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Motivation and problem
• Cloud services and other shared infrastructures increasingly common 

• Typically third-party operated 

• Allow service providers to easily scale services based on current 
resource demands 

• Content delivery context: Many content providers are already using 
third-party operated Content Distribution Networks (CDNs) and 
cloud-based content delivery platforms

• This trend towards using third-party providers on an on-demand basis 
is expected to increase as new content providers enter the market

Problem:  Individual content provider that wants to minimize its 
delivery costs under the assumptions that 

• the storage and bandwidth resources it requires are elastic, 

• the content provider only pays for the resources that it consumes, and 

• costs are proportional to the resource usage.
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High-level picture
• Analyze the optimized delivery costs of different cache on Mth request cache 

insertion policies when using a Time-to-Live (TTL) based eviction policy 

• File object remains in the cache until a time T has elapsed

• Assuming elastic resources, cache eviction is not needed to make space for a 
new insertion

• Rather to reduce cost by removing objects that are not expected to be 
requested again soon

• A TTL-based eviction policy is a good heuristic for such purposes

• Bonus: TTL provides approximation for fixed-size LRU caching

• Cloud service providers already provide elastic provisioning at varying 
granularities for computation and storage

• Support for fine-grained elasticity likely to increase in the future
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Contributions
Within this context, we 
• derive worst-case bounds for the optimal cost and competitive cost 

ratios of different classes of cache on Mth request cache insertion 
policies,

• derive explicit average cost expressions and bounds under arbitrary 
inter-request distributions,

• derive explicit average cost expressions and bounds for short-tailed 
(deterministic, Erlang, and exponential) and heavy-tailed (Pareto) inter-
request distributions, and

• present numeric and trace-based evaluations that reveal insights into 
the relative cost performance of the policies.

Our results show that a window-based cache on 2nd request policy (with 
parameter selected based on the best worst-case bounds) provides good average 
performance across the different distributions and the full parameter ranges of 
each considered distribution
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good average performance across the different distributions and the full 
parameter ranges of each considered distribution
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System model
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System model

• Assumptions:
• storage and bandwidth resources it requires are elastic
• content provider only pays for the resources that it consumes
• costs are proportional to the resource usage

• Analyze the optimized delivery costs of different cache on Mth request cache 
insertion policies when using a Time-to-Live (TTL) based eviction policy 

• Policy decision: At the time a request is made for a file object not currently 
in the cache, the system must, in an online fashion, decide whether the 
object should be cached or not

Storage close to end-user

(normalized storage cost 1 per time unit)

Backhaul bandwidth

(remote bandwidth cost R)
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System model and problem

• Assumptions:
• storage and bandwidth resources it requires are elastic
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• costs are proportional to the resource usage
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Insertion policies
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Worst-case bounds
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Worst-case ratio: Always on 1st

Case: T ≤ R

R R R RTTT

… [some steps] …

Bound monotonically decreasing in 

range 0 ≤ T ≤ R.

Bound tight when T  R (and equal 

to 2); achieved with T+ spacing

Similar approach for case when R ≤ T
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Worst-case bounds

Policy Parameters Optimal choice Tight bound

Always 1st T T = R 2

Always Mth

Single-window Mth

Dual-window 2nd
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Worst-case bounds
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Worst-case bounds

Policy Parameters Optimal choice Tight bound

Always 1st T T = R 2

Always Mth T T = R M+1

Single-window Mth T T = R M+1

Dual-window 2nd W, T W = T = R 3

• Although M+1 worst-case bounds may seem discouraging, we 
will see that window-based policies are good on average (across 
different distributions and distribution parameters) 
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Steady-state analysis
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Cost ai
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Example distribution results

Exponential           Erlang Deterministic                Pareto

Short-tailed Heavy-tailed
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Example distribution results

Exponential           Erlang Deterministic                Pareto

Short-tailed Heavy-tailed

“Static baseline” policy: Either “always remote” or “always local”.
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Example distribution results

Exponential           Erlang Deterministic                

Short-tailed

“Static baseline” policy: Either “always remote” or “always local”.

… is online optimal for these cases!!
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Gap between online and offline optimal
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Gap between online and offline optimal
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However, not true for heavy-tailed …

… in fact, for Pareto the optimal static baseline can be far from optimal
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Policy analysis: Always on 1st

T

R R

Ta3 a4 T

R

No extension Extension case
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Results for example distributions
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Example distributions: Summary of costs
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Example distribution: Exponential

• Results with W = T = R
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Example distribution: Exponential

• Results with W = T = R
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Example distributions: Low variability distributions

• Peak cost ratio for single-window on 2nd reduces as k increases 
and inter-request times become increasingly deterministic 
(rightmost fig)

Erlang k=2                                 Erlang k=4                                Deterministic                

Increasingly deterministic inter-request times
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Example distribution: Pareto

• As per Theorem 6.6, static baseline performs very poorly when 
α  1 (and tm is small). E.g., large peak cost ratio in left-most fig

• For larger α (e.g., α = 2), this peak reduces substantially. 

• Otherwise, the results are similar as for the other inter-request 
distributions, suggesting that single-window on 2nd with T = R is 
a good choice

α =1.1                                     α =1.25                                      α = 2
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Multi-file evaluation
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Example distributions

• Setup: 1,000,000 objects with Zipf popularity
• Here, =1 (but results with =0.75 and =1.25 similar) 
• W = T = R

• Significant benefits to being selective
• Window on 2nd significantly outperforms always on Mth

• Window on 2nd good throughout
• Close to static optimal when Exponential and Erlang
• Outperform static when Pareto
• Has a peak cost-ratio of 1.4

Pareto, α =1.25 Exponential                                Erlang, k=4                
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Trace-based simulations

• Setup: 20-month long university trace with YouTube viewings
• 5.5 M video request to 2.4 M unique videos
• Long tail of less popular videos
• W = T = R

• “Static” (highly optimistically) assumes “oracle” knowledge of which choice is 
better (always local or always remote) for each individual video ... 

• Yet, window on 2nd outperform static
• Highlights value of policy when request rates are unknown and variable
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Break-down of cost contributions

• Tail contribute to most of the costs ...

… highlighting importance of selective insertions.

Top (more than 20)                      Middle (4-20 views)                         Tail (1-3 views)                
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Conclusions



Conclusions
Worst-case bounds for the optimal cost and competitive cost ratios

• E.g., Best worst-case bounds of M+1 are achieved by selecting W = T = R

Average cost expressions and bounds 

• Arbitrary inter-request distributions

• Example inter-request distributions (both short-tailed and heavy-tailed)

• Static is online optimal for constant and decreasing hazard rates, but can be arbitrarily 
bad when heavy tailed or request rates are not known

Numeric and trace-based evaluations reveal insights into the relative cost 
performance of the policies

• Substantial cost benefits of using window-based  with intermediate M (e.g., 2-4) and the 
optimal worst-case parameter setting (i.e., W = T = R)

Window-based cache on 2nd request policy using a single threshold optimized to 
minimize worst-case costs provides good average performance

• Attractive choice for a wide range of practical conditions where request rates of 
individual file objects typically are not known and can change quickly ...
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