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ABSTRACT
In this era of ubiquitous surveillance and online presence, protecting
facial privacy has become a critical concern for individuals and
society as a whole. Adversarial attacks have emerged as a promising
solution to this problem, but current methods are limited in quality
or are impractical for sensitive domains such as facial editing.

This paper presents a novel adversarial image editing frame-
work called StyleAdv, which leverages StyleGAN’s latent spaces to
generate powerful adversarial images, providing an effective tool
against facial recognition systems. StyleAdv achieves high success
rates by employing meaningful facial editing with StyleGAN while
maintaining image quality, addressing a challenge faced by exist-
ing methods. To do so, the comprehensive framework integrates
semantic editing, adversarial attacks, and face recognition systems,
providing a cohesive and robust tool for privacy protection. We also
introduce the “residual attack" strategy, using residual information
to enhance attack success rates. Our evaluation offers insights into
effective editing, discussing tradeoffs in latent spaces, optimal edits
for our optimizer, and the impact of utilizing residual information.

Our approach is transferable to state-of-the-art facial recogni-
tion systems, making it a versatile tool for privacy protection. In
addition, we provide a user-friendly interface with multiple editing
options to help users create effective adversarial images. Exten-
sive experiments are used to provide insights and demonstrate that
StyleAdv outperforms state-of-the-art methods in terms of both
attack success rate and image quality. By providing a versatile tool
for generating high-quality adversarial samples, StyleAdv can be
used both to enhance individual users’ privacy and to stimulate
advances in adversarial attack and defense research.
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1 INTRODUCTION
Facial recognition systems (FRS:s) have become a prevalent technol-
ogy extensively used for a wide range of applications, including se-
curity, marketing, and social media [53, 58]. However, their diverse
use in combination with increased collection of personal images
has raised significant concerns about privacy and civil liberties [2].

One of the most significant concerns is how images collected
from social media and other online sources may be used without
user consent and/or for other purposes than the uploader intended.
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With the proliferation of digital cameras and social platforms, per-
sonal images are widely accessible online. Inappropriate use of such
datasets can result in severe privacy breaches and data misuse.

The growing use of FRS:s, coupled with the frequent scanning
and analysis of individuals’ faces without their consent, has am-
plified privacy concerns [47]. As facial recognition technology be-
comes more widespread and personal image collections increase,
there is an urgent demand for effective solutions to protect facial
privacy on social media platforms and the internet.

Adversarial attacks have emerged as a promising approach to
protect facial identity and enhance privacy [18]. These attacks in-
volve subtle image perturbations designed to deceive FRS:s. Ideally,
these alterations remain imperceptible to humans while signifi-
cantly affecting the accuracy of recognition systems.

Despite adversarial attacks being a promising solution to protect
the facial identity and enhance privacy, existing adversarial sample
methods have been limited in quality and have proven unusable for
sensitive domains such as facial editing. More generally, current
methods have at least one of the following limitations: requiring
white-box access to the models under attack [6, 18], not being prac-
tical in real-life settings [30], having low attack success rates or
being effectively bypassed or detected by state-of-the-art defense
methods [44], or being visible to the “trained” eye [10]. These limi-
tations have hindered the development of effective and practical
adversarial attacks that can operate in real-world scenarios.

In this paper, we present StyleAdv, a robust and comprehen-
sive framework for adversarial image editing. StyleAdv exploits
the capabilities of deep generative models like StyleGAN [27] and
introduces a novel approach for generating high-quality adversarial
samples. By obfuscating facial features in a way that is impercep-
tible to humans but tricks FRS:s, StyleAdv allows users to easily
create slightly altered images that they can share on the internet
(e.g., social media) without automated FRS:s easily identifying them.

The design of StyleAdv is motivated by the observations that
many users perform smaller edits before uploading on many social
media websites such as Facebook and Instagram [11, 15, 35, 51],
while others may desire to protect their identity with minimal ma-
nipulation. To achieve our objectives, StyleAdv incorporates both
targeted and untargeted manipulation in the latent spaces of Style-
GAN, as well as a unique residual attack strategy. First, StyleAdv
seamlessly integrates semantic-aware editing, leveraging leading
facial editing methodologies, with a state-of-the-art adversarial at-
tack module and face recognition systems. Second, it incorporates
an innovative optimizer, adept at exploiting the non-visible noise
introduced by minor face edits, to perform guided attacks within
StyleGAN’s latent spaces. Finally, it innovatively utilizes a residual
attack strategy, which leverages residual information in the gener-
ated adversarial images to increase attack success rates. Through
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this coordinated and nuanced manipulation of the latent spaces of
StyleGAN, our framework can strategically modify the identity of
the generated face, aiming for a target identity or an untargeted
alteration, while preserving high image quality. As demonstrated
by our results, StyleAdv can maintain impressive realism and ver-
satility in the produced adversarial images, surpassing previous
methods, making it an efficient, practical, and versatile tool for
protecting facial privacy across various digital platforms.

In summary, the contributions of StyleAdv are as follows:
• Novel Adversarial Editing Framework:We introduce an
innovative adversarial image editing framework that oper-
ates within StyleGAN’s latent spaces and that offers a unique
and powerful tool against FRS:s. Our solution is demon-
strated to achieve high success rate, performing meaningful
facial editingwhile preserving image quality, an achievement
that remains a challenge for existing methods.
• Innovative Attack Strategy and Mechanistic Insights:
We introduce the “residual attack" strategy, leveraging resid-
ual information within adversarial images to enhance attack
success rates significantly. Furthermore, we provide insights
into the mechanics of effective editing, detailing the tradeoffs
of different latent spaces, the edits that best augment the
optimizer, and the benefits of utilizing residual information.
• Comprehensive Robust Framework andUser-friendly
Interface: Our framework integrates various modules, in-
cluding semantic editing, adversarial attacks, and face recog-
nition systems, to deliver a cohesive and robust tool for
privacy protection. Code (with easy-to-run demos) and an
easy-to-use interface can be found on github (https://github.
com/minha12/StyleAdv). Here, users can upload photos and,
in return, receive safeguarded versions.
• Superior Performance: Comparison with existing adver-
sarial attack methods show that StyleAdv outperforms prior
works both in terms of attack success rate and image quality.

By combining a user-friendly web interface and superior perfor-
mance compared to prior works, StyleAdv’s novel solutions mark a
significant advancement in adversarial attacks, empowering users
to safeguard their privacy in today’s increasingly digital world.

Outline: After presenting background and related work (§2),
we present the StyleAdv framework (§3), starting from a problem
definition and then stepwise developing the solution approach and
the attack variations considered. Experimental results and insights
are presented next (§4), before we conclude the paper (§5).

2 BACKGROUND AND RELATEDWORKS
This section presents an overview of related works on adversarial
attacks against FRS:s face editing, as well as an in-depth discussion
on face verification and face identification.

Face Verification: In face verification, the goal is to compare
two face images, ®𝑋1 and ®𝑋2, and determine whether they belong to
the same individual. To facilitate this, each image is transformed
into a low-dimensional embedding (®𝑒1 = F ( ®𝑋1), ®𝑒2 = F ( ®𝑋2), re-
spectively) using a trained deep learning facial embedding model
F ( ®𝑋 ). A face verification system can then be defined by a distance
function that takes these two embeddings as input and outputs
a distance metric 𝐷 = 𝑑 (®𝑒1, ®𝑒2). To make the final decision, this

distance is then compared to a threshold 𝜏 :

decision =

{
1, if 𝐷 ≤ 𝜏 (same person),
0, otherwise (different persons).

(1)

In practice, the chosen threshold 𝜏 should carefully balance the
False Acceptance Rate (FAR) and the False Rejection Rate (FRR),
tailored to the specific requirements of the application at hand.

Face Identification: In face identification, a probe face im-
age 𝑋 is compared with a gallery set G of known identities G =

{𝐼1, 𝐼2, ..., 𝐼𝑚}, where each identity 𝐼𝑖 comprises one or more embed-
dings. First, the probe image ®𝑋 is transformed into an embedding
𝑒 = F ( ®𝑋 ) using the same model F that was used to create the
embeddings in the gallery set G. Second, a distance function 𝑑 is
used to computes the distance 𝐷𝑖 𝑗 = 𝑑 (𝑒, 𝑒𝑖 𝑗 ) between the probe
image’s embedding 𝑒 and each embedding 𝑒𝑖 𝑗 (1 ≤ 𝑗 ≤ 𝑛𝑖 ) of
every identity 𝐼𝑖 (1 ≤ 𝑖 ≤ 𝑚) in the gallery set G. Depending
on the specific implementation, the probe image is then identi-
fied as the identity that has either the lowest mean distance (i.e.,
𝑖∗ = argmin𝑖 ( 1𝑛𝑖

∑𝑛𝑖
𝑗=1 𝐷𝑖 𝑗 )) or the smallest individual distance

among its embeddings (i.e., 𝑖∗ = argmin𝑖 (min𝑗 𝐷𝑖 𝑗 )). In addition,
the system may incorporate a rank threshold 𝑟 as part of its deci-
sion criteria. If the rank 𝑟∗ of the best matching gallery identity 𝑖∗
is less than or equal to a threshold 𝑟 , the identification is deemed
successful; otherwise, the probe identity is classified as unknown.

The rank threshold 𝑟 plays a pivotal role in determining the
system’s performance and accuracy. To see this we note that the
threshold is intricately tied to the system’s FAR and FRR, where
the FAR in a face identification scenario corresponds to the like-
lihood of the system mistakenly associating a probe face with an
incorrect identity from the gallery (i.e., incorrectly ranking this
identity within the top 𝑟 matches) and the FRR is the probability of
the system failing to correctly identify a face present in the gallery
(i.e., not ranking the correct identity within the top 𝑟 matches).

Adversarial Attacks: Several ways to trick machine learning
models to misclassify or produce other incorrect outputs have been
proposed. These so-called adversarial attacks typically exploit vul-
nerabilities of themodels by injectingmalicious inputs. For example,
several works have added carefully crafted perturbations to the
input data [6, 18, 34] that are small or imperceptible to the human
eye but that can cause the machine learning model under attack to
produce incorrect outputs. Others have used generative adversarial
network (GAN) to create adversarial examples [23, 56] that can fool
a machine learning model. This approach has been used in both
semi-whitebox and black-box attack settings, as well as a defense
method [41, 42]. Lately, there have also been a growing interest
in developing physical adversarial attacks [8, 9, 14, 30] in which
the input data is manipulated in the real world, with several such
attacks having serious consequences in critical applications such
as autonomous driving [5, 13, 48] and medical diagnosis [16, 33].

Attacks Against Facial Recognition Systems: Adversarial
attacks against FRS:s have been designed both for the physical
world [29, 45, 49] and the online world [10, 22, 39, 44]. For the
physical-world context, researchers have proposed attacks where
eyeglasses are used to evade recognition or impersonate other
individuals [45], black-box attacks involving placing a paper sticker
on a hat to avoid facial detection [29], and generated patches that
can be used to hide a person [49] or object [54] from detection.

