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Motivation and problem

* Cloud services and other shared infrastructures increasingly common
* Typically third-party operated
* Allow service providers to easily scale services based on current
resource demands
* Content delivery context: Many content providers are already using
third-party operated Content Distribution Networks (CDNs) and
cloud-based content delivery platforms

* This trend towards using third-party providers on an on-demand basis
is expected to increase as new content providers enter the market



Motivation and problem

* Cloud services and other shared infrastructures increasingly common
* Typically third-party operated
* Allow service providers to easily scale services based on current
resource demands
* Content delivery context: Many content providers are already using
third-party operated Content Distribution Networks (CDNs) and
cloud-based content delivery platforms

* This trend towards using third-party providers on an on-demand basis
is expected to increase as new content providers enter the market

Problem: Individual content provider that wants to minimize its
delivery costs under the assumptions that

* the storage and bandwidth resources it requires are elastic,
* the content provider only pays for the resources that it consumes, and
* costs are proportional to the resource usage.




High-level picture

* Analyze the optimized delivery costs of different cache on M request cache
insertion policies when using a Time-to-Live (TTL) based eviction policy

* File object remains in the cache until a time T has elapsed

* Assuming elastic resources, cache eviction is not needed to make space for a
new insertion

* Rather to reduce cost by removing objects that are not expected to be
requested again soon

A TTL-based eviction policy is a good heuristic for such purposes
* Bonus: TTL provides approximation for fixed-size LRU caching

* Cloud service providers already provide elastic provisioning at varying
granularities for computation and storage

* Support for fine-grained elasticity likely to increase in the future



Contributions

Within this context, we

* derive worst-case bounds for the optimal cost and competitive cost
ratios of different classes of cache on M request cache insertion
policies,

* derive explicit average cost expressions and bounds under arbitrary
inter-request distributions,

» derive explicit average cost expressions and bounds for short-tailed
(deterministic, Erlang, and exponential) and heavy-tailed (Pareto) inter-
request distributions, and

* present numeric and trace-based evaluations that reveal insights into
the relative cost performance of the policies.



Contributions

Within this context, we

* derive worst-case bounds for the optimal cost and competitive cost
ratios of different classes of cache on M request cache insertion
policies,

* derive explicit average cost expressions and bounds under arbitrary
inter-request distributions,

» derive explicit average cost expressions and bounds for short-tailed
(deterministic, Erlang, and exponential) and heavy-tailed (Pareto) inter-
request distributions, and

* present numeric and trace-based evaluations that reveal insights into
the relative cost performance of the policies.

Our results show that a window-based cache on 2" request policy (using a single
threshold parameter optimized to minimize the best worst-case costs) provides
good average performance across the different distributions and the full
parameter ranges of each considered distribution




System model



System model

A/ :. 1
R v —> .

LT pu—
AL 72 . Backhaul bandwidth
(remote bandwidth cost R)

Storage close to end-user
(normalized storage cost 1 per time unit)

* Assumptions:
» storage and bandwidth resources it requires are elastic
* content provider only pays for the resources that it consumes
* costs are proportional to the resource usage



System model and problem

A/ :. 1
R v —> .

LT pu—
AL 72 . Backhaul bandwidth
(remote bandwidth cost R)

Storage close to end-user
(normalized storage cost 1 per time unit)

* Assumptions:
» storage and bandwidth resources it requires are elastic

* content provider only pays for the resources that it consumes
* costs are proportional to the resource usage

* Policy decision: At the time a request is made for a file object not currently
in the cache, the system must, in an online fashion, decide whether the
object should be cached or not
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Offline-optimal lower bound
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“Oracle” policy: Keep in cache until (at least) the next inter-request
arrival i whenever a; < R; otherwise, do not cache.



Offline-optimal lower bound

R ‘ R (‘ " R

“Oracle” policy: Keep in cache until (at least) the next inter-request
arrival i whenever a; < R; otherwise, do not cache.

