > v; whenever A\; > \;.

Proof. Assume to the contrary that there is no optimal solution
that satisfies this criterion. In this case, in an optimal solution
there must exist at least one pair of replicas, say a and b,
where a < b, such that v, < 7, (and A\, > Ap). Now, consider
an alternative solution in which v/, = -y, and 7, = 7,. Since
the total load ~; of these two replicas are only switched, this
solution would clearly have the same average response time
(i.e., Zj% > ;viRi) and cloud service usage (ie., ), C;).
Any difference between the cost of the two solutions must
therefore be in the amount of remote service (i.e., v, — )\g +
Yo — )\f). In fact, due to the equal switch in load, the only
difference is in how large a fraction of the requests is served
locally G.e., )\é + )xbL), where more local service is desirable.
Now, consider the local service with the new allocation:

(16)

>\aL, + )\5/ = min[A,,7,] + min[Ap, 73]
= min[Ag, 7p) + min[Ay, V4]
=\ 0f

Here, we use the fact that min[X,Y] + minf[z,y] >
min[X,y] + min[x, Y] whenever we have that X > x and
Y > y. This shows that the modified solution is no worse than
the original solution. Since this process can be repeated until
we have a solution that satisfies the criteria of strictly ordered
loads (i.e., 7; > ; for all 4 < j) we have shown that there
exists at least one solution that is no worse than the original
solution (assumed optimal) that satisfies the claimed criteria.
This contradicts the assumption and completes the proof. [

> min[Ag, Ye] + minfAy, 1)

B. Optimality when Individual Service

When each client is served individually, there is no benefit
in forwarding requests remotely. To see this, we note that both
the response time and the per-request processing overhead is
location independent. With all requests being served locally,
the cost associated with each replica is given by Equation (5),
and the total delivery cost can therefore be calculated as:

N
> A1+ B)(A+9). (17)

i=1



C. Optimality with Dynamic M/M/1 Servers

To characterize the optimal solution, we prove properties
regarding (1) the server policies used by the different replicas
and (2) the load split across replicas. At a high level, the
structure is based on the identification of three groups of
replicas with different service policies, followed by careful
load balancing within and across these groups. The first
theorem below defines the three groups and their operation.

Theorem 2. There exists an optimal solution that satisfies the
properties of Theorem 1 with the following structure:

o Replicas 1 <i<a:T; — oo, Ry =7 ‘S;S, C;=1,

e Replicas a < i < b:T; =0, R; = S+AC—
7i(A+S)
1+7;A 7

e Replicasb< i< N:v =0, C; =0,

Proof. First, consider each replica in isolation. From the key
observation of Section IV-B, we know that for any replica with
a known and non-zero load ~; it is optimal to either use 7; = 0
or T; — oo. Therefore, given a non-zero load ~;, a replica is
best operated using one of these two operation points. Second,
any replica with no load (i.e., ; = 0) should be turned off
completely (i.e., C; = 0). Given these two observations, we
must only show (1) that there exists an optimal solution in
which we do not have any cases for which T; = 0 and T; — oo
for some ¢ < j with 7; < 7; and (2) that only the replicas
with the lowest local load \; have zero load.

To prove the first property, assume to the contrary that there
exist two replicas ¢ < j such that replica 7 uses 7; = 0 and
T; — oo. In this case, it is easy to see that it would be better
to change so that T; — oo and T; = 0. First, note that the

change in cost for these two entities are ;A — 3 i +;“ = and

A= ltzji, respectively, but with opposite signs. Second,
note that the derivative of this function is non-negative; i.e.,

£(A — 511;;72) ﬁAJ’ﬁSJr(Ll\‘?SAJ’)QAz'”A > 0. Therefore,
it is always better to change so that replica ¢ uses 7; — oo
and replica j uses T = 0.

Finally, to prove the second property and complete the
proof, we again use proof by contradiction. Here, we can
simply assume that (to the contrary) the optimal solution has
a pair of replicas ¢ and j such that ¢« < j and 7; = 0 and
v; > 0. However, as per Theorem 1, there exists a solution
with no lower cost that satisfies our conditions (that can be
obtained by simply switching the loads for the two replicas).
We note that replicas with «; = 0 simply correspond to a
special case where some number of replicas (in our case the
last N — b replicas) serve no requests. Furthermore, for this
case, it clearly is optimal to never turn on the server (i.e.,
C; = 0 for these replicas). This completes the proof. [

While the third group thus far can be seen as a special case
of the second group, we have kept it separately as it is operated
in a different manner than the replicas in the other groups
and it (as we will soon see) allows us to much more easily
characterize the load distributions within each group. However,
before looking closer at this, we note that the identification of
the three groups provides a high-level solution approach to
finding the optimal solution.

At a high level, the idea is to search over all group splits,
where indexes a and b determines the exact splits. This would
involve considering O(NN?) cases, where for each case the cost
of the optimal solution could be calculated as follows:

a

b
i viS ‘
Z(l_ms)fz(1_%S+%A)+5a
=1 i=a+1
(A +S)
D 1
+Bi:a+1 14+ vA + RZ (18)

Now, as noted above, there are still several more things that
must be determined before having a full characterization of
the optimal solution. In particular, we still need to determine
how much load each replica should serve. To determine how
the loads are split within each of these groups (beyond what
is implied by Theorem 1) some additional care is therefore
needed here. We next provide some key load-distribution
insights into the structural properties of the optimal solution
within the first two groups, followed by a discussion on how
an optimal solution that satisfies all the identified properties
effectively can be identified.

Theorem 3. An optimal solution satisfies the following prop-
erties. First, there exists two load limits v, and 7, associated
with replicas o' and a" (a' < a") such that v, <7, and

(D) vi=% <Aifor1<i<d,

2) v =X\ forad <i<dad’, and

3) % =70 > i fora” <i<a.

Second, there exists two load limits Y < Vo associated with
two replicas V' and b" (V' < V") such that

@) vi= <\ fora<i<UV,

(B) v =X for b <i <V, and

6) vi =75 > N for b <i<hb.

Proof. We will prove this by contradiction, assuming that
there exists an optimal solution that does not satisfy the above
property (but Theorem 1).

High-level approach: We start by considering the replicas
with index 7 < a in isolation (showing that an improved
solution can be obtained that satisfies the above properties
for those replicas), then the replicas with index a < 7 < b
in isolation, and lastly show that the finally constructed (and
improved) solution satisfies all claimed properties.

First group (¢ < a): First, consider the replicas with index
1 < a. For these replicas, we can break up the cost into two
parts: (1) the response times (including queuing delays) and
(2) the remote access costs. Now, consider the response time
terms (i.e., f = 1, R; = 11153 ). This function is convex, with
ﬁ > 0 and

d,YQ > 0). For this reason, f(v+z)+f(y—=z) is monotomcally
increasing with z, and as long as load balancing does not
impact the remote access cost, it is always desirable for a
partial solution consisting of two replicas with request rates
v+ x and v — x to be as load-balanced as possible (i.e., small
x). Now, let us use this observation to prove the optimal load
characteristics for the replicas with index i < a.