2

https://github.com/minha12/StyleAdv
https://github.com/minha12/StyleAdv


StyleAdv: A Usable Privacy Framework Against Facial Recognition with Adversarial Image Editing Proceedings on Privacy Enhancing Technologies 2024(2)

Table 1: Comparison to the related works
Method Image Protec- Editing General- Shifts
Method quality tion options izable to target

Fawkes [44] low low no no yes
Lowkey [10] low low no no yes
AMT-GAN [22] high high 1 (only makeup) yes no
SemanticAdv [39] low high N yes yes
StyleAdv (ours) high high not limited yes yes

Most closely related are works adding perturbations to images
to protect user privacy [10, 22, 39, 44]. Here, we briefly describe the
four most related state-of-the-art solutions proposed recently, and
in Secs. 4.3 and 4.9 we compare our performance against them. (1)
Fawkes, proposed by Shan et al. [44], provides users with a method
to inoculate their images against unauthorized facial recognition
models by adding imperceptible pixel-level changes (called “cloaks")
to their photos before releasing them. (2) Cherepanova at al. [10]
develop an adversarial filter called Lowkey, shown to significantly
degrade the accuracy of Amazon Rekognition and the Microsoft
Azure Face Recognition API. Both the above works add noise to the
images, compromising image quality, and offer comparatively less
protection than the following two solutions as well as our proposed
method. (3) Hu et al. [22] propose what they call an adversarial
makeup transfer AMT-GAN that uses a GAN to synthesize adver-
sarial face images with makeup transferred from reference images
to achieve a desirable balance between the attack strength and
the amount of visual changes. (4) Qui et al. [39] propose Semanti-
cAdv, an algorithm that leverages disentangled semantic factors to
generate adversarial perturbation by altering controlled semantic
attributes to fool the learner towards various “adversarial" targets.
The authors demonstrate that the semantic-based adversarial ex-
amples can fool different learning tasks and achieve high targeted
attack success rate against real-world black-box services such as
Azure face verification service based on transferability.

While the latter two solutions offer enhanced protection, as
shown in Table 1, all four approaches have their respective short-
comings when compared to our adversarial editing solution. We
refer to Secs. 4.3 and 4.9 for performance comparisons and numeric
support for the classifications in the table. However, as shown, our
approach is the only one that achieves all of the desirable properties.

StyleGAN and Semantic Editing in Latent Space: Genera-
tive Adversarial Networks (GANs) [17] have proven very successful
for generating realistic images [3, 26, 27]. One of themost influential
such models is StyleGAN [27], which introduced a new generator
architecture for GANs that enables intuitive, scale-specific control
of image synthesis, and that outperformed the state-of-the-art.

Inspired by its high-quality results, several follow-up works have
explored and analyzed StyleGAN’s disentangled latent spaces and
propose semantic image editing solutions. For example, GANSpace
[20] performs a comprehensive PCA analysis and shows that a
set of semantic attributes can be mapped to particular principal
components. InterFaceGAN [46] provides methods to find attribute
boundaries on particular attributes with the help of an SVM model.

In our study, we utilize two recent advancements, StyleSpace [55]
and StyleFlow [1], for face editing purposes. StyleSpace [55] dis-
covered a higher disentanglement space within StyleGAN’s archi-
tecture called S-Space, and performs editing within this space. In
contrast, StyleFlow [1] uses normalizing flows to improve image
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Figure 1: Use case example and workflow overview

editing in StyleGAN’s latent space. In other related work, Patash-
nik et al. [38], propose StyleCLIP, that effectively combines a CLIP
model with StyleGAN latent space editing methods to provide an
interesting text-to-image editing interface. No prior work has used
any of the above semantic editing tools for the purpose of creating
adversarial samples. Here, we incorporate them into our solution,
and show how the meaningful edits that they allow can be used as
meaningful noise into our optimizer that pushes the identity away
from the original source identity and towards a target identity. The
resulting tool provides meaningful adversarial image editing.

Use Case Comparison:We present novel privacy filter tailored
to combat state-of-the-art FRS:s, which typically deploy embedding-
based models. This is in contrast to most prior adversarial attack
studies, which have target classifier models. StyleAdv also stands
distinct from Fawkes and the broader category of data poisoning
techniques. While data poisoning, exemplified by Fawkes, focuses
on altering the training data to mislead or degrade the performance
of machine learning models, StyleAdv aims to protect against al-
ready trained FRS:s. A key advantage here is StyleAdv’s ability to
seamlessly integrate semantic-aware editing and residual editing
with state-of-the-art adversarial attack modules, resulting in images
that are visually appealing to humans but confounding to FRS:s.
Another advantage of StyleAdv is its flexibility and ability to work
on individual images, allowing users to choose which images to
safeguard. While Fawkes does not require every image of the user
to be cloaked, for maximum effectiveness, users must apply the
cloaking to the majority of their images before posting online.

3 ADVERSARIAL EDITINGWITH StyleAdv
We first describe the general facial recognition model under attack
and the general approach (and its variations) that we use to create
our adversarial samples. Later in the paper we show how our novel
approach and its variations (including a residual-based extension)
are applicable to any FRS and how they can be used together with
a broad range of face editing approaches operating in the different
latent spaces of StyleGAN.

3.1 Use Case Scenario and Workflow Overview
Fig. 1 presents an overview of theworkflow of our privacy-preserving
filter. Here, a user (1) uploads a facial image to StyleAdv, (2) selects
which editing approach should be used to protect their identity,
and then (3) uses the edited image generated by StyleAdv to upload
to websites and social media accounts, for example. The goal of
StyleAdv is to generate an edited images that can bypass unautho-
rized FRS:s, while ensuring that the edits are visually subtle and
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retain resemblance with the original image.1 To achieve its goal,
StyleAdv implements two high-level editing approaches.
• Semantic-awareAdversarial Editing:With this approach,
semantic editing is used to modify the face in one of three
ways: non-guided, attribute guided, or target identity guided.
• Residual Editing: With this approach, invisible noise is
added to the image so as to hide the identity of the individual
while otherwise trying to preserve the image.

In the figure, we illustrate that the identity is successfully pro-
tected when the FRS used by the unauthorized system fails to match
the identity of the edited image (red diamonds). In contrast, an im-
age that does not undergo any such edits typically allows the FRS
to successfully identify the individual (green diamond). To try out
the solution, we refer to our user-friendly demo.

3.2 Threat Model
In the above scenario, StyleAdv is considered the “attacker" and the
system performing unauthorized facial recognition is considered
the “victim" of our attack. To facilitate our unique design we assume
that the attacker (i.e., StyleAdv) has (1) white-box access to one
model (referred to as the “adversarial" modelM𝐴) and (2) black-box
access to a second model (referred to as the “victim" modelM𝑉 ).

At the core of our attack is an optimization using the adversarial
modelM𝐴 , which we use to improve the adversarial samples in a
semantically meaningful way. However, motivated by the observa-
tion that many FRS:s today are public (even when their internals
may not be public), we incorporate a “black-box" victim modelM𝑉

that we use for a limited number of embedding queries (e.g., 1 to 3
attempts) as part of the stopping criteria for the editing optimiza-
tions. When we know the victim model, such queries offer valuable
feedback for adjusting edit levels to maximize success rates. By
limiting the number of queries, the attack can remain stealthy even
when the victim model can only be queried online.

Knowledge of Victim Model: We note that our attack is ap-
plicable in three cases. First, in the case that the victim model is
known, and the attacker has full access to it, then this model can
be used as also advertorial model (this would give the best results).
Second, in the case that the victim model is known but the attacker
can only query it (in online or offline mode), then the victim model
can be used for the stopping criteria in StyleAdv (resulting in small
number of queries to the model). Third, in the case that the victim
model is not known, the attacker can pick the adversarial and the
victim models so as to optimize StyleAdv’s chance based on experi-
ments with different combinations of models. We refer to Sec. 4.8
for transferability results and a discussion regarding which models
may be best for both general and targeted attacks.

3.3 Problem Definition & Solution Approach
Unless stated otherwise, in the following, we describe the attack
done using the adversarial modelM𝐴 and drop the superscript 𝐴.

Facial Recognition Model under Attack:We consider a ma-
chine learning modelM that is trained on a datasetD = {( ®𝑋𝑖 , ®𝑦𝑖 )}
consisting of image-label pairs. Here, ®𝑋𝑖 ∈ R𝐻×𝑊 ×𝐶 represents an
1Note that our focus is to bypass automated FRS:s, not preventing manual/human
recognition (Appendix D). These defense targets (i.e., automated FRS:s) are far more
prevalent and scalable than manual reviews and allow us to provide useful images.

image with height 𝐻 , width𝑊 , and 𝐶 color channels, and ®𝑦𝑖 ∈ R𝐾
denotes the corresponding ground-truth label with 𝐾 dimensions.
Given an image ®𝑋𝑖 , the goal of the modelM is to produce a predic-
tion ®̂𝑦𝑖 =M( ®𝑋𝑖 ) ∈ R𝐾 , which can be used to classify the image.

Our Problem: As an attacker of the above model, our aim is to
synthesize adversarial samples ®𝑋 adv that the model under attack
would label as the target ®𝑦tgt or some other label than the true label
®𝑦𝑖 . In our evaluation, we also consider how “far away" the sample
is from being labelled correctly (using distance- and rank-metrics).

ANaive Approach: A traditional method for this is to generate
an adversarial example ®𝑋 adv such thatM( ®𝑋 adv) = ®𝑦tgt by either
adding pixel-wise perturbations or by spatially transform the origi-
nal image ®𝑋𝑖 . As noted above, this approach is taken by some prior
works (e.g., Fawke [44] and Lowkey [10]) at the expense of (among
other things) image quality. In this paper, we take a different ap-
proach, which we refer to as a semantic attacker. We next describe
our high-level approach and a residual-based extension.

Our Semantic-aware Adversarial Editing Approach: This
approach uses face edits in latent space to guide the attack in a
semantically meaningful direction. To achieve greater control in
the generation of adversarial samples, we edit a single semantic
aspect of an image using attribute-conditioned image editing with
a conditional generative model G. More specifically, given a target
image-label pair ( ®𝑋 tgt, ®𝑦tgt) and ®𝑦𝑖 ≠ ®𝑦tgt, our semantic attack
generates adversarial samples by editing a single semantic aspect of
the original image ®𝑋𝑖 such thatM( ®𝑋 adv) = ®𝑦tgt, while preserving
the other semantic aspects of the original. This is achieved by
conditioning the generative modelG on the attribute corresponding
to the semantic aspect that wewant to edit, and by keeping the other
attributes constant or close to the original values. The resulting
adversarial example ®𝑋 adv is then passed to the modelM to verify
whether it produces the desired label ®𝑦tgt. Compared to adding
noise at the pixel level, we have found that this approach provides
more interpretable and semantically meaningful perturbations.

Our Residual-based Adversarial Attack: Let E denote the
encoder model that projects the latent codes from an image. Given
a target image ®𝑋𝑖 , we can reconstruct it in the latent space as
®𝑋 ′
𝑖
= G(E( ®𝑋𝑖 )). In this method, we define the residual ®𝑅𝑖 between

the original and reconstructed image as ®𝑅𝑖 = ®𝑋𝑖 − ®𝑋 ′𝑖 . This residual
captures the differences that the generative model G could not
reconstruct. We then use an encoder E𝑅 to encode this residual and
add it back to the reconstructed image in the generative model to
obtain an enriched image ®𝑋 ∗

𝑖
as ®𝑋 ∗

𝑖
= G(E( ®𝑋𝑖 ), E𝑅 ( ®𝑅𝑖 )).