LEMMA 4.1. Given an arbitrary request sequence A, the minimum
total delivery cost of the optimal offline policy is:

N
co/fline _p Z min[a;,R]. (1)

opt
i=2




Example: Always on 15t

R R v ¥ R
A A e
E N
aAlways
Chmid* =R+T+ ) xu. 2)
—
( T+R ifa;>T
Xi = { aj. otherwise. (3)




Worst-case ratio: Always on 15t

THEOREM 4.2. The best (optimal) competitive ratio using always
on 1°! is achieved with T = R and is equal to 2. More specifically,

always always
Cﬁ'f:]._,T:R < Cﬁ'f:],T (4}
m:%}{ Cofffine - II];[X Cofffine
opt opt

always

forall T, and % < 2 for all possible sequences A = {a;}.

opit




Worst-case ratio: Always on 15t
A A A S X A I

Cﬂfways . .
mM=1T _ ?? Given arbitrary worst- calvays _ o, i o
- - M=1,T ~ i
coffhine case request sequence '
_{ T?rR, lftfli>T o)




Worst-case ratio: Always on 15t
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Case: T=<R
§ = {ila; < T},
§" = {ilT < a; <R},
5 = [ilR < a;).
Cﬂffl—;ays i
C:}};}ie = 77 C;II:??ZRJ“T*IZ:;% (2)
o _{ T+R ifa;>T o)
. th,




Worst-case ratio: Always on 15t
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Case: T<R
§ = {ila; < T},
§" = {ilT < a; <R},
" = {ilR < a.
Cafways R | , ., §
M=1T R+ }esai+(|SI+|S”I(T+R)+T dlwags
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Worst-case ratio: Always on 15t
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Worst-case ratio: Always on 15t
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Case: T<R
§ = {ila; < T},
§' = {ilT < a;j < R},
§"” = {ilR < a;}.
Cafways
M=1T R+ Ycsai+ (IS|+I|S”"I(T+R)+T
Cﬂf{““ R+ )jesai + 2ies ai +|S”|R
op

... [some steps] ...

R+T
= )
T

T R

Bound monotonically decreasing in
range 0 < T<R.

Bound tight when T — R (and equal
to 2); achieved with T+& spacing

Similar approach for case when R< T
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Worst-case bounds

Always 15
Always Mth T T=R M+1
Single-window Mt T T=R M+1
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Worst-case bounds

Always 15

Always Mth T T=R M+1
Single-window Mt T T=R M+1
Dual-window 2nd w, T W=T=R 3

e Although M+1 worst-case bounds may seem discouraging, we
will see that window-based policies are good on average (across

different distributions and distribution parameters)
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Steady-state analysis



Offline-optimal lower bound

R ‘ R Y‘ " R

“Oracle” policy: Keep in cache until (at least) the next inter-request
arrival i whenever a; < R; otherwise, do not cache.

of fline 1
Copt = Ela;]

R N 0O
J rf(r)dt+R[ f{r)dt]
0

JR




Offline-optimal lower bound

R R v v R
1 I 1™ 1

“Oracle” policy: Keep in cache until (at least) the next inter-request
arrival i whenever a; < R; otherwise, do not cache.

. ~R 00
' 1
Coffhne _ J PV dE+ R [ N dt
Rate of new Cost g CostR

requests (per request) (per request)



Offline-optimal lower bound

R ‘ R (‘ " R

“Oracle” policy: Keep in cache until (at least) the next inter-request
arrival i whenever a; < R; otherwise, do not cache.

w00

. - ‘R
cgj{f{“”f: : U rf(r)dHR[
0

E[a;] JR f(r)dt]

... [some steps] ...