For this part of the proof, we will first prove that there
exists an optimal solution for which all replicas with v; < A;

both positive derivative and second derivative (i.e,
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Fig. 3. Potentially violated example cases that must be considered in the
proof of Theorem 3. Intuitively, in case A some degree of offloading can
be done from the more loaded to the less loaded server, so to improve load
balancing, effectively reducing the average response times, without increasing
the fraction of remote service. In cases B and C, some degree of load balancing
is possible without impacting the overall level of remote (or local) service.

(if any) have index ahead of those with v; = \; (if any),
which have index lower than those with v; > A; (if any). We
will prove this by contradiction, assuming that there exists
an optimal solution that does not satisfy the above property
(but Theorem 1). Now, we can show that for any pair of
consecutively ordered replicas 7 and 7 (where j = 7 + 1)
for which the property does not hold, we can improve the
“optimal” solution by creating a solution that satisfies the
above property (and Theorem 1). To do this, we must consider
all three pairwise cases that violate the property. These three
cases are illustrated in Figure 3. For simplicity we will also use
the notation used in the figure in the proof of each case. Here,
we let 6; = v; — Ay, 6; = v; — A, and define the cases based
on the signs of §; and J;. Furthermore, we let 0;; = v; — ;.

Case A (; > 0 and 6; < 0): For this case, an improved
solution can always be achieved by moving min(d; —d;, d;;/2)
of the request load from replica ¢ to replica j. To see this,
consider the two subcases:

e When §; —d; < §;;/2, then there are (1) no change of the
fraction of requests processed remotely (since replica ¢
after the change directs ¢; remotely and replica j serves ¢;
more than its local load) and (2) the load is more balanced
(since we moved load from the more loaded replica to the
less replica, but not past the balancing point). Therefore,
due to the above-mentioned properties of f(x), we see
a cost reduction. Furthermore, it is easy to see that (3)
Y = 47 (since the move is smaller than 6;; which
would balance the two), and (4) v/*** = A\;—d; < A; and
;e = Aj +6; > Aj. The new (and improved) solution
therefore satisfies our claimed properties.

e When §;;/2 < §; — 4;, then there is (1) a reduction
in the fraction of request processed remotely and (2+3)
the load becomes equalized between the replicas (i.e.,
Y€ = ~;¢"). Therefore, there is a clear cost reduction.
Furthermore, we note that (4) either v**"’ < \; (in which
case it does not matter if yj’-w“’ > Aj ornot) or v > A\,
(in which case ;e > Aj).

Case B (6; > 0 and J; > 0): For this case, an improved
solution can always be achieved by moving min(é;,d;;/2)
of the request load from replica ¢ to replica j. To see this,
consider the two subcases:

e When 6; < 6;;/2, then there are (1) no change of the

fraction of requests processed remotely (since both "%

and ~7'“"” remain no smaller than A; and A;, respectively)
and (2) the load is more balanced (since we moved load
from the more loaded replica to the less replica, but not
past the balancing point). Therefore, due to the above-
mentioned properties of f(x), we see a cost reduction.
Furthermore, it is easy to see that (3) 7;"“" > 7', and
(4) 7 = A; and 77" > A;.

e When §;;/2 < ¢;, then there are (1) no change of the
fraction of requests processed remotely and (2+3) the load
becomes equalized between the replicas (i.e., v/**V =
7;¢"). Therefore, there is a clear cost reduction. Finally,
it is easy to see that (4) ;" > A; and vjﬂew > Aj).

Case C (0; < 0 and 6; < O and §;; > 0): For this

case, an improved solution can always be achieved by moving
min(—d;,d;;/2) of the request load from replica 7 to replica
7. To see this, consider the two subcases:

o When —4; < 0;;/2, then there are (1) no change of the
fraction of requests processed remotely (since both ~;*¢%
and 7{"“* remain no greater than \; and \;, respectively)
and (2) the load is more balanced (since we moved load
from the more loaded replica to the less replica, but not
past the balancing point). Therefore, due to the above-
mentioned properties of f(x), we see a cost reduction.
Furthermore, it is easy to see that (3) ;" > /" and
(4) 7" < A; and 47" = A;.

e When §;;/2 < —¢;, then there are (1) no change of
the fraction of requests processed remotely and (2) the
load becomes fully balanced between the two replicas.
Therefore, there is a clear cost reduction. Furthermore, it
is easy to see that (3) 7/**" = fyj’-“”” and (4) 4 < \;
and 7' < Aj).

We note that in all cases that violate the properties of our
claimed optimal solution, a better solution can be obtained by
“fixing” cases that do not satisfy the claimed property until
we have a solution that does. Furthermore, it should be noted
that the above algorithm always pushes load left-to-right (i.e.,
from ¢ to j = ¢ 4 1) and that the new solution is obtained in
a finite number of steps.

Next, we show that all replicas with load v; < A; (if any)
should be load balanced (i.e., the most loaded replicas in this
group) and all replicas with v; > \; (if any) should be load
balanced (i.e., the least loaded replicas in this group). This
can easily be shown (and such a solution obtained) thanks
to the convexity of the function f(x), which ensures that
the average service times across all the replicas within each
of the two groups are minimized by load balancing them,
without impacting the fraction of service obtained remotely.
We now have an improved solution that satisfies all our
claimed properties for replicas 1 < ¢ < a, completing our
proof for the first group (in isolation).

Second group (a < ¢ < b): Second, we basically repeat the
above proof for the second group of replicas (in isolation);
i.e., the replicas labeled replicas a < 7 < b. The proof for this
subset follows the exact same steps as for the first group. The
only difference lies in the cost terms not associated with the
remote processing, which now reads as g = 11’55 + 1A+
B(%). However, it is easy to show that also this function




Operating with 7— o

'g a’=3 §
o
- p AN <v
: il 5
3
o k]
g N R
N N "’
11
1234567 891011121314151617181920

Replica index i

Fig. 4. High-level characteristics of the optimal solution with Dynamic M/M/1
Servers, as defined by Theorems 1-3. Key insights: First, the server sites
naturally divide into three categories based on their local load: (1) highly
loaded servers remain always on (I" — oo) and may offload or receive
traffic to balance queueing delays, (2) moderately loaded servers shut down
immediately when idle (T" = 0) and may engage in load balancing depending
on demand, and (3) lightly loaded servers do not serve any traffic, forwarding
all requests to remote replicas. Second, within the two active groups, the load
is further optimized by (1) the most loaded sites (in that group) performing
load balancing by sending request to others to avoid too high delays, (2) the
least loaded sites (within that group) serving requests from other sites so to
achieve sufficient activity level, and (3) the intermediately loaded sites (within
that class) serves only the requests of their local clients. Finally, zero or more
of the above server site classes may be empty.

is convex with both positive derivative and second derivative.
i dg  _ A+S
In particular, ﬂ = i %S + = 75)2 + A + B(HwiA _

S A(ALS) 52 A(l=7:S5)
Tar) = st a s ATt <1+711)2) >
0 (since all termszare positive when ;S < 1, the range

. 2 .
of interest) and % = (13“3 SIE 2,(81A+(7AA+)§) > 0. It is

therefore always desirable for a partial solution consisting of
two replicas with request rates v+« and v — z to be as load-
balanced as possible (i.e., small ) and we can apply the same
proof as used for the first set also on this set of replicas.
Combined solution: Third, note that since we in both cases
have pushed load from left-to-right within each group, we must
have y7¢% > ~°d and Yoi? < 'yglfl. Now, since we by our
assumption started with a solution that satisfied Theorem 1, we
must have v2!4 > ~!d, . Combining these three observations,
we can show that 7€ > 424 > Hold > ynew Thig confirms
that also the combined solution satisfies all claimed properties
as well as Theorem 1. This completes the proof. O