The adversarial attack is then performed by trying to perturb
this residual ®𝑅𝑖 by Δ ®𝑅𝑖 so as to obtain the adversarial residual ®𝑅adv

𝑖

that produces an adversarial image ®𝑋 adv
𝑖

= G(E( ®𝑋𝑖 ), E( ®𝑅adv𝑖
)) that

results in the modelM outputting the target label ®𝑦tgt.
This attack thus seeks to find the minimal perturbation Δ ®𝑅𝑖 =
®𝑅adv
𝑖
−®𝑅𝑖 that fulfillsM( ®𝑋 adv

𝑖
)=®𝑦tgt, where ®𝑦𝑖≠®𝑦tgt. SinceE𝑅 ( ®𝑅adv𝑖

) =
E𝑅 ( ®𝑅𝑖 + Δ ®𝑅𝑖), we can formulate this as an optimization problem:

min
Δ ®𝑅𝑖
|Δ ®𝑅𝑖 |22, (2)

subject to

M(G(E( ®𝑋𝑖 ), E𝑅 ( ®𝑅𝑖 + Δ ®𝑅𝑖 )) = ®𝑦tgt . (3)
4
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The above optimization problem seeks to find the smallest per-
turbation in the encoded residual space that would cause the facial
recognition model to misclassify the image into the desired tar-
get label. This residual-based adversarial attack offers a nuanced
strategy for creating adversarial examples, optimizing the balance
between imperceptibility and misclassification effectiveness.

3.4 Loss Terms and Optimization Loop
To form the adversarial attacks as an optimization problem, we
introduce three types of loss functions: (1) the identity loss LID, (2)
the perceptual loss LP, and (3) the square error loss LSE. Before
going into the subtle differences in how these losses are combined
and used, we first provide a high-level description of each term.

Identity Loss: For identity loss, we employ state-of-the-art fa-
cial embedding models (e.g., FaceNet [43], ArcFace [12], Curricu-
larFace [25], and MobileFaceNet [7]), denoted as F . These models
encode facial images into low-dimensional vectors, capturing the
face’s identity while disregarding variations like pose and lighting.

Formally, given an original image ®𝑋𝑖 and its adversarial image
®𝑋 ′
𝑖
, the identity loss LID is defined as the pairwise distance

LID = 𝑑 (®𝑒𝑖 , ®𝑒 ′𝑖 ) (4)

between the two embeddings ®𝑒𝑖 = F ( ®𝑋𝑖 ) and ®𝑒 ′𝑖 = F ( ®𝑋
′
𝑖
). This dis-

tance measures how close the identity of the adversarial image is to
the identity of the original image. (In the case of our target-identity
guided attack, we instead use an identity loss defined relative to
the embedding of a target identity.)

Perceptual Loss: Perceptual loss, denoted by LP, measures the
perceptual similarity between the original and adversarial images.
It is defined based on the Learned Perceptual Image Patch Similarity
(LPIPS) [57], a perceptual metric that uses a deep neural network,
denoted by N , to learn a distance function consistent with human
perception. It compares the feature representations of two images at
multiple layers in the network, taking into account the statistics of
natural images and the hierarchical structure of visual perception.
Formally, we can express the perceptual loss as follows:

LP =
∑

𝑙 ∈ L
���N𝑙 (G (

®𝑊new
))
− N𝑙

(
®𝑋𝑖
)���2
2
, (5)

where L is the set of layers used for the perceptual loss, N𝑙 rep-
resents the feature extraction of network N at layer 𝑙 , G is the
generator that produces the adversarial image from the manipu-
lated latent code ®𝑊new, and ®𝑋𝑖 is the original image.

Square Error Loss: The square error loss, denoted by LSE, is
a regularization term designed to penalize deviations between the
original and the manipulated versions of a given input. This loss is
versatile and can be applied to various types of inputs, such as latent
codes ®𝑊 , images ®𝑋 , or residual vectors ®𝑅. In a generalized context,
let ®𝑉org represent the original input (which could be either ®𝑊 , ®𝑋 , or
®𝑅) and ®𝑉new denote its manipulated counterpart. The generalized
Square Error Loss can then be formulated as:

LSE ( ®𝑉org, ®𝑉new) =
��� ®𝑉new − ®𝑉org���2

2
. (6)

Combined Loss and Optimization Formulation: Finally, the
overall loss function is formulated as a weighted sum:

Ltotal = 𝜆P · LP + 𝜆SE · LSE − 𝜆ID · LID, (7)

Algorithm 1 StyleAdv’s optimization loop

1: Access to adversarial modelM𝐴: Ability to quickly calcu-
late F𝐴 (for L𝐴

𝐼𝐷
and L𝐴

𝑡𝑜𝑡𝑎𝑙
)

2: Access to victim model M𝑉 (optional): Limited (𝑞 + 1)
queries to F𝑉 (If not, set 𝑞 = 0 or use F𝐴 as proxy for F𝑉 )

3: Input: Image X𝑖 and parameters 𝑁 , 𝑞, 𝜂, 𝜆𝑃 , 𝜆𝑆𝐸 , 𝜆𝐼𝐷 , and 𝜃
4: Output: Protected image X𝑎𝑑𝑣

𝑖
5: W← E(X𝑖 )
6: 𝑤 (0) ←W
7: X𝑟𝑒𝑐

𝑖
← G(𝑤 (0) )

8: 𝑅 (0) ← (X𝑖 − X𝑟𝑒𝑐𝑖 )
9: for 𝑗 = 0 to 𝑁 − 1 do
10: Case: Editing attack
11: X𝑎𝑑𝑣

𝑖
← G(𝑤 ( 𝑗) )

12: Update𝑤 ( 𝑗+1) minimizing L𝐴
𝑡𝑜𝑡𝑎𝑙
(X𝑎𝑑𝑣
𝑖
) (per Sec. 3.5)

13: Case: Residual attack
14: X𝑎𝑑𝑣

𝑖
← G(𝑤 (0) , E𝑅 (𝑅 ( 𝑗) ))

15: Update 𝑅 ( 𝑗+1) minimizing L𝐴
𝑡𝑜𝑡𝑎𝑙
(X𝑎𝑑𝑣
𝑖
) (per Sec. 3.6)

16: if 𝑗 mod ⌊𝑁 /𝑞⌋ == 0 or 𝑗 == 𝑁 − 1 then
17: if 𝑑 (F𝑉 (X𝑎𝑑𝑣

𝑖
), F𝑉 (X𝑖 )) > 𝜃 then

18: break
19: end if
20: end if
21: end for

22: X𝑎𝑑𝑣
𝑖
←

{
G(𝑤 ( 𝑗+1) ), if editing attack
G(𝑤 (0) , E𝑅 (𝑅 ( 𝑗+1) )), if residual attack

where 𝜆ID, 𝜆P, and 𝜆SE are hyperparameters to balance the three
terms. Now, our optimization problem can be formulated as:

min
®𝑊 ′
Ltotal, (8)

subject to ®𝑊 ′ = E( ®𝑋 ′
𝑖
), where ®𝑋 ′

𝑖
is the adversarial image. The

solution of this optimization problem yields the adversarial image
®𝑋 ′
𝑖
that minimizes the total loss; thus, ensuring that it retains the

identity of the original image, appears perceptually similar to it,
and yet is classified as the target label by the attacked model.

Optimization Loop: To generate an adversarial image X𝑎𝑑𝑣
𝑖

from an input image X𝑖 , we first encode the image into a latent
space representation W, using a GAN-based encoder function E.
This encoded representation is then used as the initial adversarial
weight𝑤 (0) that will be iteratively improved upon during the opti-
mization loop. For the residual attack, this encoding is also used to
create a low fidelity reconstruction X𝑟𝑒𝑐

𝑖
and the initial residual vec-

tor 𝑅 (0) = (X𝑖 − X𝑟𝑒𝑐𝑖 ). For both attacks, the algorithm iteratively
employs a generator function G to produce an improved adversarial
sample X𝑎𝑑𝑣

𝑖
based on the previous weight𝑤 ( 𝑗) and residual vector

𝑅 ( 𝑗) and then updates these weights (using gradient decent) so
as to minimize the attack specific loss functions L𝐴

𝑡𝑜𝑡𝑎𝑙
. This loop

continues until either 𝑁 optimization steps have been done or the
identity distance 𝑑𝑉

𝐼𝐷
using the victim modelM𝑉 (when available)

is found bigger than 𝜃 during one of up-to 𝑞 distance checks. Fi-
nally, the protected image X𝑎𝑑𝑣

𝑖
is calculated using the most recent

adversarial weight𝑤 ( 𝑗) and residual vector 𝑅 ( 𝑗) , respectively.
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Figure 2: Overview of the attack strategies: Semantic editing (purple) and residual editing (blue). Initialization of the adversar-
ial weight𝑤 (0) and residual 𝑅 (0) are shown using dotted lines, while the (iterative) optimization loop is shown using solid lines.
In each step, the optimizer finds the𝑤 ( 𝑗+1) or 𝑅 ( 𝑗+1) that minimizes the total loss L𝐴

𝑡𝑜𝑡𝑎𝑙
(see Secs. 3.5 and 3.6-3.7, respectively).

Algorithm 1 and Fig. 2 provide an overview of the optimization
loop, while the next two subsections provide a detailed description
of the optimization for each type of attack. Although our framework
easily allows hybrid attacks in which the residual attack use𝑤 ( 𝑗+1)
of the editing attack as starting point, for simplicity, we keep the
presentation of the attack types separately here.

3.5 Semantic-aware Adversarial Attacks
We next describe three attack variations based on our semantic-
aware editing approach (purple in Fig. 2): our non-attribute-guided
attack, our attribute-guided attack, and our target identity attack.

Non-Attribute-Guided Attack: Starting with the original la-
tent code ®𝑊 , or a random one, we employ gradient descent to dis-
cover a new latent code ®𝑊 ′ that minimizes the total loss L𝑁𝐴𝐺𝐴total :

L𝑁𝐴𝐺𝐴total = 𝜆P · LP + 𝜆SE · LSE − 𝜆ID · LID, (9)

where LP, LSE, and LID denote the perceptual loss, the square
error loss, and the identity loss, respectively. The constants 𝜆P, 𝜆SE,
and 𝜆ID are the weights for each loss. The goal is to find a latent code
®𝑊 ′ that maximizes the identity loss while preserving perceptual
similarity and keeping changes in the latent code minimal.

Attribute-Guided Attack: In this attack, we first identify a
target latent code ®𝑊tgt. Then, we compute the new latent code ®𝑊 ′

by blending the original latent code ®𝑊 and the target latent code:

®𝑊 ′ = ®𝑊 ⊙ ®𝛼 + ®𝑊tgt ⊙ (1 − ®𝛼), (10)

where ®𝛼 is a vector of the same size as𝑊 vector that determines
the degree of change towards the target attribute. The vector ®𝛼 is
optimized to minimize the total loss Ltotal in the equation above.

Target Identity Attack: In the context of our semantic-aware
adversarial editing approach, we introduce a variant that aims to
alter an image such that it resembles a target identity while still
being adversarial. We call this approach “Target Identity Attack".

In this attack, we start by encoding an image into the latent space,
similar to the attribute guided and non-guided attacks. However, in
this case, we introduce a modification to the identity loss compo-
nent. Instead of maintaining the identity of the original image, we
strive to minimize the distance to a target identity, thus creating
an adversarial image that resembles the target.

Let us denote the target identity’s image as ®𝑋tgt. The target
identity’s embedding can then be calculated as ®𝑒tgt = F ( ®𝑋tgt),
where F is the facial embedding model.

