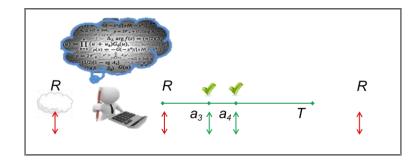
Worst-case Bounds and Optimized Cache on *Mth* Request Cache Insertion Policies under Elastic Conditions

Niklas Carlsson, Linköping University Derek Eager, University of Saskatchewan



Proc. IFIP Performance, Toulouse, France, Dec. 2018.

Motivation and problem

- Cloud services and other shared infrastructures increasingly common
 - Typically third-party operated
 - Allow service providers to easily scale services based on current resource demands
- Content delivery context: Many content providers are already using third-party operated Content Distribution Networks (CDNs) and cloud-based content delivery platforms
- This trend towards using third-party providers on an on-demand basis is expected to increase as new content providers enter the market

Motivation and problem

- Cloud services and other shared infrastructures increasingly common
 - Typically third-party operated
 - Allow service providers to easily scale services based on current resource demands
- Content delivery context: Many content providers are already using third-party operated Content Distribution Networks (CDNs) and cloud-based content delivery platforms
- This trend towards using third-party providers on an on-demand basis is expected to increase as new content providers enter the market

Problem: Individual content provider that wants to minimize its delivery costs under the assumptions that

- the storage and bandwidth resources it requires are *elastic*,
- the content provider only pays for the resources that it consumes, and
- *costs are proportional* to the resource usage.

High-level picture

- Analyze the optimized delivery costs of different *cache on Mth request* cache insertion policies when using a Time-to-Live (TTL) based eviction policy
 - File object remains in the cache until a time *T* has elapsed
- Assuming elastic resources, cache eviction is not needed to make space for a new insertion
 - Rather to reduce cost by removing objects that are not expected to be requested again soon
 - A TTL-based eviction policy is a good heuristic for such purposes
 - Bonus: TTL provides approximation for fixed-size LRU caching
- Cloud service providers already provide elastic provisioning at varying granularities for computation and storage
 - Support for fine-grained elasticity likely to increase in the future

Contributions

Within this context, we

- derive worst-case bounds for the optimal cost and competitive cost ratios of different classes of *cache on Mth request* cache insertion policies,
- derive explicit average cost expressions and bounds under arbitrary inter-request distributions,
- derive explicit average cost expressions and bounds for short-tailed (deterministic, Erlang, and exponential) and heavy-tailed (Pareto) interrequest distributions, and
- present numeric and trace-based evaluations that reveal insights into the relative cost performance of the policies.

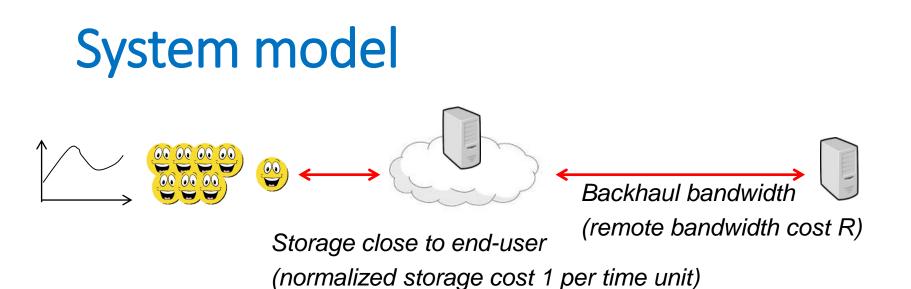
Contributions

Within this context, we

- derive worst-case bounds for the optimal cost and competitive cost ratios of different classes of *cache on Mth request* cache insertion policies,
- derive explicit average cost expressions and bounds under arbitrary inter-request distributions,
- derive explicit average cost expressions and bounds for short-tailed (deterministic, Erlang, and exponential) and heavy-tailed (Pareto) interrequest distributions, and
- present numeric and trace-based evaluations that reveal insights into the relative cost performance of the policies.