Combining the insights from Theorems 1-3, we can now
define the characteristics of an optimal policy. Figure 4 illus-
trates such a policy, for an example workload. We note that
in this example (as per Theorem 2) the replicas are split into
three groups: (1) the replicas with index 1 through a (red
markers) operate with 7' — oo, (2) the replicas with index
a + 1 through b (yellow markers) operates with 7' = 0, and
(3) the least loaded replicas (brown markers) do not serve
any requests. Furthermore, for the first two groups (as per
Theorem 3) the replicas are split into (up-to) three subgroups:
(1) those that serve less than their local demand (which all
are load balanced and have the highest local load), (2) those
that serve exactly their local load (and have the intermediate
loads of the replicas in the group), and (3) those that serve
more than only their local load (which are all load balanced
and the replicas within the group that have the lowest load).
Finally, we note that the load also satisfies the monotonicity

property (of non-increasing loads) outlined in Theorem 1.

While our proof outlines a method for converting any
solution satisfying the properties outlined in Theorems 1
and 2 into one that also satisfies the properties outlined in
Theorem 3, regardless of what starting point is selected (and
hence by contradiction that the optimal solution must satisfy
the properties claimed in Theorem 3), it is important to note
that the method is not guaranteed to find the overall optimal
given an arbitrary starting point. First, in practice, the above
approach only moves load from left-to-right. If the starting
point is perfectly balanced, we may therefore not move any
load. Yet, this is often not optimal, and we would have found a
better solution with a different starting point. Second, to obtain
the overall optimal, we must also consider the relative split of
how much load should be placed on the two sets of replicas
(e, 1 <i<avs. a<i<b). With the above approach, we
do not consider further improvements that could be obtained
by searching for the best split or for the best choices of a and
b. We next describe how the above properties can be used to
effectively identify the optimal solution.

To find the optimal solution effectively, we use a simple
algorithm that first breaks the problem into two optimization
problems: (1) find the optimal load split across replicas 1
through a, given a total load A over these replicas, and (2)
find the optimal split across replicas a+ 1 through b, given the
remaining load (i.e., ), A\; — A). Each of these optimizations
involve finding the best 7, and 7, (or 7, and ~) given a
and A (or a, b, and ZZ/\ A). Both these problems are
solved the same way; so let us consider the first. For this
function, we note that the allocation is deterministic given
A and one of the other parameter; say ~,. Therefore, given
A, we must simply find ~,. For an effective implementation,
we have found it useful here to first loop over all possible
replicas a” (0 > a” > a), and then for each of them (as long
as feasible to find a better solution) we (a) identify feasible
bounds of v, (e.g., max[A,~, (A — ZZ Ha—d"+1)] <
Yo < Aar—1], and (2) search this space for the best a’ and

= (A—qala—a”+1) =% 1 \;)/a’). Finally, to find
the global optimal, we then loop over all possible a, and for
each a we search for the best A split and b. (Where for each
split we find the best allocation using the above functions.) To
speed up the search, we use several monotonicity properties
(e'g" )‘1 Z A/aa % Zl )\z Z A 2 Z,L )\i’ Ya 2 Ya+1, etC.) and
prune the searches when possible. Combined, this makes for
a relatively efficient search* for an optimal solution satisfying

the criteria of Theorems 1-3.

D. Optimality with Concave Single-Server Cost

To find the optimal allocation for the Reactive Unlimited
server system, we first note that the single-server cost for this
service class is concave, and then prove a general property
that holds for all service classes with a concave cost function.

4This implementation was developed for numerical analysis rather than
production deployment, so time complexity was not a primary concern. While
more efficient algorithms may exist for computing the same optimal solution
structure, our current implementation has complexity O(N4w?), where N is
the number of replicas and w is the inverse of the step size used for numerical
search. This was sufficient for the resolution and scale of our evaluations.



First, to see the concavity property of the single-server cost
of this service class, we define its cost function as:

Here, the first inequality uses Equation (24), the second in-
equality comes from the observation that the load from replica
i was moved (hence G(v1 + \;) + MiRp < G(71) + G(\:)),

G(i) = 7iR() + BC(v:) = 7i(S + A) + fri(S + 1+ %A)’ and the last inequality comes from Equation (25). This shows

A

(19)
making it is easy to see that j—g = (S 4+ A)+ B8(S +
W)>S+A+58anddG— %@

Second, let us consider the optimal request routing of a set
of servers that share a concave cost function G(v;).

Theorem 4. When the total cost function can be rewritten as:
D G+ (v —A)Dg, (20)
i i

where G(v;) is monotonically increasing but with strictly
decreasing derivative (i.e., 3?: > 0 and & CQ; < 0), there
exists an optimal solution in which the load from the m least
loaded replicas are moved to the replica 1. This solution has

the following load distribution:

A+ Zil\;N—m-&-l Ai, =1,
0, N—m<i<AN.

Proof. We break this proof into three steps. First, we note that
any load being moved remotely should be moved to replica
1. This is a direct consequence of d,g < 0 (and df > 0)
ensuring diminishing additional costs as more load is added
to a replica.

Second, it is never beneficial to only partially move the load
from a replica. To see this, we note that the above diminishing
cost property also ensures that

dG dG
—G(Vl +x)+ —G(/\k —1z) <0,

(22)

where 7; is the (combined) load on replica 1 before starting
to move an additional load x from replica % to replica 1.
Third, we show that if it is beneficial that a replica + moves
its load to replica 1, then it is also beneficial for all replicas
with index j higher than <. Here, let us consider two example

dx T
For this reason, it is easy to see that:
GOn+Ait+Aj) —Gnt+ ) _ Gn+X) —Gn)
Aj - i ’
(24)

Using these two equations, we can now show that the increased
cost associated with replica 1 (when moving also the load
of replica 7 to replica 1) increases less than cost change
associated with replica j (when moving this load remotely):

-G +N) < %(G(% + i) = G(n))

AN Rp <G(A)j) —
(26)

G(m + X+ X))

a0 -

AiRRp) = 3

Aj
< )\T(G(Ai) -

\Rp.

that also the load of replica j benefits from being moved.
Combined, the three properties proved above ensure the
claimed load distribution of the optimal solution. O

Finally, to find the optimal solution, we must consider all
possible such solutions:

n

min, Z (m(A +5)+ B (S

i=1

A

i=n+1
27

where 1 = \; +2£\Ln+l)\i and y; = \; for 1 < i < n.

E. Optimality with Dynamic M/D/oc Servers

For this policy class, we define the properties of an optimal
solution and show they guarantee optimality. Here, we will
use the threshold v* defined in Section IV-D, which captures
when a server should use 7' =0 or 7" — oo.

Theorem 5. There exists an optimal multi-replica policy in
which (1) any load being moved remotely is moved from the
m replicas that have the lowest load and for which the local
load \; < ~*, and (2) this load is directed to any of the
replicas that always are on (if at least one replica exists with
v* < N\;) or the replica with the highest load (if no such
replica exists). Furthermore, in the case that several replicas
have load \; > ~*, then it does not matter which of these
replicas serves the (extra) load.