The revised identity loss for the target identity attack, denoted
as LID𝑡𝑔𝑡 , is formulated as the distance between the embeddings of
the adversarial image and the target identity:

L𝑡𝑔𝑡ID = 𝑑 (F (G( ®𝑊new)), ®𝑒tgt) . (11)

In the context of the optimization problem for the adversarial
attack, the total loss for the target identity attack is as follows:

L𝑇 𝐼𝐴total = 𝜆P · LP + 𝜆SE · LSE + 𝜆ID · L
𝑡𝑔𝑡

ID , (12)

where 𝜆P, 𝜆SE, and 𝜆ID are the balancing factors.
Two Versions of TIA: Note that this target identity attack can

be applied in both attribute guidance and non-guidance settings. In
the attribute guidance setting, the optimization process is steered by
a predefined attribute target. The guidance is used to constrain the
direction of the adversarial perturbations in the latent space, thus
ensuring that the perturbed image will not deviate too significantly
in terms of identity from the original image. This method balances
the task of preserving identity resemblance and simultaneously
achieving the desired attribute modification.

In contrast, for the non-guidance setting, the perturbations pri-
marily aim to make the image resemble the target identity without
the constraint of an attribute direction. Here, the perturbation could
potentially cause more pronounced changes in the identity of the
resulting adversarial image. In both settings, the aim of the target
identity attack is to manipulate the image in such a way that it is
misclassified as the target identity, while maintaining a balance
between perceptual similarity and effectiveness of the attack.

3.6 Residual-based Adversarial Attack
Residual-based adversarial attacks differ from conventional semantic-
aware adversarial editing, which typically perturbs the latent codes
directly. Instead, this methodology manipulates the residuals be-
tween original and reconstructed images. The primary goal is to
calculate a perturbation that results in the smallest perceptual devi-
ation while still maximizing the identity loss.

A high-level description of our residual-based adversarial at-
tack (blue in Fig. 2) is described next, followed by a more detailed
description of our residual encoder (used in step 2):

6
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(1) Residual Computation: Starting from the original image
®𝑋𝑖 , we first derive its reconstructed counterpart ®𝑋 ′𝑖 = G(E( ®𝑋𝑖 )).
The residual ®𝑅𝑖 = ®𝑋𝑖− ®𝑋 ′𝑖 is then computed, capturing the dif-
ferences that the generative model G could not reconstruct.

(2) Residual Encoding:We then use an encoder E𝑅 to encode
the computed residual into a latent residual space, offering
an enriched representation of the image. Next, this encoded
residual is combined with the original latent code to generate
an enriched image ®𝑋 ∗

𝑖
= G(E( ®𝑋𝑖 ), E𝑅 ( ®𝑅𝑖 )).

(3) Optimization Process: Finally, with the enriched image
in hand, we perform an optimization process that seeks a
perturbed residual that minimizes the perceptual loss and
the square error loss while maximizing the identity loss. In
this context, the square error (SE) loss LSE is calculated as
the squared Euclidean distance between the original and per-
turbed residuals in latent residual space; i.e., LSE=∥Δ ®𝑅𝑖 ∥22.

Let us now look closer at the optimization problem. In basic
terms, the optimization problem is formalized as:

min
®𝑅𝑖

{
𝜆PLP ( ®𝑋 ′𝑖 , ®𝑋

∗
𝑖 ) + 𝜆SELSE ( ®𝑅𝑖 , ®𝑅∗𝑖 ) − 𝜆IDLID ( ®𝑋𝑖 , ®𝑋 ∗𝑖 )

}
, (13)

where LP, LSE, and LID denote the perceptual loss, square error
loss, and identity loss, respectively, and 𝜆P, 𝜆SE, and 𝜆ID represent
the balancing factors for each loss component.

Residual-based adversarial attacks thus provide a distinct way
to craft misclassification-triggering examples that closely resemble
the original images. By leveraging the concept of residuals, these
attacks subtly, yet effectively perturb image information, thereby
contributing a novel approach to adversarial image generation.

3.7 Residual Encoder
The ResidualEncoder used in our approach includes convolutional
layers, residual blocks, and feature scaling and shifting operations.

The encoder takes an input tensor ®𝑋 ∈ R𝐶×𝐻×𝑊 and processes
it through convolutional layers with a Parametric ReLU (PReLU)
activation function [21]. We denote the output as:

𝒇𝒆𝒂𝒕1 = PReLU(BN(Conv( ®𝑋 ))), (14)

The following two layers, each consisting of three residual blocks,
involve a bottleneck operation (bottleneck_IR) inspired by ResNet-
IR [4]. These layers take 𝒇𝒆𝒂𝒕1 or 𝒇𝒆𝒂𝒕2 as input, and output:

𝒇 𝒆𝒂𝒕2 = bottleneck_IR(𝒇 𝒆𝒂𝒕1), 𝒇 𝒆𝒂𝒕3 = bottleneck_IR(𝒇 𝒆𝒂𝒕2) . (15)

Scale and shift conditions are then generated using equalized con-
volutional layers and scaled leaky ReLU activation functions [27]:

𝒔, 𝒕 = ScaledLeakyReLU(EqualConv2d(𝒇𝒆𝒂𝒕3)) ◦ ®𝐼64×64 . (16)

Given an image ®𝑋 ′ generated from the latent code𝑾 and the real
image ®𝑋 , the residual ®𝑅 is calculated as ®𝑅= ®𝑋− ®𝑋 ′ and passed through
the Residual Encoder, yielding the scale and shift conditions:

𝒔, 𝒕 = ResidualEncoder( ®𝑅) . (17)

The generator G, a StyleGAN2 based model, takes the latent
code ®𝑊 and the conditions to generate the image:

®𝐼 = G( ®𝑊, 𝒔, 𝒕) . (18)

This image is designed to resemble the original while the FRS
should recognize a different individual. See details in Appendix A.

4 EVALUATION RESULTS
4.1 Experiment Setups
4.1.1 Datasets: To thoroughly evaluate our proposed method in
diverse environments, we employ four datasets. First, we use the
Labelled Faces in the Wild (LFW) dataset [24], encompassing over
13K images of 5,749 identities, to evaluate the effectiveness against
facial verification systems. LFW’s diverse range of images, taken in
uncontrolled environments, presents a challenging test for evaluat-
ing our approach’s resilience in realistic conditions.

Second, we use the FaceScrub dataset [36], comprising 107K face
images of 530 celebrities (about 200 images/person). Developed
through a combination of automated face detection and subsequent
manual cleaning, this dataset contains images of public figures col-
lected from the Internet under real-world, uncontrolled conditions.
Its diversity and scale allow us to validate our method’s versatility
and accuracy across a wide range of scenarios and identities.

Third, we use the MS-Celeb-1M dataset. This dataset includes
10M image samples from 100K individuals and is one of the most
challenging datasets for facial recognition due to its sheer vol-
ume and diversity. It offers a comprehensive collection of celebrity
images, capturing a myriad of poses, lighting conditions, and oc-
clusions. Like LFW, MS-Celeb-1M is apt for evaluating face identifi-
cation systems as it encompasses a vast number of identities; thus,
offering a more expansive evaluation compared to FaceScrub.

Finally, we use the CelebA [31] and CelebA-HQ datasets [26],
renowned for their large-scale collection of celebrity images. These
datasets, totaling over 200K images and covering more than 10K
unique identities with 40 attribute labels per image, enable us to
evaluate the precision and realism of attribute transformations
introduced by our method. CelebA-HQ, a high-quality subset of
CelebA, offers 30,000 uniformly high-resolution images (1024x1024
pixels) and allows for more detailed attribute editing analysis.

Collectively, these datasets, with their substantial diversity in
scale, resolution, and annotated attributes provide a solid base for
our evaluation, ensuring our results are both credible and widely
applicable across different facial recognition and editing scenarios.

4.1.2 Pre-trained Models. In our experimental setup, we employ
several state-of-the-art pre-trained models to ensure an effective
mechanism for image manipulation and evaluation.

StyleGAN2: StyleGAN2 [28] serves as our primary image gen-
erator. This generative adversarial network model is known for
generating high-quality, diverse, and photorealistic human face
images from points in the model’s latent space. StyleGAN2 resolves
certain limitations observed in StyleGAN, leading to improvements
in the quality of generated images and better disentanglement in the
latent space. This model was trained on the FFHQ dataset, which
comprises 70K high-quality face images at 1024×1024 resolution.

e4e Encoder: To map real-world images into the latent space of
StyleGAN2, we employ the e4e (encoder for editing) model. The e4e
encoder [50] works by minimizing the perceptual distance between
the original image and the one generated from the projected latent
code, thereby ensuring accurate and visually consistent projection.
This model has been pre-trained on the CelebA-HQ dataset.

Facial Embedding Models: Five facial embedding models are
incorporated into StyleAdv (both for attacks and evaluation). ArcFace
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Figure 3: Visual example results illustrating the primary dif-
ferences between the proposed attack approaches.

[12], trained on the MS1MV2 dataset [19], is known for its power-
ful face recognition performance, with accuracy reaching 99.82%
on the LFW dataset. We use two versions of ArcFace: irse50 and
ir152. FaceNet [43], an inception-resnet-based model trained on
the VGGFace2 dataset [4], demonstrating remarkable performance
with 99.65% accuracy on the LFW dataset [24]. MobileFaceNet [7],
optimized for mobile and embedded vision applications, is also in-
cluded, offering a good tradeoff between computational efficiency
and performance. Additionally, CurricularFace [25] is integrated,
known for its dynamic adjustment of the learning objective based
on the training status, yielding robust facial recognition.

We refer to Appendix B for further implementation details.

4.2 Visual Example Results
We first provide a visual comparison of the main variations of the
attack approaches proposed and evaluated. Fig. 3 shows represen-
tative example results for three distinct approaches, each offering
insights into their unique characteristics and relative tradeoffs. For
ease of comparison, we include the original unaltered source images
(top row) as a baseline against which each attack can be compared.

Latent SpaceAttackwithoutAttributeGuidance (row two):
This approach generally converges quicker compared to the other
attacks. This makes it the most advantages from a computation time
perspective, but due to its lack of guidance, it offers less control
of the properties of the final results. In the example results, this is
evident in the instances where the facial features have been signifi-
cantly altered, leading to a noticeable shift in identity resemblance.

Latent Space Attack with Attribute Guidance (third row):
This method provides a better balance between identity modifi-
cation and resemblance preservation. By incorporating attribute
guidance, we are able to diversify the representation of identity in
the feature space while effectively controlling the extent of change
in pixel space. The outcome, seen on row three, shows that even
though the faces have been altered modestly to mislead FRS:s, the
identities still maintain their visual resemblance to the original,
making it more suitable for practical applications.

Table 2: Image quality results. (Best values in bold.)
Method LPIPS ↑ MS-SSIM ↑ MSE ↑

Residual Attacks (ours) 0.1864 0.1368 0.0312
Latent Edit Attack (ours) 0.2665 0.2284 0.0548

Fawkes 0.4681 0.6256 0.4456
SemanticAdv 0.5331 0.7894 0.4745

Residual Attack (fourth row): The distinct advantage of this
method is its high-quality results that require less time to converge,
making it computationally efficient. However, it is also worth noting
that this approach may sometimes introduce minor artifacts that
become noticeable upon closer inspection. Despite these, the resid-
ual attack method presents another feasible approach to achieving
our privacy protection objective.

The choice of attack method depends on the specific require-
ments of the use-case, with considerations for factors like computa-
tional efficiency, controllability of identity changes, and preserva-
tion of visual resemblance. The evaluation in the following sections
compare our techniques with related works and provide deeper in-
sights into the relative tradeoffs between our proposed approaches.