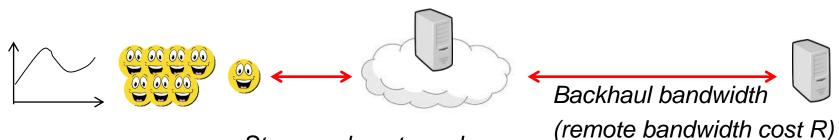
Our results show that a *window-based cache on 2nd request* policy (using a single threshold parameter optimized to minimize the best worst-case costs) provides good average performance across the different distributions and the full parameter ranges of each considered distribution

System model



- Assumptions:
 - storage and bandwidth resources it requires are *elastic*
 - content provider only pays for the resources that it consumes
 - costs are proportional to the resource usage

System model and problem

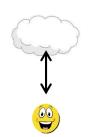


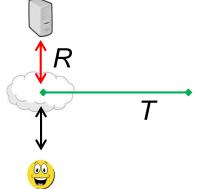
Storage close to end-user

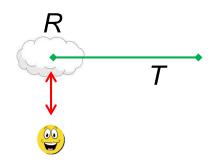
(normalized storage cost 1 per time unit)

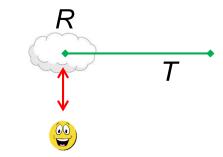
- Assumptions:
 - storage and bandwidth resources it requires are *elastic*
 - content provider *only pays for the resources that it consumes*
 - costs are proportional to the resource usage

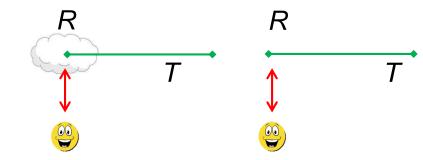
 Policy decision: At the time a request is made for a file object not currently in the cache, the system must, in an online fashion, decide whether the object should be cached or not