Proof. First, note the following properties of the first and
second derivative of Equation (15) for the case when ~; > v*:

d d?

-(viS +B) =5, )

dn (7S +pB) =0.

(28)

Clearly, for the replicas with load beyond this threshold (i.e.,

v; > v*), it does not matter which replica we give the load.

Second, consider now the case when v; < ~*. For this
case, we will repeatedly use that for this case (as derived in
Section IV-D) we have that v, A(1++;A) < 3. Now, consider
first the first derivative of the cost function:

d 1 . ‘
i (Equation (15)) = AT o) (A%? — A28~2e5% 4 AZ542
k2 1 g

+2A%y;e9% 4 AeSVi 4 ASy; eV 4 BA 4 BSeS7E 4 5625%)

1

— S
BCrnE

<A3 2 A2S'}/2 Svi _,’_AQS,YZQ

+ 2A25;e%7 4 Ae¥V — ASH;eSi 4+ BA + BSeSW>

A2 4 2A2;e5% + AeS7i A
>S4 v; + vie” 7t + Ae + 8 > .
(viA + e57i)2

(29)

Here, we used that 1, A(1+7;A) < 3 in the second-last step.



‘We next prove that the second derivative is non-positive (for
this case) in three steps.

d? 1
— (Equation(15)) = ———%——=
dwf( quation(15)) (s + e57i)8 X

X <26A2 — BAS?y; €57 + 4BASeSVi + 3526257 4 A3 G235
+ AQS2'yiQeSW - A2S2'yz-262s%7 — 2A%8y;e5Yi 4 AA2S;e257i

4 2A2e57i — 2A2e257 — AS2, €257 2A5e25%> (30)

To simplify, let us break out A? and introduce two substitute
variables: y = ;A and z = ;5. We then have the expression:
d? A2 22 z 22
— ()= ————— x| 28— BTe* + 485 + =27 4 y22e®
dv? 0 (y+e*)3 ( y y Y2

2
z z
+ 227 — 2%e%% — 22e% + 42€%% 4 2% — 2e%% — Te?% 4 22677
Y

(€]
To show that this expression is non-positive, we must show
that the expression within the bracket is non-negative. To do
this, we first show that the sum of the four initial terms (all
with a factor ) always is non-negative. Ignoring all other
terms, gives 23 — B%ez +4p%e” + BZ—Z@QZ. After multiplying
by %2 and solving for where this expression is zero:

207 — y(2%e* + 4ze¥) + 2%e* =0, (32)
we note that the two only roots
Y12 = (z—4)ze” £ 2e*/22 —-82+8 ], (33)

4
either are ima%inary or negative when z > 0. This shows
that the sum of these four terms always is non-negative. For

this reason, we know that the sum of these terms always is
no smaller than for the case when 5 = y(y + 1) (e, 8 =

YiA(y;A+1)) and ﬁ(Equation (31)) is non-positive. We can

therefore use 8 = y(y+1) as a conservative bound in Equation
(31). After insertion and collecting terms, we then have that:

d2 A2
—— (Equation(15 — <
7 (Bauation(15)) /= <
2
< - <2y(y +1) = (y+ 122" +4(y + 1)ze* + (y + 1)3622 + yz’e®

2
+ 2267 — 22627 — 22¢7% 4 42e%% 4 2% — 227 — 2—622 + 2Ze2z>
)

Operating with 7' — o
Does not matter which of the active
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Fig. 5. High-level characteristics of the optimal solution with Dynamic

M/D/oo Servers, as defined by Theorem 5. Key insights: First, the server
sites naturally divide into three categories based on their local load: (1) highly
loaded servers remain always on (1I' — oo) and may receive traffic from
other sites, (2) moderately loaded servers shut down immediately when idle
(T = 0) only server local requests, and (3) lightly loaded servers do not serve
any traffic and forward all their requests to remote replicas.

Figure 5 shows a high-level characterization of the optimal
solution with Dynamic M/D/oc servers, as defined by The-
orem 5. In this example, the load originally associated with
replicas 17-20 (i.e., the brown replicas, which have the lowest
local demand) are direct to one or more of replicas 1-9, which
all have local request rate above A\* and operate with 7" — oo.
Finally, the replicas with intermediate load (i.e., replicas 10-
16) only serve their local requests and operate with 1" = 0.

Calculating optimal cost: While the specific choice of
replica(s) in the first category is arbitrary, when no such
replica exists, it is optimal to allocate load to the most heavily
loaded site. Therefore, the simplest policy is to always re-
distribute the load of the m least loaded replica sites to
the most loaded one (i.e., exactly the optimal strategy under
concave cost functions, as discussed in Section V-D). With this
policy, we simply need to consider one of Ny,.)- possible
configurations, where min[N — 1, Ny, <x-] is the number of
replicas with local load below the threshold A\*:

min

N—m
t(y; 35
0<m<min[N—1,Ny, -x«] ; cost(7:), (35)

where cost(y;) is given by Equation (15), with v = A\ +
ZiI\LN+1—m>\i’ v =N for 2 <i< N-—m,andy =0
otherwise.

VI. NUMERICAL COMPARISONS WITH BASELINE POLICIES

<- <2y4 +9°(2 + 42¢7) + y? (2267 + 42€* + 2¢* — 2¢°%) + y(22¢°*) |A. Baseline Policies

< - <2y4 + 3 (2 4 4z€%) + 42 (22z€* + 2z¢%%) + y(2ze2z)> <0
(34)

Here, in the second-last step, we used that 2z€%% + 2% —
2e%* > max[2ze??,2¢*] — 2¢?* > 0, noting that ze?* > e%*
whenever z > 1 and e* > e?* whenever 0 < z < 1. Finally,
in the last step we note that all terms within the brackets are
non-negative (when y > 0 and z > 0) and the first factor is
negative, resulting in a non-positive product. With a positive
derivative and non-positive second derivative, the rest of the
proof follows the same logic as the proof for a single concave
cost function, completing the proof. O

Simpler policies are typically implemented and used in prac-
tice. Using the optimal policies derived in previous sections,
we next provide insights into the relative performance of such
policies. Specifically, we compare three baseline policies with
the optimal policy associated with each service class. The
policies of consideration are the following.

e Local: All requests are directed and served by the closest

replica server. In this case, the total cost reduces to:

Z)\iR()\i) +BZC(>\1'). (36)

o Balanced: The requests are perfectly load balanced
across the replica sites, while (under that condition) as



many requests are served locally as possible. In this case,
the total cost expression can be written:

> max[0,9" — A Dy + [N|(v* R(v*) + BC(Y)),
‘ (37)

where v* = 37 3, \; .
o Single: All requests are directed and served by the most
loaded replica site. In this case, the total cost reduces to:

(,ytot _ Al)D% +’}/t0tR(’yt0t) + ﬁC(’}/tOt),

where 7/t = 3" ;.
To calculate these costs for each service class, we simply use
the response time function R(y) and cloud-service cost C(7y)
associated with the service class of interest.