4.3 Image Quality
One important utility aspect is the image quality. In Table 2 we use
three different image quality metrics to illustrate the relative image
quality achieved using our adversarial techniques (i.e., “Residual
Attack" and “Latent Edit Attacks") as well as the closest relate
works: Fawkes [44] and SemanticAdv [39]. Here, we group the
image quality results for the “guided" and “non-guided" latent edit
attack variations, as they are statistically similar.

To effectively quantify the degree of distortion or alteration in
image quality that each method produces, we calculate and report
three image quality metrics: the Learned Perceptual Image Patch
Similarity (LPIPS) [57], the Multi-Scale Structural Similarity Index
(MS-SSIM) [52], and the Mean Squared Error (MSE). In each case,
the metrics were computed by contrasting the image before and
after the attack. Furthermore, in each case, a lower score suggests
a lower degree of image distortion, hence higher image quality, as
the adversarial image stays perceptually closer to the original one.

We note that our two proposed methods display outstanding per-
formance in maintaining image quality across all tested metrics and
significantly outperform the related works. Notably, the residual
attack method achieves an LPIPS score of 0.1864, an MS-SSIM score
of 0.1368, and an MSE score of 0.0312, implying low distortion. The
results for the latent edit attack methods are similarly impressive,
yielding scores of 0.2665, 0.2284, and 0.0548, respectively.

The two related works (Fawkes and SemanticAdv) have signifi-
cantly higher distortion, indicating that they provide inferior image
quality compared to our methods. For example, Fawkes obtains
LPIPS, MS-SSIM, and MSE scores of 0.4681, 0.6256, and 0.4456 re-
spectively, and SemanticAdv even worse (0.5331, 0.7894, and 0.4745).

These findings highlight the attack’s superior ability to preserve
the image quality. The high visual quality of the adversarial images
has high practical utility, a critical factor for privacy filters.

4.4 Targeted and Untargeted Attacks
Targeted Example Attack: We next demonstrate the robustness
of our “Latent Space Attack with Attribute Guidance" method.
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Figure 4: Success rates of targeted semantic editing attack
with AcrFace(irse50) as attacker model.

Fig. 4 shows the success rate when performing our attack using
ArcFace(irse50) [12] on four (different) victim models: Curricular-
Face [25], FaceNet [43], ArcFace(ir152) [12], and MobileFaceNet [7].

Here, for each attacker-victim pair, we measure and report three
metrics. (1) How frequently does the attack successfully “hide" the
source identity from the victim model (i.e., the identity distance
𝑑𝑠𝑟𝑐 is no longer within the victim model’s identification threshold
𝑑). (2) How frequently does the victim model consider the new
identity to be closer to the target identity than the source identity
(i.e., 𝑑𝑡𝑔𝑡 < 𝑑𝑠𝑟𝑐 ). (3) How frequently is an impersonation attack
performed inwhich the victimmodel considers the identity distance
to the target 𝑑𝑡𝑔𝑡 to be within the model’s identity threshold 𝑑 .

Across the different attacker-victim pairs, our attack is highly
successful hiding the source identity, demonstrating the robustness
of ourmethod. The results aremost successful when using the irse50
model for the attack, providing a success rate above 84% across
all victim models: CurricularFace 98%, FaceNet 84%, ir152 100%,
and MobileFaceNet 95%. While we observe noticeable differences
between models, the overall good performance demonstrates the
capability of our attack to sufficiently increase the pairwise distance
relative to the source identity so as to simultaneously surpass the
respective detection thresholds of several models in parallel.

While our goal here is to alter the original identity sufficiently
to hide the original identity, several observations are possible from
when looking at how close to the target that the attacker model is
able to (simultaneously) move the identity. First, we note that the
success rate for (pure) impersonation is substantially smaller than
simply hiding the identity, underscoring an inherent limitation of
the method. Here, it should be noted that cross-model identity im-
personation is a non-trivial challenge as it involves impersonating
another identity while maintaining the pairwise distance within the
detection threshold of the respective models. Here, we emphasize
that our goal simply is to move the identity far enough from the
original identity (which we do successfully) and instead note that
the impersonation rates differ somewhat between the victim mod-
els, suggesting that there are some differences in how far an identity
must be moved to achieve successful impersonation. Yet, also for
these models, we are successful in hiding the original identities.

Second, we note that the relative fraction of cases where the iden-
tity was moved closer to the target identity than the source identity
(i.e, 𝑑𝑡𝑔𝑡<𝑑𝑠𝑟𝑐 ) was substantial in many of the cases, confirming
that the target identity indeed helped guide the attack. To provide
some visual intuition how far the identities are moved away from
the original image (from the perspective of a subjective human) we
refer to the example images in Figs. 3 and 9.

Untargeted Attack Against Facial Identification: Two dis-
tinct databases were used for this evaluation: one constructed from
the LFW dataset and one from the MS-Celeb-1M dataset (MS1M).
In the LFW-based evaluation, we selected 1,674 unique identities,
with each identity represented by more than one image sample.
For the MS-Celeb-1M dataset, we used 10 batches, each with 10K
unique identities. The objective of these evaluations was to assess
the systems’ resilience against two adversarial attacks: the “Residual
Attack" and the “Latent Attack".

The results (Table 3) reveal some stark differences between the
datasets. With LFW, the system’s top-1 accuracy consistently was
0% for all tested models and attacks. In contrast, MS-Celeb-1M was
more challenging, with the FRS:s showing slightly better resilience.
Here, the residual attack was consistently more effective, with
the top-1 accuracy varying from 1.74% (CurricularFace) to 6.46%
(ArcFace(ir152) for the residual attack compared to between 3.28%
(MobileFaceNet) and 8.90% (FaceNet) for the latent edit attack. (To
provide insights into the very high success rate with LFW, we
include top-k accuracy results also for other 𝑘 in Appendix F.)

The average rank results, which reflect the system’s ability to
correctly identify true identities, were consistently high for both
attacks and across both datasets. For most models, the average rank
exceeds 1,000, which in the case of LFW puts the identity closer to
the end of the list and in the case of MS-Celeb-1M puts the rank
among the top-10% closest matches.

Overall, these results highlight facial identification systems’ vul-
nerability to both residual and latent edit attacks. While MS-Celeb-
1M exhibited greater resilience, all models across different datasets
showed significant susceptibility to these adversarial techniques.

UntargetedAttackAgainst FaceVerification:Using the same
two datasets (LFW and MS-Celeb-1M), we evaluated the percentage
of instances in which the adversarial attack effectively misled the
facial identification system (Table 4).

The residual attack demonstrated formidable effectiveness on
both datasets. On LFW, the attack achieved an impressive success
rate of close to 100% for most models and a success rate of 95.3%
against the most resilient model (FaceNet). For MS-Celeb-1M, the
rates were almost as high, with the most resilient model (FaceNet)
only reducing the success rate of our attack to 94.9%.

The latent attack also showcased consistently high success rates
across all models. On LFW, the rates ranged from 94.25% to 99.76%
and on the MS-Celeb-1M dataset, the rates were equally concerning,
ranging between 93.2% and 96.1%.

These findings underline the pronounced vulnerability of facial
identification systems, and the threat that both residual and latent
edit attacks presents, with all models manifesting high susceptibility
to these adversarial interventions, regardless of dataset.

Implications of High Success: The consistently high success
rates across models (Tables 3 and 4) demonstrate that the attacks
effectively can render many FRS:s ineffective for both face identifi-
cation and face verification tasks. Note that, similar to our results
on LFW, Fawkes [44] also reported perfect protection but for older
facial recognition based on VGGFace (2016). In comparison, our
results are shown to be more effective on recent models; e.g., see
Table 7 for comparison with Fawkes (on FaceScrub dataset). This
is a particularly strong result since our attack only uses a limited
number of queries to determine when to stop the optimization loop
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Table 3: Facial identification results with untargeted attack: Residual vs.
latent edit on the two datasets: LFW and MS-Celeb-1M (MS1M)

Residual Latent Edit
Model Top-1 Acc. Ave. Rank Top-1 Acc. Ave. Rank

LFW MS1M LFW MS1M LFW MS1M LFW MS1M
ArcFace(irse50) 0.00% 5.01% 1,445 1,323 0.00% 6.83% 1,432 1,318
ArcFace(ir152) 0.00% 6.46% 1,440 1,174 0.00% 8.89% 1,435 1,170
FaceNet 0.00% 5.97% 1,461 1,393 0.00% 8.90% 1,463 1,308
CurricularFace 0.00% 1.74% 1,437 1,252 0.00% 3.91% 1,440 1,173
MobileFaceNet 0.00% 3.91% 1,442 1,290 0.00% 3.28% 1,446 1,136

Table 4: Success rate (percentage) of residual and
latent attacks (un-targeted) on face verification

Model Residual Latent
LFW MS1M LFW MS1M

ArcFace(irse50) 99.77% 97.6% 94.25% 93.2%
ArcFace(ir152) 99.63% 98.3% 96.87% 94.8%
FaceNet 95.30% 94.9% 96.51% 94.2%
CurricularFace 100% 98.2% 98.44% 95.6%
MobileFaceNet 100% 98.0% 99.76% 96.1%
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Figure 5: Attributes evaluations using both attributes edited using StyleCLIP (top row) and StyleFlow (bottom row). Higher
distance to source implies more successful attack and shorter distance to target implies greater degree of impersonation.

(not for the optimization itself). Our success with this black-box
assumption demonstrates that an attacker can exploit the victim’s
vulnerabilities without the need for in-depth knowledge of the vic-
tim model’s architecture or parameters. While queries in online
mode may raise some suspicion, the stealthy nature of our attack
(i.e., limited number of queries) means that the attacks can go rela-
tively undetected in real-world scenarios. From the perspective of
the FRS:s, the results are concerning, as our results show that they
easily can be fooled with limited or no access to the victim model.

4.5 Editing Different Attributes
To underline the flexibility and versatility of our approach, we
next demonstrate how our proposed methods can be integrated
and adapted into two popular frameworks for editing facial at-
tributes: StyleCLIP and StyleFlow. These frameworks were selected
for several compelling reasons. Most importantly, their ability to
manipulate facial features with high fidelity, preserving the overall
quality of the image while making precise changes.

While these two examples help highlight the flexibility and ver-
satility of our approach, our methods are more broadly designed
for seamless integration into diverse editing frameworks.

Adversarial Editing with Attribute Guidance using Syle-
CLIP: The boxplots in Fig.5a demonstrate the efficacy of Style-
CLIP’s mapper in conducting latent attacks with various attribute
guidance. Here, a higher distance towards the source implies a more
successful attack and a lower distance towards the target indicates
a more successful impersonation attack.

From the results, it is clear that different attributes experience
varying degrees of success. For instance, the “afro" and “purple hair"
attributes achieve a higher mean distance towards the source (0.75
and 0.76, respectively), indicating amore effective attackwhen these

attributes are used for guidance. (See Appendix B for individual
decision thresholds for the different facial recognition models.) On
the contrary, “angry" and “surprised" attributes have lower mean
distances to the source, suggesting a less successful attack.

With regards to impersonation, “purple hair" seems to be the
most successful attribute guidance, with a mean distance of 0.24
(lower mean is better here). In contrast, attributes like “afro" and
“angry" show higher mean distances to the target, indicating their
limited utility for impersonation attacks.

Fig. 5a illustrates the nuanced impact of various attribute guid-
ance on the success of latent attacks. These results offer insights into
both the potentials and limitations of StyleCLIP’s mapper, valuable
for enhancing its efficacy in robust and efficient latent attacks.