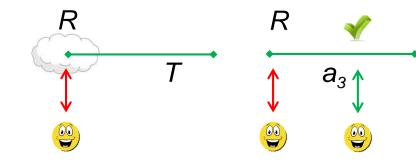


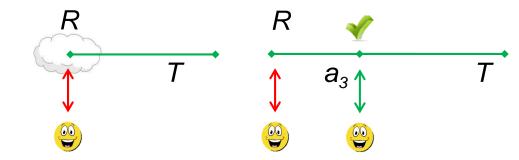


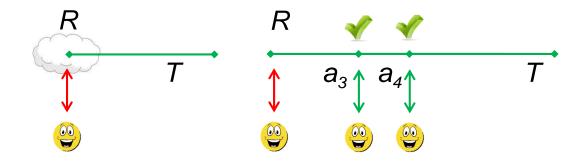


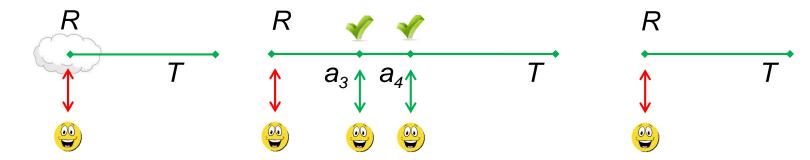


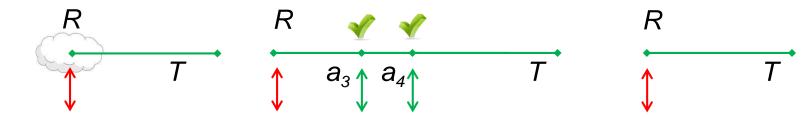


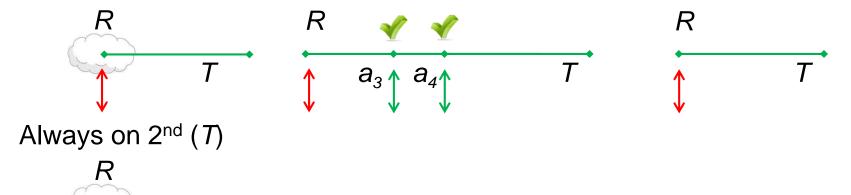


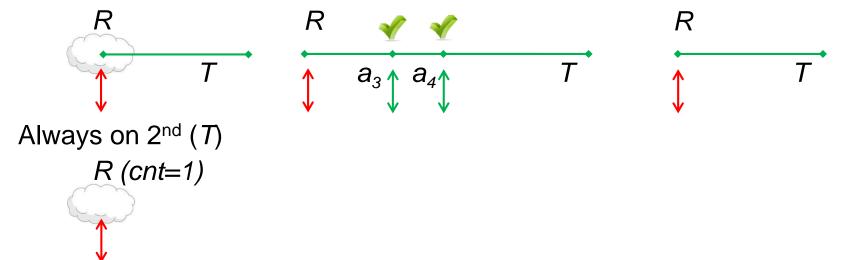


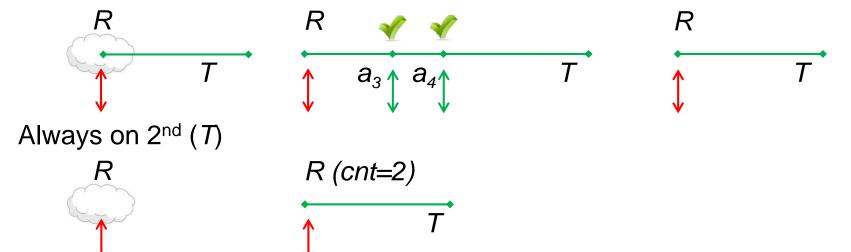


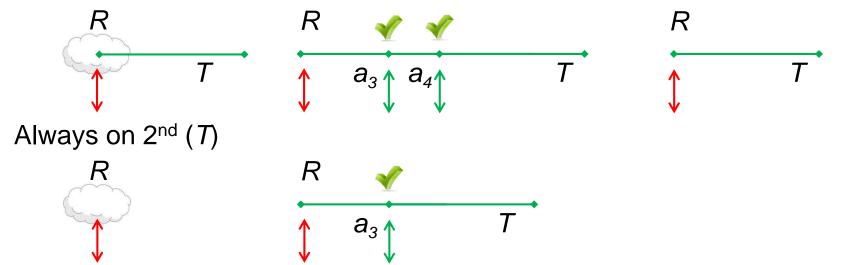


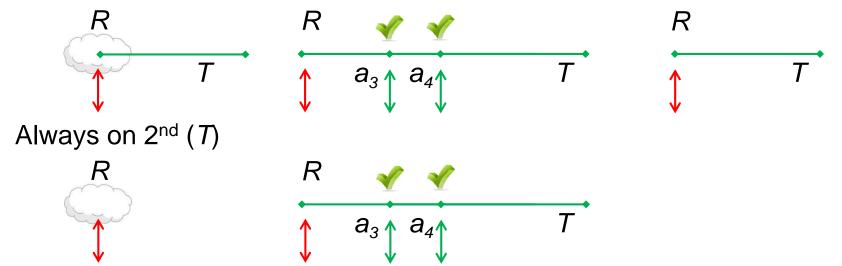




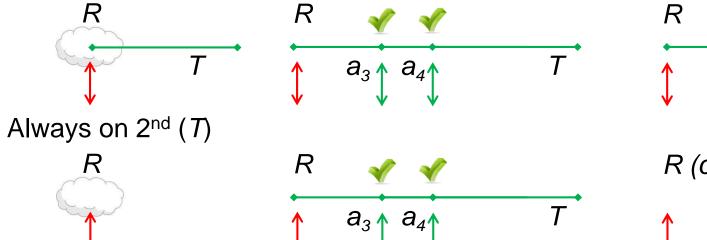


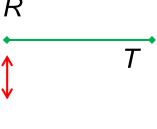






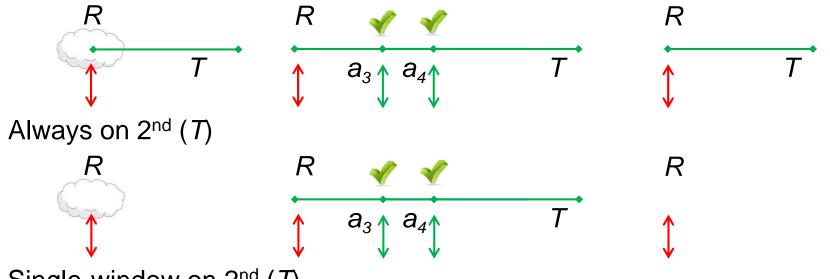
Always on 1st (*T*)