While simple, each of these baseline policies reflects a
distinct and practically relevant routing strategy. The Local
policy is well-suited when remote access delays are significant,
as it minimizes network transfer costs and is often favored in
latency-sensitive applications. The Balanced policy performs
best when remote costs are low and minimizing queueing
delay is critical, such as under high utilization or when services
are delay-sensitive (e.g. want to have low utilization under
Dynamic M/M/1 scenarios). The Single policy, though initially
unintuitive in a distributed setting, can be effective when the
cost per request decreases with scale, as in service classes like
Dynamic M/D/oco or Reactive Unlimited, where parallelism
or quick scaling reduces delays, especially when the remote
delay cost is small. Including this policy highlights how a
strategy that is optimal in one context (e.g., high parallelism)
can be substantially suboptimal in others (e.g., queueing-based
M/M/1), reinforcing the need for class-specific optimization.
We also note that demand for different services delivered by
the same infrastructure may see different demands.

(38)

B. When Do Baseline Policies Perform Well or Poorly?

To understand when each of the above baselines are more or
less useful, we compared their relative performance for a wide
range of workload and system parameters. Figures 6-9 show
their normalized relative increase in cost (as a percentage)
compared to the optimal solution for each service class.
Throughout these evaluations, again use normalized units, with
the average service time set to .S = 1, so that costs and delays
are expressed in units of service time. This ensures consistency
and generality across comparisons. For these results, we have
selected a default scenario (N = 16, A = 0.2, A = 1,
Dpgr =1, and 8 = 1) and then vary one parameter at a time one
magnitude in each direction. We next discuss these one-factor
results one service class at a time.

Individual service case: For the case when each request is
individually served, it is always optimal to serve all requests
locally and there are no benefits to direct extra requests to a
particular server. Furthermore, with more load being shifted
with the single policy than the balancing policy, for the
scenarios considered here, the balanced policy consistently
outperforms sending all requests to a single replica. We also
note that the penalties of these sub-optimal policies are biggest

when the remote access delays (Dpg) are big. Shorter startup
times (A) and smaller cloud cost weights () also increase the
performance differences between the policies.

Dynamic M/M/1 server case: For the M/M/1 service case,
the single replica policy is only feasible for small arrival rates.
While the local policy extends the region of reasonable costs
somewhat, with the exception of low request rates (where it is
optimal), it is typically outperformed by the balanced policy.
However, note that also here there are significant regions of
the parameter space, where also this policy is substantially
sub-optimal (e.g., when startup or remote transfer times grow
large). These results both highlight the value in carefully
optimizing how requests are distributed across the replicas and
the fact that the best policy for one service class (e.g., local
service with individual service) sometimes can be highly sub-
optimal for a different service class (e.g., Dynamic M/M/I).

Reactive Unlimited server case: For this case, the local
policy again performs well: typically within 20% of optimal
(except for large (). However, there are substantial regions
where one of the other policies is better (and even optimal).
For example, while local is optimal for small startup delays
(e.g., A < 1), large remote transfer costs (e.g., Dr > 1), and
small cloud-service costs (e.g., 5 < 1), the single server policy
is optimal for large startup periods (e.g., A > 2), small remote
transfer times (e.g., Dr < 0.5), and high cloud-service cost
weights (e.g., 8 > 2). Furthermore, in contrast to the M/M/1
case, there is no region where the balanced policy is optimal
or even the best of the baselines.

Dynamic M/D/oc server case: Finally, for the M/D/oco case,
we have found that the single server case often is optimal
or close to optimal for the parameter ranges considered here.
However, we observe regions where it is sub-optimal and in
some cases is substantially outperformed by one or both of the
other baseline policies; e.g., when the remote transfer costs
grow big or when the cloud-service cost weights are small.
For these cases, it is instead typically better to use the local
policy. Like for the unlimited server case, the balanced policy
is always outperformed by the local policy. For these last
two service cases, we note that close to optimal performance
can instead be achieved by always taking the better of either
always sending all requests to a single replica or serving all
requests locally, whichever is the better of the two. In the
M/D/oo case, this hybrid heuristic achieves within 10% of
optimal throughout the parameter ranges considered here.

C. Comparisons Over the Service Classes

The comparative analysis across service classes reveals nu-
anced insights into the performance of load-balancing policies
under varying workload and system conditions. While the
local policy typically outperforms the balanced policy, except
for the M/M/1 service case, it is sometimes outperformed
by the single replica policy in the the unlimited server or
M/D/oco cases, where a single site can handle high request
rates efficiently. The efficacy of other policies varies even
more depending on the service class and operational context.
These findings underscore the importance of tailoring load-
balancing strategies to specific service requirements and sys-
tem characteristics, while also highlighting the potential for



120 250

S 100 | BalalF\(::ce%l S

‘.a’ Single g 200

g 8or 8 150 [ Loca

£ 60} £ Balanced

[0 (3 . ingle

g w0l g 100

g 20F g 50 -
0 - 0 -
0.0 0.1

0.1
Average request rate

(a) Average request rate (\)

1
Startup period (Delta)

~ 120 120
X = Local
< 100 - B & 100 | Balanced A
17 = Single
8 80r 7 g 8or ]
£ 60 [ ealgnced ] £ 60k .
0 40 + - [
3 & 40 1
5 20 1 o
< 0 L g 20 |
0 1 10 0 -
Remote transfer time (D) 0. 10

1
Cloud-service cost weight (B)

(b) Startup times (A)

(c) Remote access delay (Dp) (d) Cloud-service cost weights (3)

Fig. 6. Baseline comparisons when using Individual service. Costs are expressed in normalized time units, assuming S = 1, and shown as percentage (%)

increases relative to the optimal policy for this class. Default values are: N =
service is optimal for this service class.

16,a =1, A=0.2, A=1, Dg =1, and 8 = 1. Key observation: Local

120 — . 250
Q q
& 100 - Baged S0 f
8 80 8
<] © 150 - Local
£ 60 F £ Balanced
% w0l § 100 |- Single
é 20 é 50 |-

0 0

0.01 0.

0.1
Average request rate

(a) Average request rate (\)

5
Startup period (Delta)

(b) Startup times (A)

= 120 120 T
9 = Local
< 100 B 3 100 |- Balanced A
2 ol 1 Pt Single
e Local g 80r 1
£ 60 [ Ba\g‘r::gelg 1 < 60 1
& 40 1 2 1
3 @ 40
5 20 1 8
< 0 g 20 o

0. 1 10 0

Remote transfer time (DR) 0. 10

(c) Remote access delay (Dgr)

1 1
Cloud-service cost weight (B)

(d) Cloud-service cost weights (3)

Fig. 7. Baseline comparisons when using Dynamic M/M/1. Costs are expressed in normalized time units, assuming S = 1, and shown as percentage (%)
increases relative to the optimal policy for this class. Default values are: N =16, a =1, A =0.2, A =1, Dg = 1, and 8 = 1. Key observation: While
seldom optimal, for this service class Balanced typically perform best of the simple policies.

120 Tocar 250
[ ocal =
g\_‘; 100 - Balanced g g\_u: 200 | ]
g 8r T 8 150F  Loca 1
£ 60k -+ £ Balanced
[} [} L ingle 4
8wl i g 100
S 20 1 s %0r 1
0 : 0
0.01 0.1 0.1 1
Average request rate Startup period (Delta)
(a) Average request rate () (b) Startup times (A)

(c) Remote access delay (Dr)

~ 120 120
S = Local
= 100 - A & 100 | Balanced q
17} = Single
S 80f 1 g 80 ]
< L 4
£ 60 Ba\g‘r\ncgelg £ 60 1
& 40 | B 2 |
o @ 40
S 20k B g, ]
£ ; g 2
1 10 0 -
Remote transfer time (Dg) 0.