1 R
- Eai [R— fﬂ F(r)dt], (12)




Example distribution results

Table 1: Summary of costs for different distributiuns and insertion policies. To make room, for Erlang, we simplified expres-

sions using F(f) = 1- XK71 Le= (1) and @(T) = zm (ymt P
Palicy Exponential Erlang Deterministic Pareto
1 tm @1 . -
Offne 1-e 4R - a(R) min K1) e I")T )" dtm<R
=fm ifR < tm
Exponential Erlang Deterministic Pareto
\ J\

Y Y

Short-tailed Heavy-tailed
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Example distribution results

Table 1: Summary of costs for different distributmns and insertion policies. To make room, for Erlang, we simplified expres-
sions using F(t) = 1~ 2K Lo M (1) and o(T) = £— 0k _ ymt GT1

n=0 n!
Palicy Fxponential Erlang Deterministic Pareto
_1(tm a1 i <
Offline 1- e"]‘R 1- %:I:[R} minl%, 1 lR{aa—ll'}l—R_ } . ftmsR
ity ifR <ty
Baseline min[AR, 1] min] 4 R, 1 min X, 1] min| £ 71, 1)
Exponential Erlang Deterministic Pareto
l J\
| |
Short-tailed Heavy-tailed

“Static baseline” policy: Either “always remote” or “always local’.
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Example distribution results

Table 1: Summary of costs for different distributmns and insertion policies. To make room, for Erlang, we simplified expres-

sions using F(t) = 1~ 2K Lo M (1) and o(T) = £— 0k _ ymt GT1
Palicy Fxponential Erlang Deterministic
Offine 1-eAR 1- 4R min( 2. 1)
Baseline min[AR, 1] min| f R.1] min| %. 1]
Exponential Erlang Deterministic
| J
I
Short-tailed

“Static baseline” policy: Either “always remote” or “always local’.
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Example distribution results

Table 1: Summary of costs for different distributmns and insertion policies. To make room, for Erlang, we simplified expres-
sions using F(t) = 1- 1571 Le= (1) and &(T) = an o 1 (D"

n=0 n! °

Palicy Fxponential Erlang Deterministic

Offine 1-eAR 1- 4R min( 2. 1)

Baseline min[AR, 1] min| % R.1] min| %. 1]
Exponential Erlang Deterministic
\ )

I
Short-tailed

“Static baseline” policy: Either “always remote” or “always local’.

THEOREM 6.1. Static baseline achieves the minimum cost of any

online policy when the inter-request distribution has an increasing
or constant hazard rate.
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Example distribution results

Table 1: Summary of costs for different distributmns and insertion policies. To make room, for Erlang, we simplified expres-
sions using F(t) = 1- Zﬁ_ Le (M) and &(T) = Zm om 1 (AT)"

n=0 n! °

Palicy Fxponential Erlang Deterministic

Offine 1-eAR 1- 4R min( 2. 1)

Baseline min[AR, 1] min| % R.1] min| %. 1]
Exponential Erlang Deterministic
\ )

I
Short-tailed

“Static baseline” policy: Either “always remote” or “always local’.

THEOREM 6.1. Static baseline achieves the minimum cost of any

online policy when the inter-request distribution has an increasing
or constant hazard rate.

. Is online optimal for these cases!!
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Gap between online and offline optimal

THEOREM 6.3. Under Poisson requests we have

online static
Co_ﬂf B Copr < 1 (31)
. - . ] T 22 L T R LA B IR B B B B R

CDO};{fme Cs_];j:fme 1-1/e Always 1st —
2 2 Always 2nd --- |
¢ 18 Window 2nd - i
2 Window 4th
S 16| Static e —
;- S EEPREEE
N 14 i
(1]
E 12+ 1
(=]
=

1

Normalized offline bound = 1
0-8 1 I| 1 11 | 1 11 | 1 11 I 1 1 I| 1 1 II 1 1 I| 1 1 1

104 10°% 102 10' 10° 10' 102 10° 10%
Normalized request rate

THEOREM 6.1. Static baseline achieves the minimum cost of any
online policy when the inter-request distribution has an increasing
or constant hazard rate.
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Gap between online and offline optimal

THEOREM 6.3. Under Poisson requests we have

online static
Co_pt B Copt < 1 (31)
Cofffine B Coffh'ne T 1-1/e
opt opt
THEOREM 6.4. Under Erlang inter-request times, we have
online static
Copr B Copt < 1 (32)
Coffline N Coff!ine - 1 ke kk
opt opt —€ T
THEOREM 6.5. Under deterministic inter-request times, we have
online static
Copr B Copr B (36)
Coff!ine - Caff!in.e -
opt opt

THEOREM 6.1. Static baseline achieves the minimum cost of any
online policy when the inter-request distribution has an increasing
or constant hazard rate.
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However, not true for heavy-tailed ...