Adversarial Editing with Attribute Guidance using Style-
Flow: Fig. 5b shows the corresponding results when using Style-
Flow to conduct latent attacks with various attribute guidance. Here,
the attack achieves the highest success and mean distances towards
the source (above 1.0) when “beard" and “baldness" are used for
guidance. In contrast, the “expression" attribute exhibits the lowest
average source distance, indicating it is relatively less useful.

In impersonation attacks, attributes like “age", “pitch", and “yaw"
exhibit the lowest mean distances to the target, showcasing Style-
Flow’s high effectiveness in imitating the target with these at-
tributes. Conversely, “baldness" and “beard" attributes show higher
mean distances to the target, indicating lower impersonation attack
success. These findings emphasize both the strengths and areas for
improvement in StyleFlow’s latent attacks.

Comparing use of StyleCLIP and StyleFlow for Attribute
Guidance: The statistical and graphical analyses presented above
offer a compelling comparison of the two frameworks - StyleCLIP’s
mapper and StyleFlow - in terms of their effectiveness in conducting
latent attacks under different attribute guidance.
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In comparison to StyleCLIP, StyleFlow demonstrates a higher
mean distance to the source, particularly for the “beard" and “bald-
ness" attributes. This suggests a stronger efficacy in conducting
attacks when using these attributes with StyleFlow. For imperson-
ation, the results are more mixed, although we observe a clear trend
with StyleFlow indicating that attributes that are good for obfus-
cation tend to be bad for imitation. Appendix C provides a more
detailed discussion on the duality of obfuscation and imitation.

Interestingly, the “purple hair" attribute stands out in StyleCLIP,
with relatively high mean distances towards the source but low
towards the target. In contrast, “beard" and “baldness" demonstrate
relatively high mean distances to both source and target. This might
hint at a higher degree of complexity and challenge involved in
manipulating these attributes, which can be an area of further
exploration. The choice between StyleCLIP and StyleFlow depends
on the specific attribute guidance and the nature of the attack,
with both having their own strengths and weaknesses. The results
also indicate that there are nuanced differences between the two,
providing valuable insights for researchers and developers looking
to further improve or adapt these frameworks for different purposes.

4.6 Resistance to Standard Defense Methods
We next demonstrate the resilience of our attacks against vari-
ous defense methods, including JPEG compression, total variance
minimization, feature squeezing, spatial smoothing, Gaussian blur,
and random noise. These methods are available as defense’s pre-
processors in Adversarial Robustness Toolbox [37]. For these ex-
periments, we measure the pairwise distance between the original
image and the protected images. Figure 6 summarizes these results
for both the "Latent Edit Attack with Attribute Guidance" and the
"Residual Attack", as well as when no defense is applied (baseline).

Latent Edit Attack with Attribute Guidance: The boxplot in
Fig. 6a clearly depicts that there is no significant reduction in the
pairwise distance when comparing the no defense scenario to the
use of different defense methods. In other words, the attack samples
retained their altered identity even after the application of these
defense strategies. This finding implies that our “Latent Edit Attack”
is effective against these defensive techniques. For example, the
average pairwise distance for “JPEG compression” is approximately
0.30 and 0.32 for “Random noise”. The slight variations in pairwise
distances among defenses suggest that our “Latent Edit Attack"
effectively preserves the altered identity against these defenses.

Moreover, it is noteworthy that the performance of defense meth-
ods like “Total variance minimization”, “Spatial smoothing”, and
“Gaussian blur” were particularly close to the “No defense” sce-
nario. These results indicate that the attack has shown remarkable
resilience in the face of these specific defenses.

This evaluation therefore affirms the robustness of our “Latent
Edit Attack", suggesting that it can be effectively employed for
identity alteration, while resisting commonly employed defense
techniques. This could be a pivotal finding for advancing privacy-
enhancing technologies, especially in the realm of facial images.

Residual Attack: We observe that also the “Residual Attack"
is resilient to the various defenses. The results for this attack are
shown in Figure 6b. Here, we note that the average pairwise dis-
tance for the “No defense" (0.42) is similar to that of most of the

defense classes. For example, the average pairwise distance for
“JPEG compression" is 0.41 and “Random noise" is 0.43. There is
also an evident consistency in these pairwise distances, indicat-
ing that our “Residual Attack" maintains its effect against these
defenses. The observation that almost all averages are the same
again highlight the robustness of our attack approach.

Summary: Both our attack approaches – “Latent Edit" and
“Residual" – exhibit significant resilience against a range of defense
methods. The minimal differences in the pairwise distances for each
method further bolster this claim. Consequently, these approaches
prove to be highly efficient for identity alteration in facial images,
even in the face of common defense techniques, thus showcasing
potential for advancements in privacy-focused technologies.

4.7 Resistance to Adaptive (retrained) Defenses
The most potent defense strategy known for countering data poi-
soning is to retrain the FRS model (of the victim) using perturbed
(or protected) images [40]. While this defense mechanism has been
found to be exceptionally effective, we note that the computational
cost associated with this method is exceptionally high, making it
an impractical choice in many real-world scenarios. Yet, it provides
a good stress test when comparing our robustness against prior
works. We next present such a comparison.

Similar to the original adaptive defense setup in [40], we ran-
domly select one user from a pool of 530 FaceScrub identities. We
then perturb 70% of this user’s training set images using StyleAdv,
Fawkes, or SemanticAdv. These altered images together with the
training images of the other 529 FaceScrub users are then used
to train the model (training dataset). This retraining process is in-
tended to mirror real-world scenarios where FRS:s come across
both conventional and privacy-enhanced images.

For the evaluation, we use ArcFace(irse50) to assess the error
rate of the deceptively retrained model on the test images of the
subject that had not been altered. We averaged the error rates
across 20 separate experiments, each involving a randomly selected
user. Fig. 7 shows the errors rates when using each of the three
privacy protection methods: Fawkes, SemanticAdv, and StyleAdv.
Here, higher error rate signifies better protection (performance),
with such attacks presenting the FRS with a bigger challenge to
accurately identifying the face and hence also the user with better
privacy protection. while all three methods, as expected, see a no-
ticeable drop in the protection they provide when ArcFace(irse50)
is adaptively retrained (bars on the right) versus with the original
model (bars on the left), we note that StyleAdv with latent edits
achieve the highest error rates, followed by SemanticAdv. These re-
sults demonstrate another significant advantage of semantic editing
techniques such as StyleAdv (with latent edits) and SemanticAdv.
While traditional privacy protection methods may become less
effective against adaptive models (as seen by Lowkey results), se-
mantic editing techniques continue to provide some defense even
against such highly advanced FRS:s.

4.8 Using FRS:s to Attack other FRS:s
We next evaluate the transferability of the attacks. For this analy-
sis we apply pairwise tests in which we use each of the following
five face recognition models to attack each other: CurricularFace,
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Figure 6: Defense comparisons: Pairwise distance between protected im-
ages and original images
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Figure 8: Transferability: Pairwise tests using one FRS to at-
tack another FRS.

FaceNet, ArcFace(ir152), ArcFace(irse50), and MobileFaceNet. Fig-
ure 8 shows the pairwise results as one heatmap per attack type,
where each cell indicates the pairwise distance between the identity
before and after the attack, with lighter colors representing higher
values and thus a more successful attack.

While the relative success of the latent space attack (Figure 8a) is
most dependant on the victim model, the residual attack (Figure 8b)
is typically most successful when a model is applied on itself, with
the CurricularFace model (applied on itself) resulting in the overall
highest normalized distance (1.813).

Latent Space Attack with Attribute Guidance: Referring to
Figure 8a, it is clear that the normalized pairwise distances for all at-
tacks significantly exceed the detection thresholds of the respective
models. For example, CurricularFace has a normalized detection
threshold of 1, yet the normalized pairwise distances for the latent
attack on CurricularFace (regardless of the attacker model) range
from 1.334 to 1.434 (these numbers are rounded to better fit the
figure). This shows that the attacks successfully alter the identity
to a point that is well beyond the model’s detection boundary.

Similarly, FaceNet, with a normalized detection threshold of 1,
experiences attacks resulting in pairwise distances between 1.077 to
1.328 when subjected to attacks from all the models. These distances
again fall well outside of the expected boundaries of a successful
identification, showing the efficacy of the attack.

These results emphasize the robustness and transferability of the
"Latent Space Attack with Attribute Guidance" method. The fact
that the normalized distances consistently surpass the detection
thresholds indicates that the attack effectively alters the identity
across all tested face recognition models. This makes it a promising
strategy for privacy-focused applications as it can effectively thwart
the face recognition models from correctly identifying the subject.

Residual Attack: Fig. 8b shows the corresponding results for
the residual attack, which exhibits greater transferability compared

to the latent space attack, as evidenced by the heatmap. This attack
consistently pushes the verification distances beyond the normal-
ized detection thresholds of the respective models, effectively alter-
ing the identity across all tested models. This robustness signifies
the attack’s transferability and effectiveness.

The heatmap further unveils intriguing inter-model transferabil-
ity patterns. For example, the residual attack developed for Arc-
Face(ir152) transfers very effectively to the CurricularFace model
(normalized distance of 1.511) but does not achieve as high pro-
tection when applied on MobileFaceNet (1.014). While also this
distance surpasses the identity verification threshold, its success is
relatively lower than for the other cross-model attacks. The over-
all positive results (with consistently normalized values above 1),
demonstrate that especially the residual attack (right plot) is gen-
erally robust and transferable, although its effectiveness can vary
depending on the combination of attacker and victim models.

Discussion: For both attacks, we have observed distinct varia-
tions in the verification distances across different facial recognition
models, with FaceNet and MobileFaceNet being relatively more
resilient to the proposed attacks. We expect that these differences
in resilience stem from inherent differences in the architectures,
training/pre-processing methodologies, and the latent represen-
tations of these models. For example, if the latent spaces within
such a model is less amenable to certain manipulations this will
influence how susceptibility it is to our adversarial attacks. While a
deeper exploration into these specific models and their latent spaces
are outside the scope of this paper, we expect that even stronger
adversarial attacks could be achieved if taking into account their
internals. Here, we present a generic approach that provides good
transferability across models.

Summary: The preceding analysis underscores the remarkable
transferability of both the “Latent Space Attack with Attribute
Guidance" and the “Residual Attack" methods across various face
recognition models. This characteristic is crucial for designing ro-
bust privacy-enhancing applications. These applications, armed
with such transferable attacks, can maintain user privacy across
different face recognition models, bolstering their resilience against
varying recognition technologies.

4.9 Comparisons with Related Works
In this section we provide a quantitative performance comparison
to complement and support our qualitative high-level comparison
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Table 5: Average verification distance
Method ArcFace

(irse50)
ArcFace
(ir152)

FaceNet Mobile-
FaceNet

Curricu-
larFace

Residual (Ours) 0.9603 0.8053 0.4361 0.5798 0.7895
Latent Edit (Ours) 0.4803 0.7064 0.4408 0.4384 0.6717

Fawkes 0.3631 0.5703 0.5455 0.3508 0.4472
SemanticAdv 0.5644 0.5776 0.4444 0.6202 0.5881
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Figure 9: Visual comparison to related works.

presented in Table 1. Here, we only preset results for the most
representative related works: Fawkes and SemanticAdv.

Image Quality: First, referring back to Table 2 and the discus-
sion in Sec. 4.3 we note that our methods provide superior image
quality to both Fawkes and SemanticAdv.