1
Cloud-service cost weight (B)

(d) Cloud-service cost weights (3)

Fig. 8. Baseline comparisons when using Reactive Unlimited Server system. Costs are expressed in normalized time units, assuming S = 1, and shown as
percentage (%) increases relative to the optimal policy for this class. Default values are: N = 16, « = 1, A = 0.2, A =1, D = 1, and 8 = 1. Key
observation: For this secrvice class, we do not observe any case when Balanced is optimal or even the best choice of the simple policies. Instead, Local

service often perform well (but not optimally) for large portion of the parameter space.

120 - 250

:\e\ L ocal 1 :\D\
< 100 Balg?"c;g < 200 + i
8 80 1 8
5] © 150 - Local 7
£ 60 F 4 £ Ba\gﬂceld
[} [} L ingle 4
§ w0l 1 § 100
E 20 1 <_§ 50 - 7

0 : 0 :

0.01 0.1 10

0.1 1
Average request rate Startup period (Delta)

(a) Average request rate () (b) Startup times (A)

~ 120 120
S = Local
= 100 - & 100 | Balanced q
17} = Single
g 8 g 80 i
< L
< 60 Ba‘é?:gﬁ‘; 'QE, 60 1
§ 40 8 40 1
5 20 o P i
£ L g 2
1 10 0 -
Remote transfer time (Dg) 0.

1
Cloud-service cost weight (B)

(c) Remote access delay (Dr) (d) Cloud-service cost weights (3)

Fig. 9. Baseline comparisons when using Dynamic M/D/co. Costs are expressed in normalized time units, assuming S = 1, and shown as percentage (%)
increases relative to the optimal policy for this class. Default values are: N = 16, « =1, A = 0.2, A =1, Dy = 1, and 8 = 1. Key observation: For this
service class, while Single server sometimes is significantly outperformed even by the other simple policies, this policy performs optimally for large portions
of the considered parameter space. This captures the benefits of service aggregation in the M/D/oo case.

hybrid approaches to offer robust performance across diverse
conditions. For example, in all cases except the M/M/1 service
case, a hybrid of local and single replica would achieve close
to optimal (e.g., for the M/D/oco service class within 10%
of optimal for the parameter ranges considered). In contrast,
for the M/M/1 service case, the balanced policy typically is
the best of the baseline policies, capturing the importance of
keeping the response times under check.

D. Sensitivity Analysis of Distribution Assumptions

We next explore how sensitive the observed performance
is to the specific distribution assumptions made in the ana-
Iytical models. Specifically, we examine the impact of using
alternative distributions for inter-arrival times, service times,
startup times, and shutdown times across two most extreme

service class representatives: the Dynamic M/M/I and Dy-
namic M/D/oco models.

Focusing on relative request routing policy comparisons, for
these simulations, we use the request routing policies to assign
request rates to each replica site, simulate each replica site
independently, and then aggregate the results across sites. This
modeling approach fully and accurately captures the impact
of different service time, startup time, and shutdown time
distributions, provided that arrivals follow a Poisson process.

In the following we include results for generalizations of
all four of these distributions, noting that the simulations are
accurate for the first three generalizations but can only be
seen as an approximation for non-Poisson arrivals. For non-
Poisson arrivals, while the model does not explicitly capture
instantaneous state correlations between replica sites, it still
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S=1,A=1,T =1, and 8 = 1. (Note that the “optimal” request routing policy is only guaranteed to be optimal under our modeling assumptions.)
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Impact of service time distribution, here exemplified by one of four distributions: Exponential, Deterministic, Pareto, and Lognormal. Similar to

above, we again normalize all values with the total cost of the optimal solution under our default distributions: exponential (M/M/1) and deterministic (M/D/co)
distributions, respectively. Default values are: N = 16, a =1, S =1, A =1, T = 1, and 8 = 1. (Note that the “optimal” request routing policy is only

guaranteed to be optimal under our modeling assumptions.)

retains the essential dynamics of how different policies shape
load distribution and system behavior. As such, the approach
provides a reasonable and informative approximation that
enables meaningful comparison across policy classes under
diverse arrival patterns. Furthermore, given that our primary
focus is to evaluate relative policy performance rather than
to develop precise request splitting heuristics under state-
dependent arrival processes, we believe that including also the
generalized arrival time distribution results offers meaningful
insight. In practice, many systems employ simple probabilistic
routing under such conditions, making our approximations
both relevant and useful for capturing key trends in policy
behavior across a broad range of workloads.

Figures 10-13 present simulation results for both service

classes (G/G/1 and G/G/co) under various distributional set-
tings. For each figure, we consider three different traffic
scenarios (labeled (a), (b), and (c) for the M/M/1 case and
(d), (e), and (f) for the M/D/oo case). For each scenario,
the performance of all four load balancing policies (Local,
Balanced, Single, and Optimal) are shown, along with 95%
confidence intervals based on 10 independent simulation runs.
To allow direct comparison to our earlier analytic results, each
figure also includes the corresponding analytic values for the
default M/M/1 (or M/D/oo) with exponential or deterministic
distributions (including for the default exponential startup
times A and the optimized shutdown period 7T"). Furthermore,
all cost values are normalized with regards to the cost of
the optimal policy (under our original model assumptions),
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Fig. 13. Impact of shutdown-time distribution, here exemplified by one of four distributions: Deterministic (default), Exponential, and Normal. Similar to
above, we again normalize all values with the total cost of the optimal solution under our default distribution: deterministic 7. Default values are: N = 16,
a=1,5S=1,A=1,T=1,and 8 = 1. (Note that the “optimal” request routing policy is only guaranteed to be optimal under our modeling assumptions.)

allowing us to not only compare both the impact that different
distributions have on the overall cost and on the relative
performance of the different request routing policies.

For each scenario, we evaluated the effect of using four
different inter-arrival distributions (exponential, deterministic,
Pareto, and lognormal), four different service time distri-
butions (same four types), three startup time distributions
(exponential, deterministic, and Pareto), and three shutdown
time distributions (deterministic, exponential, and normal).
These distributions cover an extremely wide span of system
behaviors, ranging from highly regular to highly variable
and heavy-tailed patterns. Importantly, in all cases we adjust
parameters so that the average rate or time remains the same
across distributions, thus isolating the impact of distributional

shape rather than mean differences.

First, and most importantly, we have found that the relative
performance of the policies often are similar for the other
distributions than those of the original models. Here, it is
important to note that the “optimal” policy is based on the
analytically derived request allocation (using our modeling
assumptions for the M/M/1 and M/D/in fty cases) and should
not be expected to correspond to the best request routing al-
location also for other distribution assumptions. It is therefore
impressive to see that this optimized request routing policy
(with optimizations done over the original modeling assump-
tions) typically is the best performing policy. Combined, these
results suggest that the optimized request routing based on our
models can be effective in more complex scenarios and that



the relative performance comparisons and insights obtained
under the model are generalizable.