... In fact, for Pareto the optimal static baseline can be far from optimal

THEOREM 6.6. With Pareto inter-request times, the worst-case cost
ratio for the optimal static baseline is unbounded. In particular,
static
Copt
of fline
Copt

— oo (37)

when o = —— and % — 0+.

R
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Policy analysis: Always on 1%
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Policy analysis: Always on 1%

R R v ¥ R
IR

|_'_l |_'_'
always R+ E[O] (42)

M=LT — E[A] + E[O]

1 T
E[ﬂ.]] = E[ﬂi|ﬂj -~ T] -T= 1 F(T} (E[ﬂ,] +£ F{f)df— T) -

(43)



Policy analysis: Always on 1%

R R v y‘ R
i T ] a3i a4 T : $
always R+ E[O] (42)

M=LT — E[A] + E[O]

T
E[rﬁ.]] = E[ﬂﬂﬂj = T] -T= 1 ;{T} (E[ﬂ;] + \]; F{f)df - T) )
(43)

E[®] =(1-F(T))T + F(T)(E[ajla; < T] + E[®]),  (44)



Policy analysis: Always on 1%

3 R v ¢ R
A T
always R+ E[O] (42)

M=LT — E[A] + E[O]

T
E[rﬁ]] = E[ﬂﬂﬂj = T] -T= 1 ;(T} (E[ﬂ;] + \f; F{f)df— T) )
(43)

E[®] =(1-F(T))T + F(T)(E[ajla; < T] + E[®]),  (44)

No extension Extension case



Results for example distributions



Example distributions: Summary of costs

Table 1: Summary of costs for different distributions and insertion policies. To make room, for Erlang, we simplified expres-

. . _ _ -AT )lT
sions using F(t) = 1- Zﬁ_é %e A1) and B(T) = PT Z 2 1 )
Policy Exponential Erlang Deterministic Pareto
L (tm & -
-= ftm=R
Offine 1-e AR - da(R) min &, 1) 0 aﬂ_ll)—R_l tim =
W ifR < tm
Baseline min[AR, 1] min| % R.1] min| %, 1] mln[ ale fi |
a: 1 !‘m I m -1 .
st AT T 1 Ao 1, ifas<T [+ [1 l T ]; iftm=T
Always 1 1-e +ARe H—F(T}I}I-ERHI— -EtIl{TJJ M T <a iR+T][a 1} e
—ﬂ'rm 3 1 - Im
a- l(fm |“ ZR ll fm) ]
-AT -AT (1-F(T)) & 2R+[1-—‘[’[T” 1, ifasT i :
Ah\'ajr'sznd -¢ " +21Re k 2R+TI ‘? ol i‘m | iftmsT
e 2T T T <a )
%aﬂ%, T < try
Lo . aT—I |'E§_‘n_'|“\MaI (fm ) II R
o M| -4 s MRk L fa<T ey IV
single MR | 2e=AT ML e AT)iR (1 e~AT k== R sli- L (I - ()M gy e
‘ “ist { ) +(I—%{—<[>[T]JF[T}M‘1 R #T<a Rl -a () )= m
' W ifT < tm
(Im "
/ o . - \ 1 2-( R+(1- tma-T
y ReAT (a6 MW |o{1-e7AT ) 1AW | (-FT) (22 5 FiW ]R+l on) | 1 pacwer| = () () }+ () l[ ma- (T) i< W
\ \ - ) ) : = _ _Er‘.i.
Dual 2 AW AT £, EF0 F[T)) R iw<a Rl atm(1-( )"+ )
IV T‘;m— W <ty

72




Example distribution: Exponential

Palicy Exponential
Offline I—e_’]‘R
Baseline min[AR, 1]
Always15¢ 1-e AT 4 ARe AT
Always 214 1—e AT 12)Re AT
' 1+e~

th | 3 -AT M-1,,_ -ATji ar\M

Single M Aty i€ 1R+{1 e ]
AT (o =AW\ [, -AT\(,_ AW

pual 27 e e N [

AW AT

e Results with W=T=R
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Example distribution: Exponential

e Results with W=T=R
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Example distribution: Exponential