Verification Distance Comparison: Second, Table 5 presents
the average verification distances of various adversarial methods,
including when using our attacks (both “Residual Attack" and “La-
tent Edit Attack") and the most closely related works (Fawkes and
SemanticAdv) tested using five different facial recognition models:
ArcFace(irse50), ArcFace(ir152), FaceNet, MobileFaceNet, and Cur-
ricularFace. Both our proposed methods on average outperform
the other models, typically achieving higher verification distances
for most of the tested models. This implies that our methods are
more effective in obfuscating the original identity, thereby offering
stronger defense against FRS:s.

Against four out of five models, Fawkes has the smallest dis-
tances. In fact, against two models (ArcFace(irse50) and Mobile-
FaceNet) the average distance with Lowkey is not even below or
close the detection thresholds of 0.36 and 0.425 (i.e., 0.3631 and
0.3508, respectively). We therefore marked these instances in red,
indicating less successful adversarial attacks. Thus, despite its abil-
ity to evade detection by some models (i.e., FaceNet), Fawkes most
often achieved the least protection of the three attacks.

While SemanticAdv, similar to our latent attack, can achieve
effective adversarial attacks by editing in the latent space, it is
noteworthy that our “Residual Attack” method outperforms Seman-
ticAdv for 3 out of 5 models.

Visual comparison: We next turn our attention to the visual
results. Figure 9 illustrates a comparative analysis of the quality
and effectiveness of our methods against the same related works.

We have found that both of our approaches are able to yield
high-fidelity image quality and high attack success rate, although
our “Residual Attack" method sometimes produces minor artifacts.
In this regard, the “Latent Space Attack with Attribute Guidance"
(i.e., “Latent Edit") is more reliable in that it consistently maintains
superior image quality. Interestingly, this editing requirement can
be viewed as advantageous rather than limitation, considering that
users often tend to edit their images prior to sharing [11, 15, 35, 51].

In comparison to our methods, we see a significant degradation
in image quality with Fawkes (which only achieve high protection
when the method is used in “high" mode).

While SemanticAdv is effective in some instances, we have found
that it generally suffers from low image fidelity and is prone to
significant artifacts. This method also relies on the attributes of the
CelebA dataset, which considerably limits its scope of application.
For example, SemanticAdv falls short when tested on images that do
not belong to the CelebA dataset, or specifically those on which the
StarGANmodel has not been trained. This is a significant limitation
that impedes its usefulness.

Summary: Our proposed “Latent Space Attack with Attribute
Guidance" and “Residual Attack"methods demonstrate a compelling
balance between maintaining high image quality and offering ef-
fective protection against facial recognition technologies. They
evidently outperform the other methods considered here, making
them robust tools for privacy-preserving image sharing.

5 CONCLUSIONS
In this paper we have presented StyleAdv, a robust and compre-
hensive framework for adversarial image editing, which we have
demonstrated is a promising solution to protect facial identity and
enhance privacy. By leveraging the latent spaces of StyleGAN and
incorporating a novel residual attack strategy, StyleAdv generates
high-quality adversarial samples that surpass prior works in image
quality, realism, and attacks success rate. The framework seamlessly
integrates semantic-aware editing, adversarial attack modules, and
face recognition systems, offering a cohesive and practical tool for
privacy protection. The paper demonstrates the effectiveness of
StyleAdv through high attack success rates achieved while pre-
serving image quality, which has remained a challenge for existing
methods. Additionally, we provide insights into effective editing
techniques, discuss tradeoffs in latent spaces, and highlight the
impact of utilizing residual information. With an easy-to-use web
interface and a comparison against existing adversarial attack meth-
ods, StyleAdv represents a significant advancement in the field,
empowering users to safeguard their privacy in the digital age.
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APPENDIX
A RESIDUAL ENCODER DETAILS
A key component of the “Residual Attack" is the ResidualEncoder.
In short, this is a model consisting of a sequence of convolutional
layers and residual blocks, along with feature scaling and shifting
operations. Table 6 provides a summary of the important layers in
our residual encoder model.

Step-by-Step Processing Sequence: The encoder operates on
an input tensor ®𝑋 ∈ R𝐶×𝐻×𝑊 , where 𝐶 is the number of channels,
and 𝐻 and𝑊 are the height and width of the input image.

The initial convolutional layer, conv_layer1, applies a convolu-
tion operation with a 3×3 kernel and stride 1, followed by batch nor-
malization and a Parametric ReLU (PReLU) activation function [21].
Formally, we can denote the output of this layer as:

𝒇𝒆𝒂𝒕1 = PReLU(BN(Conv(𝒙))), (19)

where Conv denotes the convolution operation, BN denotes the
batch normalization operation, and PReLU denotes the PReLU acti-
vation function.

The following two layers, conv_layer2 and conv_layer3, each
consist of a sequence of three residual blocks. Each residual block
involves a bottleneck operation, denoted as bottleneck_IR, in-
spired by the ResNet-IR architecture [4]. Thus, the output of these
layers can be represented as:

𝒇𝒆𝒂𝒕2 = bottleneck_IR(𝒇𝒆𝒂𝒕1), (20)
𝒇𝒆𝒂𝒕3 = bottleneck_IR(𝒇𝒆𝒂𝒕2). (21)

The condition_scale3 and condition_shift3 operations each
consist of a sequence of equalized convolutional layers (denoted as

Table 6: Summary of the most important layers in the resid-
ual encoder model.

Layer Description Output Shape
conv_layer1 Convolution layer [32, 256, 256]
conv_layer2 Convolution layer applied to feat1 [48, 128, 128]
conv_layer3 Convolution layer applied to feat2 [64, 64, 64]
condition_scale3 Scale condition applied to feat3 [512, 64, 64]
interpolation (scale) Bilinear interpolation applied to scale [512, 64, 64]
condition_shift3 Shift condition applied to feat3 [512, 64, 64]
interpolation (shift) Bilinear interpolation applied to shift [512, 64, 64]

EqualConv2d) and scaled leaky ReLU (denoted as ScaledLeakyReLU)
activation functions, as introduced in the StyleGAN work [27]. We
perform these operations on the output of the third convolutional
layer, interpolate the result to a resolution of 64×64, and then clone
it to generate the scale and shift conditions.

Formally, the scale and shift conditions are represented as:

𝒔 = ScaledLeakyReLU(EqualConv2d(𝒇 3)) ◦ 𝑰 64×64, (22)
𝒕 = ScaledLeakyReLU(EqualConv2d(𝒇 3)) ◦ 𝑰 64×64 . (23)

The model then returns these conditions as its output.
Using the Residual Encoder to Generate Images: Given an

image ®𝑋 ′ generated from the latent code ®𝑊 and the corresponding
real image ®𝑋 , the residual ®𝑅 is calculated as ®𝑅 = ®𝑋− ®𝑋 ′. This residual
®𝑅𝑖 is then processed through the “Residual Encoder" to yield the
scale and shift conditions, denoted as 𝑠 and 𝑡 :

𝑠, 𝑡 = ResidualEncoder( ®𝑅) . (24)

These conditions, along with the latent code ®𝑊 , are passed into
the generator G, where G is a StyleGAN2 based model designed to
accept and manipulate these latent codes𝑊 of size [18, 512].

At a specific layer in G (e.g., the 7th layer for a 64 × 64 output
resolution), the scale and shift conditions 𝒔 and 𝒕 are applied to
modulate the output features 𝒇 :

𝒇 = 𝒇 · (1 + 𝒔) + 𝒕 . (25)

This effectively performs an element-wise scaling and shifting of
the features at this layer, enabling the modification of the generated
output in response to the residual.

Finally, G generates an image ®𝐼 based on the conditioned features
and latent code:

®𝐼 = G( ®𝑊, 𝒔, 𝒕) . (26)
This transformed version of the original input image serves as

the new representation of the user. It is worth noting that this image
is designed to maintain visual similarity to the original one, while
still being identified as a different individual by the face recognition
system. Thus, it plays a crucial role in the success of our privacy-
focused attacks, and is the tangible outcome of these attacks.

B IMPLEMENTATION DETAILS
In our implementation, we have considered several specific aspects
for both the latent and residual attacks.
• Identity Threshold: The identity threshold of a victim
model is used to decide when to end the optimization loop.
This threshold, denoted as ‘ID_threshold‘, varies depending
on the facial recognition model in use. The models include
CurricularFace, FaceNet, ArcFace(ir152), ArcFace(irse50), and
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MobileFaceNet, with corresponding ‘ID_threshold‘ values
of ‘[0.43, 0.36,0.42, 0.412, 0.425]‘.
• Optimizer for Latent Attack: The latent attack uses the
Adam optimizer. This optimizer employs a learning rate
schedule named ’Cosine Annealing with Warm Restarts’
[32] for the optimization process. The initial learning rate
for this scheduler is set to 0.01 and the ramp-up factor is
0.05.
• Optimizer for Residual Attack: The RMSprop optimizer
is used for the residual attack with a fixed learning rate
of 0.004. We do not use a learning rate scheduler for this
optimizer.
• Regularization Parameters (𝜆): For the latent attack, 𝜆𝐼𝐷
is set in a range from 0.2 to 1, depending on the dataset.
𝜆𝐿𝑃𝐼𝑃𝑆 is set to 1 and 𝜆𝑆𝐸 is set to 0.008. For the residual
attack, 𝜆𝐼𝐷 is set in a range between 1 and 10, depending
on the dataset, and 𝜆𝐿𝑃𝐼𝑃𝑆 and 𝜆𝑆𝐸 are set to 1 and 0.001,
respectively.
• Training the Residual Encoder: For the training of the
Residual Encoder, we make use of the Adam optimizer. A
specific learning rate scheduler, known as ’Cosine Annealing
with Warm Restarts’ [32], is employed during the optimiza-
tion process. The learning rate is set to 1 × 10−4 initially
and the ramp-up factor is 0.05. We train the Residual En-
coder for 80,000 steps with a batch size of 4. The training
is conducted on an RTX 3090 graphics card with 24GB of
VRAM. This approach ensures a comprehensive and efficient
training process for the Residual Encoder, ensuring that it
can accurately and effectively encode the residuals for use
in the attack process.

These specific choices play crucial roles in balancing the objec-
tives of our attacks and ensuring their effective performance.

C DISCUSSION ON THE DUALITY OF GUIDED
ATTRIBUTES

Our results using attribute guidance (Fig. 5) show that attributes
that are good for obfuscation often are bad for imitation. We have
found that this contrast between obfuscation and imitation stems
from their distinct objectives.While imitation emphasizes capturing
and replicating unique attributes, obfuscation aims to generalize
and make features less distinct. This duality provides valuable in-
sights into facial recognition datasets and the associated privacy
implications of different facial attributes.

First, consider the contrasting objectives of obfuscation and im-
itation. Obfuscation is often achieved by generalizing facial fea-
tures, making the individuals shown in an image less distinctive
and thereby harder to identify. By creating faces that appear more
“generic", the faces therefore become less unique and more easily
“blending in" within a set of faces with other identities. In contrast,
imitation is typically best achieved by focusing on specific (often
unusual) characteristics that help mimic a particular identity. By
striving to capture the uniqueness of the target identity, features
that are more distinctive are therefore often leveraged to imper-
sonate a specific individual. This inherent contrast between the
two approaches (i.e., one benefiting from generalization and the

other specificity) suggests that there may be inherent differences in
which features are better or worse for each of the two objectives.