Overall, while there are some exceptions and case-specific
variations, the results across Figures 10-13 suggest that the
choice of distribution does not substantially alter the relative
performance ranking between the policies. In particular, for
both the M/M/1 and M/D/oo service models, we observe that
the primary trends and policy comparisons remain relatively
consistent across distribution types. This robustness holds
across all three tested workload scenarios.

For example, even with heavy-tailed (Pareto) or high-
variance (lognormal) distributions, the relative benefits of
the optimal policy compared to the baseline policies remain
largely predictable and in line with the analytic results derived
under the exponential assumptions. While some performance
degradation can be observed in certain scenarios (particularly
for the single policy under heavy-tailed service times), the
overall impact of the distributional choice on total system cost
and policy selection appears limited.

In summary, these experiments suggest that while workload
and system variability can have some effect on absolute perfor-
mance, the relative performance gaps between policies remain
relatively stable. This robustness further strengthens the gen-
eralizability of our findings, suggesting that key conclusions
drawn for the default distributions and use case scenarios also
extend to more diverse and realistic workload distributions.

E. Discussion: Additional Constraints and Priorities

Our model jointly optimizes response delay and server
usage cost under a unified cost function, capturing key system
tradeoffs in a tractable form. While this abstraction enables
rigorous analysis and policy derivation, we acknowledge that
real-world systems often operate under additional constraints
or heterogeneous requirements. For example, some services
impose strict upper bounds on acceptable response times,
while others prioritize specific request classes over others
based on business or user importance.

Although our framework does not explicitly model such
constraints, it provides a foundational structure for understand-
ing the impact of service class design and routing strategies.
Extensions to our model could incorporate heterogeneous
delay penalties across request types by introducing class-
specific cost weights. For some service models (e.g., Dynamic
M/M/1 or Reactive Unlimited), this would also raise schedul-
ing considerations across request classes. While first-come-
first-served (FCFS) scheduling retains analytical tractability
under exponential assumptions, more general service-time dis-
tributions or non-FCFS disciplines would lead to significantly
more complex models. Similarly, in the Dynamic M/D/oo case,
one practical extension might be to provision one server per
request type, avoiding contention altogether.

Analytic treatment of such extended models is challeng-
ing but may be possible in certain cases (e.g., using delay
distribution expressions in M/G/1-type models or applying
simulation). We leave such richer models for future work.
The goal of this paper is to develop core insights under
clean, analyzable models that isolate the key performance-cost
tradeoffs associated with different service class designs.

Finally, we note that our evaluation already considers gen-
eral arrival-rate and service-time distributions (G/G/1, G/G/0)
suggest that the key tradeoffs our model captures remain
relevant even under more complex system dynamics.

FE. Practical Implications and Real-World Relevance

The results in this paper, while presented using normalized
units, reflect tradeoffs that are directly relevant in real-world
cloud deployments. For instance, in serverless or autoscaling
systems (e.g., AWS Lambda, Kubernetes, or Google Cloud
Run), both startup latency and server usage costs are central
concerns. Startup delays may range from hundreds of mil-
liseconds to several seconds due to container warm-up, while
server costs are often billed per second or per GB-hour.

Our results demonstrate that simple routing policies (e.g., al-
ways using the local server or evenly balancing load) can lead
to significantly higher cost or delay, depending on system load
and service class characteristics. As shown in Figures 6-9,
the cost gap between optimized and baseline policies can be
substantial, particularly when server startup delays are high or
when remote transfer times are non-negligible. For example, a
system incurring 1-2 seconds of cold-start latency could, under
high load, suffer significantly performance or cost penalties
without the insights offered by our optimal policies.

Thus, even without specific deployment parameters, our
findings illustrate that commonly deployed heuristics (e.g.,
local-first or uniform balancing) can be substantially subop-
timal. This highlights the importance of matching request
routing strategies to the underlying service class, rather than
relying on generic heuristics; a key contribution of this work.

VII. RELATED WORK

Dynamic allocation: Several works have developed or
applied analytic models for systems with server setup delays.
For example, Meisner et al. [11] applied an early analysis of
an M/G/1 single server system [12] for energy conservation
through rapid transitions between active and near-zero-power
states. Subsequent studies have explored multi-server systems
with exponentially distributed setup delays [13], [14], [15],
[16], considered deterministic setup delays [17], or have
focused on systems with delayed-off policies, where servers
are deallocated after a delay following idle periods [18],
[19], [15]. Other works have considered dynamic server [20]
and content [21] allocation for the purpose of cloud-operated
caches. Most closely related to this work is the recent work
by Carlsson and Eager [1], which derives the first closed-
form expressions for the single-site M/M/1 and unlimited
server systems. In the present paper, we use those results
(e.g., Equations (6) and (10)) as components in a broader
analysis of optimized request routing across multiple replicas
and service classes. Unlike [1], which focuses on single-site
server allocation, this paper addresses the joint routing and
cost optimization problem in multi-site systems, compares four
service models, and derives structural insights into optimal re-
quest routing across dynamically provisioned resources. None
of the above works considered the combined problem of server
allocation/deallocation and request routing.



Request routing: While some works have considered rout-
ing for geographically distributed cloud services [22], most
prior work has focused on server and replica placement in con-
tent delivery networks (CDNs). Here, iterative greedy heuris-
tics have proven effective for minimizing network costs [23],
[24], [25], [26], while others have optimized delay relative to
server placement [27], improved client-to-server mapping via
IP prefix [28], or adapted the number of replicas based on
demand [29]. Additional studies have addressed cooperative
caching and request routing [30], efficient content distribution
to replicas [31], [32], [33], [34], and joint CDN-ISP infras-
tructure reconfiguration [35].

More recent works have considered joint service placement
and request routing in MEC and edge environments [36],
[37], [38], [39], often under multidimensional constraints (e.g.,
storage, computation, communication). However, these models
typically assume statically provisioned or long-lived server
allocations and rely on approximate optimization methods
(e.g., MILPs, randomized rounding). In contrast, we focus
on request routing in systems where server instances are
provisioned dynamically on demand, with both cost and de-
lay driven by runtime activity—capturing behaviors such as
startup overheads and elastic scaling.

This dynamic setting changes the structure of the routing
problem: decisions not only determine where requests are
served, but also when servers are instantiated, how long they
stay active, and the resulting resource costs. Our framework
enables closed-form analysis and structural insights into op-
timal routing policies across multiple service classes, without
relying on heuristics or NP-hard formulations. Unlike prior
work, we explicitly model server life cycles and usage-driven
cost, which are central to modern cloud platforms with au-
toscaling and serverless capabilities.

In addition to request routing where each request is served
individually [28], [36], [35], [40], [41], [42], [43], some works
have considered the problem in the context of aggregated
services [44], [45], [46], [47], [48] or considered the combined
problem of optimized cache copy placement and request rout-
ing using TTL-based [49], [50], [51] or LRU-based [52], [53]
caches. While some of these models could be loosely mapped
to our individual service or M/D/>o service classes, the core
difference is that these prior works assume either fixed server
resources or static replica placement. In contrast, our work
explicitly captures the dynamic life cycle of server instances,
including startup overhead, cost accumulation only during
active usage, and request-driven activation and deactivation.
To our knowledge, no prior work has integrated these dynamic
behaviors into the joint routing and cost optimization problem.