Always on Mt
asymptotes at M/(M+1) |

e Results with W=T=R
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Example distribution: Exponential
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Example distribution:

Always on Mt
asymptotes at M/(M+1) |

Window on 2"
peaks at (1.052,1.588)
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Example distribution

Always on Mt
asymptotes at M/(M+1) |

Window on 2"
peaks at (1.052,1.588)

Maormalized cost ratio
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e Results with W=T=R
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* Window on 2" performs good throughout

* Window on 4% performs somewhat better for lower request
rates, but at an increased peak cost (at somewhat higher rates)
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Example distribution: Exponential
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peaks at (1,1.582)

e Results with W=T=R

* Window on 2" performs good throughout

* Window on 4% performs somewhat better for lower request
rates, but at an increased peak cost (at somewhat higher rates)



Example distribution: Exponential

E_E T III T III T III T III T III

1 III 1 II| 1 LI
Always 15t —

[ o 2 Atways 2nd --- ]
Always on M E 48} \ Window 2nd -~ |
1 & Window 4th

asymptotes at M/(M+1) ‘E 16 L X Stafic ——

- % 1.4 - _..'"-ll I.-Elr Iil._ -1".! ]

Window on 2 E 12| R N
o s _._._-" ERLE

peaks at (1.052,1.588) Z | | N _
Mormalized offline bound = 1

G_H 1 Ll Pl o Ll il o Ll Ll o Pl o 11

Static 104 10°% 102 107 10° 10" 10° 10° 10¢

MNomalized request rate
peaks at (1,1.582)

* Results with W=T=R
* Window on 2" performs good throughout

* Window on 4% performs somewhat better for lower request
rates, but at an increased peak cost (at somewhat higher rates)



MNormalized cost ratio

Example distributions: Low variability distributions

22 T 22 ——rr—T—T T ———— 22 —1r— T r—
Always 1st — Always 15t — Always 15t —
2 Always 2nd --- 7] o 2 Always 2nd -~ ] o 2 Always 2nd - ]
18k Window 2nd -~ 4 T 48l Window 2nd -~~~ 4 [ Window 2nd ---- i
Window 4th j: Window 4th B Window 4th
L Static —— 7 s 16 - Static —— s 1.6 Static —— -
14 1 . 214t p - 514 .
o i o
12 . E 12t P . E 12 -
e b 1
! Nonnallzed oﬂllne bound 1 1 Nonnallzed CI-f'ﬂII"IE bound 1 Nom'lallzed ofﬂlne bﬂ-und 1
08 1l T 08 1l Pl BT I ug 1l T R
104 103 1043 10' 19” 10‘ 192 109 10* 104 108 mﬂ? 101 1uﬂ 101 102 mﬂ 10* 10“ 103 10“2 10‘ 10” 10‘ 102 103 10*
Normalized request rate Normalized request rate Normalized request rate
Erlang k=2 Erlang k=4 Deterministic

>
Increasingly deterministic inter-request times

* Peak cost ratio for single-window on 2"? reduces as k increases
and inter-request times become increasingly deterministic
(rightmost fig)
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MNormalized cost ratio

ﬁlways 1st —

Example distribution: Pareto

| T T T T
2 -il i Always 1st — 0 Always 1st — i
i s 2nd o 2 i Always 2nd 2
18 I ond - g .g % Window 2nd 8 48
i Window4th B i % Window 4ih B
e Statie-o— 7] o 16 i Static —— 5 18
14 F e 814l ERY
[ [ it
1.2 + - E 1.2 E 1.2 _::l!' '-_\
1 i T e E ; i E ; ; _f R
Nom‘lallzed ofﬂlne Dound 1 NDITI"IEIlIZEd oﬂllne bound 1 NDnﬂaIlzed oﬂllne bound 1
0.8 = 0.8 = 0.8 =