Second, we note that the two contrasting objectives are greatly
impacted by the way facial recognition datasets are constructed and
utilized. For example, datasets are often populated with a myriad
of facial features, with a bias towards more common or generic
features that may be beneficial for obfuscation. Focusing on these
generic features, faces can be effectively concealed within a large
pool of similar data points, rendering recognition more difficult.
In contrast, imitation may be hampered by the more unusual at-
tributes (capturing distinctive features) being less represented in
such datasets. This dynamic underscores the broader privacy impli-
cations of facial features. In general, features that are common or
generic offer a natural cloak of anonymity, while unique or unusual
features can be both a strength (for personal recognition) and a
vulnerability (for impersonation). Reflecting on this interplay can
guide future endeavors in facial recognition, emphasizing the need
for balanced datasets and more nuanced recognition algorithms
that can discern between genuine uniqueness and adversarial ma-
nipulation.

Third, it is worth noting the delicate balance between the extent
of editing applied to the original image and the consequent level of
privacy protection achieved. Our results indicate that while more
pronounced edits can indeed enhance privacy, they might deviate
significantly from the original image, potentially compromising
its authenticity or the user’s intent. Recognizing this challenge,
our approach with the residual attack strategy is particularly note-
worthy. By leveraging residual information, we manage to strike
a balance, ensuring minimal deviations from the original image
while still bolstering its resistance to FRS:s. This nuanced approach
not only preserves the integrity of the image but also respects the
user’s intent, offering a tailored solution that does not force users
to choose between authenticity and privacy.

Finally, the interplay between imitation and obfuscation, as evi-
denced from our results, underscores the complexities involved in
adversarial image editing. As we continue to refine our techniques,
a deeper exploration of this duality will be valuable in shaping more
effective and user-centric privacy solutions.

D ADVERSARIAL EDITING: AUTOMATED
FRS:S VS. MANUAL EXAMINATION

When designing a privacy filter, it is crucial to strike a balance be-
tween adversarial perturbation and image fidelity. While StyleAdv
successfully produces high-quality images that can bypass unautho-
rized automated FRS:s, it is worth noting that these edited images
may still allow manual recognition in some cases. This tradeoff
stems from our focus on countering automated FRS:s, which are
more prevalent and scalable than manual reviews in today’s digital
landscape. With algorithms conducting the majority of facial scans
at a pace far beyond manual inspection, privacy filters that target
automated FRS:s become increasingly important.

However, we also acknowledge that some users may desire even
greater protection and/or require a different threat model. Future
iterations of StyleAdv may therefore explore different thresholds
to provide a range of options. This will allow users to choose the
level of privacy protection and image authenticity that best suits
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their specific needs and threat scenarios. While the current version
of StyleAdv may not deter a determined attacker from conducting
manual checks, it offers robust defense against the more common
threat of large-scale, automated facial recognition scans.

E DISCUSSION REGARDING DATA
POISONING VS. FACIAL RECOGNITION

In the ever-evolving landscape of privacy and facial recognition
technology, several critical considerations come to light. First, it
should be noted that data poisoning, where users modify online
images to fool future facial recognition models, has limitations.
For example, as argued in [40], data poisoning provides a false
sense of privacy security as this strategy overlooks a key imbalance:
once a user uploads a modified image that is then scraped, the
perturbation becomes permanent. Later, model trainers, aware of
these perturbation methods, can then adapt their facial recognition
models, nullifying the perturbations’ effectiveness. Two systems
for poisoning attacks, Fawkes and LowKey, were evaluated in [40],
with findings suggesting that “oblivious" model trainers can bypass
these poisoning protections by merely waiting for advancements
in computer vision. In addition, it was shown that adversaries with
black-box access can both resist perturbed image effects and detect
altered images online. A crucial point is that once a picture is altered
and scraped, the changes are irreversible, making it vulnerable to
any new recognition technology developed later. Recent evidence
shows that some state-of-the-art poisoning strategies are already
compromised by newer training models, suggesting that poisoning
techniques may not provide a sustainable “arms race" between
attack and defense methods.

However, in the context of today’s fast-paced technological ad-
vancements, it is also crucial to recognize the ever-evolving nature
of adversarial techniques such as those developed and employed in
StyleAdv. While the discussed challenges point towards an inherent
disadvantage for users, the technological landscape is constantly
shifting, bringing forth advancements that can effectively combat
these challenges. Just as facial recognition technologies advance,
so do the countermeasures, as exemplified by the diverse attack
methods of StyleAdv. The mere existence of diverse approaches
highlights the potential to discover strategies that are more robust
in the future, ensuring that we do not remain stagnant in the face of
surveillance concerns. Furthermore, adversaries aiming to counter
such advanced adversarial methods will invariably face increasing
model training costs. Continual adaptation and retraining of models
to neutralize adversarial attacks not only require significant com-
putational resources but also time and expertise. This escalation in
costs serves as a deterrent, making it less economical for entities to
persistently undermine user-driven privacy measures. Thus, while
challenges persist, tools like StyleAdv exemplify the potential of
ongoing technological innovation to safeguard individual privacy
in an era of ubiquitous surveillance.

We also note that the arguments presented in [40] might elicit
a form of categorical rejection of adversarial attacks as viable de-
fenses. Such a rejection, based solely on the limitations of a few
methods, could be premature and overly deterministic. Instead of
viewing adversarial techniques in isolation, it is beneficial to con-
sider them as components of a broader, multi-pronged strategy. A

Table 7: Top-k accuracy for five FRS:s under attack.
FRS Top-1 Acc. Top-5 Acc. Top-50 Acc. Top-100 Acc.
ArcFace (irse50) 0% 0.5% 3.5% 7.0%
ArcFace (ir152) 0% 0.6% 3.6% 7.1%
FaceNet 0% 0.4% 3.2% 6.8%
CurricularFace 0% 0.6% 3.7% 7.2%
MobileFaceNet 0% 0.5% 3.5% 7.0%

layered defense, for instance, merges the capabilities of adversar-
ial attacks like StyleAdv with other privacy-enhancing measures,
offering a more robust barrier against invasive recognition tools.
When multiple protective layers are combined, each covering the
potential shortcomings of the others, the defense’s resilience is
naturally heightened.

Widespread deployment of techniques such as StyleAdv would
also instigate a paradigm shift in data collection practices. As the
reliability of scraped data becomes questionable due to prevalent
adversarial interventions, companies might rethink the feasibility
of indiscriminate data harvesting. There is potential for a tran-
sition towards more consensual and transparent data-gathering
practices, driven by the reduced reliability of unconsented data
sources tainted by adversarial modifications. In essence, tools such
as StyleAdv can catalyze shifts in broader industry practices, em-
phasizing the necessity of ethical and effective data collection in a
world increasingly wary of privacy infringements.

In conclusion, the limitations of data poisoning highlight the
need for dynamic and evolving strategies to safeguard individual
privacy in the face of advancing surveillance tools. Adversarial
techniques, such as those developed and employed in StyleAdv,
represent one promising strategy. However, we also note that the
complexities of the current privacy-safeguarding methods and their
interplay with surveillance tools emphasize the need for continual
innovation and a shift towards a more holistic, layered defense
approach. When combined with other protective measures, the
efficacy of these defenses can be significantly amplified, helping
drive a transformation in data collection standards and pushing for
more ethical, transparent, and consensual practices.

F ADDITIONAL FRS RESILIENCE ANALYSIS
ON THE LFW DATASET

To provide some further insights into the high success rates reported
for the residual attack when evaluated on the LFW dataset (Section
4.4), this appendix presents some additional analysis for this attack
and dataset.

F.1 Face Identification: Top-k Accuracy
Analysis

We built a face identification system based on the 1,674 individuals
in the LFW dataset that have two or more images. Focusing on this
subset of the dataset allows for both intra-personal (same person,
different images) and inter-personal (different people) comparisons.
Originally, the LFW dataset contains 1,680 individuals with 2 or
more images, summing up to 7,701 images. However, six individuals
were removed due to error matching in the dataset.

Table 7 shows the top-k accuracy for the five FRS:s under ad-
versarial attacks. Despite all systems experiencing a significant
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Table 8: Confusion matrices for face verification experiments on LFW dataset
(a) ArcFace(irse50)

Pred + Pred -
Act + 14 2986
Act - 0 3000

(b) ArcFace(ir152)
Pred + Pred -

Act + 22 2978
Act - 0 3000

(c) FaceNet
Pred + Pred -

Act + 282 2718
Act - 0 3000

(d) CurricularFace
Pred + Pred -

Act + 0 3000
Act - 0 3000

(e) MobileFaceNet
Pred + Pred -

Act + 0 3000
Act - 0 3000

(f) Notions
Pred + Pred -

Act + TP FN
Act - FP TN

drop in their top-1 accuracy to 0%, their resilience improve if al-
lowing higher ranks. ArcFace(irse50) has a top-5 accuracy of 0.5%
and improves to 7.0% for top-100. Its counterpart, ArcFace(ir152)
slightly outperforms it with a top-5 accuracy of 0.6% and 7.1% for
top-100. FaceNet, with an average rank of 1,461, has the lowest
top-5 accuracy at 0.4%, and its top-100 accuracy stands at 6.8%.
CurricularFace demonstrates a robust performance with a top-5
accuracy of 0.6%, increasing to 7.2% for top-100. Finally, Mobile-
FaceNet’s performance closely mirrors that of ArcFace(irse50), with
a top-5 accuracy of 0.5% and a top-100 accuracy of 7.0%.

F.2 Face Verification: Confusion Matrices
The Labeled Faces in the Wild (LFW) verification benchmark serves
as a standard evaluation protocol for assessing the performance
of facial verification algorithms. The benchmark comprises a total
of 6,000 pairings, evenly divided into 10 distinct “folds" or subsets.
Each of these subsets contains 600 image pairs, half of which (300
pairs) are of the same individual (matched), while the other half
represent two different individuals (non-matched). To ensure com-
prehensive assessment, evaluations iterate for all ten folds. The
resulting performance metrics, derived from these ten-fold cross-
validations, offer insights into an algorithm’s true positive rate,
false positive rate, and overall accuracy in distinguishing between
matched and non-matched face pairs.

Table 8 shows the confusion matrices for five distinct facial
recognition models under adversarial attack conditions. Each ta-
ble represents the outcomes from testing on the LFW benchmark.
The matrices provide a detailed breakdown of the True Positives
(TP), False Negatives (FN), False Positives (FP), and True Negatives
(TN) for each system (Table 8f). Notably, ArcFace(irse50) and Arc-
Face(ir152) displayed some recognition capability for matched pairs,
albeit limited. In contrast, both CurricularFace and MobileFaceNet
failed to correctly identify any matched pairs. Despite these dis-
crepancies in matched pair recognition, all models consistently
identified non-matched pairs with perfect accuracy, as indicated
by the TN values. These results underscore the resilience of the
tested models to false positives under the given attack but reveal
vulnerabilities in their true positive recognition rates.

The adversarial attack’s primary effect on the facial recognition
systems was a significant inhibition in their ability to accurately
detect matched pairs. This is most evident from the elevated False
Negative (FN) counts across the models, indicating the systems’ fail-
ures to recognize legitimate matches. Conversely, the True Negative
(TN) values remained consistently high for all systems, showing

that the attack did not impair their ability to correctly identify non-
matched pairs. This skewed impact of the attack, predominantly af-
fecting the True Positives (TP) while leaving the False Positives (FP)
largely unchanged, suggests a targeted vulnerability in these mod-
els’ match-recognition mechanisms. Such a specific degradation in
performance, while other aspects remain unaffected, underscores
the need for refined defenses against adversarial perturbations tar-
geting the match-detection capability of facial recognition systems.
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