In summary, prior work on request routing and server
placement typically assumes statically provisioned resources,
where the cost of a server is independent of load or activation
frequency. In contrast, our work considers systems with on-
demand server instantiation, usage-based cost, and startup
overheads, which fundamentally alter the optimality conditions
for routing. By modeling these dynamic behaviors explicitly,
we derive structural properties of optimal routing policies
across four service classes—ranging from serialized to highly
parallel systems. Rather than relying on heuristics or ap-

proximations for NP-hard formulations, our approach enables
closed-form analysis and highlights new decision boundaries
that are essential in modern elastic cloud environments such
as serverless and autoscaling platforms.

VIII. CONCLUSIONS

In this paper, we have provided an in-depth analysis and
evaluation of cost-optimized request routing policies for cloud-
based systems using different service classes. Through the
development of a comprehensive system model, derivation of
an exact analysis, derivation of optimized policies, and careful
evaluation and comparison against basic baseline policies,
we shed light into the intricate interplay between resource
allocation, request routing, and system performance, and offer
valuable insights into system optimization for these systems.

Our research makes several key contributions. First, we
present optimized request routing policies tailored to different
service classes, derived through exact single-site analyses
and extended to multi-replica routing solutions. Second, we
conduct a comprehensive evaluation and comparison of these
policies, highlighting their relative performance and unveiling
scenarios where certain strategies excel or falter. Notably, our
examination of optimal solutions provides a benchmark for
assessing the performance of simpler, more practical policies.
Finally, and most importantly, our findings offer insights into
the optimization of cloud-based systems, emphasizing the
significance of workload characteristics, system parameters,
and load-balancing strategies. By comparing optimal solutions
across different service classes, we showcase when basic poli-
cies may suffice, when advanced strategies are warranted, and
the potential efficacy of hybrid approaches that amalgamate
the strengths of multiple policies.

In summary, our research advances the understanding and
refinement of load-balancing techniques in cloud-based sys-
tems, paving the way for enhanced performance and efficiency
in distributed computing environments. As cloud computing
continues to evolve, our work provides a foundation for
future endeavors aimed at optimizing resource utilization and
maximizing system throughput.
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Fig. 14. State-Transition Diagram for Unlimited Server System.

APPENDIX

This appendix presents a summary of the unlimited server
analysis results and M/M/1 server analysis results that we
derive and present in [1]. (Note that the definition of “C” used
in [1] differs slightly from that used here, and the expressions
for “C” that we give here differ from those in [1] by a factor of
S.) These results are used as a starting point for our analysis of
Reactive unlimited server systems and Dynamic M/M/I server
systems, respectively.

A. Unlimited Server Analysis

We consider a more general case where at most s server
allocations, for some positive integer s, can be in progress at
once. A state-transition diagram for this system is shown in
Figure 14, where p = 1/S, S is the mean service time, and
the request arrival rate is A. Denote by p; ; the probability
of the state (¢, k) with ¢ waiting requests and k requests in
service (equal to the number of active servers). Flow balance
equations for this system are:

Di,0 ()\ + %) =Pi—1,0A 1> 0, (39)
1
po,k(A+ kp) = p1e—1 (Z) + p1,ekp + pok+1(k+ 1w, k>0,
(40)
and
o il 4 1
Pik (| A+ ku+ M =Di+1,k—1 w + Di—1,kA
A A
+pirrekp 0> 0,k>0. (41)

It is straightforward to verify that the flow balance equations
are satisfied by probabilities p; , = p; «P« 1 Where p; . denotes
the marginal probability of ¢ waiting requests and p, ;, denotes
the marginal probability of k requests in service, with p; .
given by

ﬁ A
A+min[m,s]/A
m=0
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and p, j given by
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Fig. 15. State-Transition Diagram for M/M/1 + Setup Delay (exponential) +
Delayed Off (Erlang) System.

From Equation (42),

s—1 g s
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Applying Little’s Law, and incorporating the service time once
a request acquires a server, I? is given by

s—1 3 s
. A A A/ (A+s/A)
igozmllo XFmAat (mH:O AjL"l/A) (1_ /\-S%—i/A ' (1A)2>
h= s—1 n s s +1/M
A A 1
A (ngo mH:0 Nrm/At (mH:0 >\+m/A> (14/@%/4\)))
45)

Next, C' is given by
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For the special case of s = 1, these expressions reduce
to C = A(S+ A/(1 + AA)), and a mean response time R
of A + S. Note that with s = 1, this policy has the same
mean response time as with a separate server per request, but
lower server usage. This can be explained by the efficiency that
results from taking a newly-free existing server for a waiting
request instead of always requiring a new server.

B. Analysis for M/M/1 + Setup Delay (Exponential) + De-
layed Off (Erlang)

;920 A state-transition diagram for this system is shown in

Figure 15. Here each state is labeled by the number of client
requests present at the server, followed by ”A” (server is active
processing requests), "D” (server is in setup delay), ’I”” (server
is deallocated), or "Hj” for integer j between 1 and k (server is
the j’th stage of the Erlang-distributed “holding on” / ’delayed
oft” period). The feasible states are states :A (z > 1), iD



(# > 1), 0I, and OHj (1 < j < k), with state transition rates
as shown in the figure.

Denote the steady-state probability of the state with label s
by ps. Assuming stability, we must have

ZpiA =— & ZPOHJ' =+ por + ZpiD =1--.
i=1 L —t i=1 H

We can express the pou; and p;p probabilities in terms of pyy,
allowing the solution for pg; using Equation (47). From flow
balance, we have

(47)
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From Equation (50) we get:
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Using Equations (51) and (55) to substitute into (47) gives:
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Denote by p,, (n > 1) the steady-state probability of n client
requests being present at the server, i.e. the sum of p,s and
pnp. From flow balance,

k
ppr —pio) = A | Y powj + por (57)
j=1
Substitution from (51), (54), and (56) gives
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Again, applying flow balance,
1(pi —pip) = Api-1 - 0> 2, (59)

yielding, for all ¢ > 1,
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Considering now the mean number of requests in the system
> o, ipi, where p; is given by Equation (60), note that
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Note that in the first line of (62), the original double
summation is rewritten to group together all of the resulting
terms that include the same power of A\/(A + 1/A) as one

of the factors. Applying (61) and (62) with (60), the mean
number of requests in the system is given by

(62)

>\ M ( AT AA(L+2A)
ip; = (7 (Z=+ 1)k +)\A) +7>
; (T=X2/m? \" k L—=Xu
« 1—Au
GE+1DF+2A
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From Little’s Law, the mean response time R is given by
S A(l+ AA
R= T (1+24) . (64)
1=AS  (-+1F+ A
C is given by
1-AS
C=1- . 65
(AT/k+ 1) + XA (©5)
Special cases:
1) T is exponentially distributed (k = 1):
S A(l1+ AA 1-AS
fe=1= 1735 /\T(+ K Cioi=1- :
- +1+2A AT+ 1+ MA
(66)
2) T is deterministic (k — 00):
S AL+ . 1-)S
Risoo =5 T aron: =1 Grar ©

Key insight (M/M/1 case): Significant benefit of using
deterministic delayed-off periods compared to when
the delayed-off periods are exponentially distributed.