104 103 10? 10‘ 1(}” 1(}1 1:}2 1:}9 104
Normalized request rate

10-4 110*3 102 10' mﬂ m‘ 102 133 104
Normalized request rate

104 103 10? 10' m” m‘ 102 1:}5 104
Normalized request rate

a=1.1 a=1.25 a=2

* As per Theorem 6.6, static baseline performs very poorly when
a—>1(andt, is smaII) E.g., large peak cost ratio in left-most fig

* For Iarger a (e.g., a = 2), this peak reduces substantially.

e Otherwise, the results are similar as for the other mter request
dlstrlbutlons suggesting that single-window on 2" with T= R is
a good choice
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Mormalized cost ratio

Example distributions

22 T T T T T T 22 T T T T T T 22 T T T T T T
2 T g 2 T g 2 T
18 Always 1st — A g 1.8 Always 1st — T i 1.8 Always 1st — T
16  Ahways 2nd S %1 5 1e[ Awaysand 8 16 Amways2nd .
14l Window 2nd ~= Koow] B 4| Window 2nd - 8 4| Window2nd - i
| Window 4th /;& ® | Window 4 ® | Window 4 Lt
12 Static =~ e mE 1 3 12 Statie -~ ez 3 12 Static = e
0; h-,urmqll'zed Ioﬁlin? upd: ] | | | 0; h-,urmqll'zed Ioﬁlin? boupd: ] | | | 0; h-,urmqll'zed Ioﬁlin? boupd: ] | | |
10% 107 10 105 10% 102 102 10 10° 10" 102 10% 107 10 105 10% 102 102 10 10° 10" 102 10% 107 10 105 10% 102 102 10 10° 10" 102
Normalized average request rate Normalized average request rate Normalized average request rate
Pareto, a =1.25 Exponential Erlang, k=4
e Setup: 1,000,000 objects with Zipf popularity
* Here, y=1 (but results with y=0.75 and y=1.25 similar)
« W=T=R
* Significant benefits to being selective
* Window on 2" significantly outperforms always on Mt
* Window on 2" good throughout

* Close to static optimal when Exponential and Erlang
e Qutperform static when Pareto

» * Has a peak cost-ratio of 1.4



Trace-based simulations

2.2 | I | | |
o 2 -
H .-
= 18  Aways 1st — Window 4th T -
8 415l Aways2Znd Stafic --- . 1
B Window 2nd -----
N o4 4
= , - -
E 1.2 *d_ ’ —
= s T memar
= T et -

Nurmahzed offline b{:und =1
0.8 I I I
1 sec 1m|n 1huur 1 day 1 mth 1 year

Time in cache to accumulate a storage cost
equal to the remote delivery cost R

e Setup: 20-month long university trace with YouTube viewings
* 5.5 Mvideo request to 2.4 M unique videos
* Long tail of less popular videos

e W=T=R

» “Static” (highly optimistically) assumes “oracle” knowledge of which choice is
better (always local or always remote) for each individual video ..

* Yet, window on 2" outperform static
* Highlights value of policy when request rates are unknown and variable
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Break-down of cost contributions
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e Tail contribute to most of the costs ...
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Tail (1-3 views)

... highlighting importance of selective insertions.
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Conclusions

Worst-case bounds for the optimal cost and competitive cost ratios
* E.g., Best worst-case bounds of M+1 are achieved by selecting W=T=R

Average cost expressions and bounds
* Arbitrary inter-request distributions
* Example inter-request distributions (both short-tailed and heavy-tailed)

» Static is online optimal for constant and decreasing hazard rates, but can be arbitrarily
bad when heavy tailed or request rates are not known

Numeric and trace-based evaluations reveal insights into the relative cost
performance of the policies

» Substantial cost benefits of using window-based with intermediate M (e.g., 2-4) and the
optimal worst-case parameter setting (i.e., W=T=R)

Window-based cache on 2nd request policy using a single threshold optimized to
minimize worst-case costs provides good average performance

» Attractive choice for a wide range of practical conditions where request rates of
individual file objects typically are not known and can change quickly ...
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