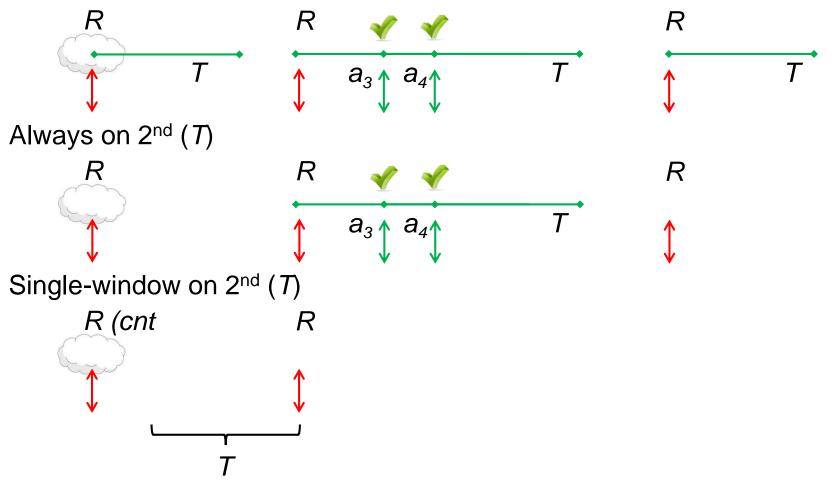
R (cnt=1)

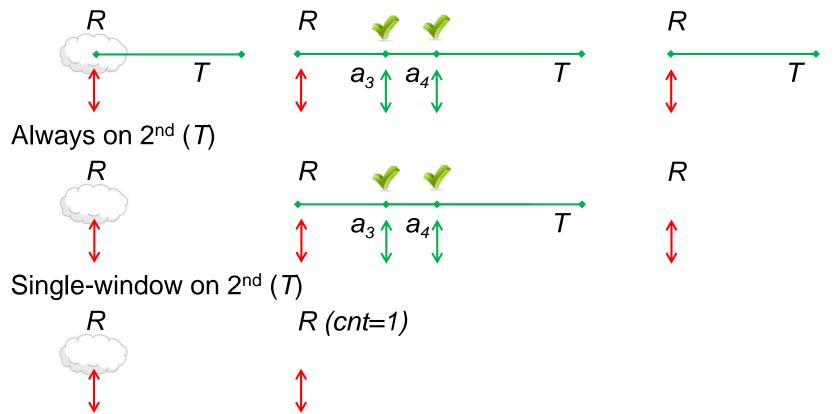
Always on 1st (*T*)

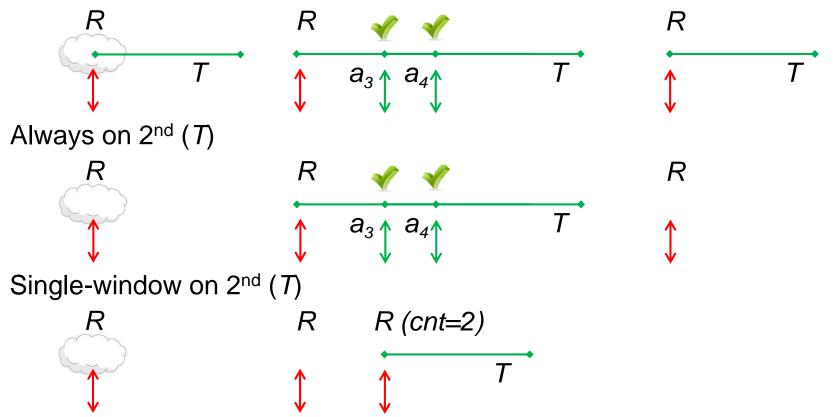


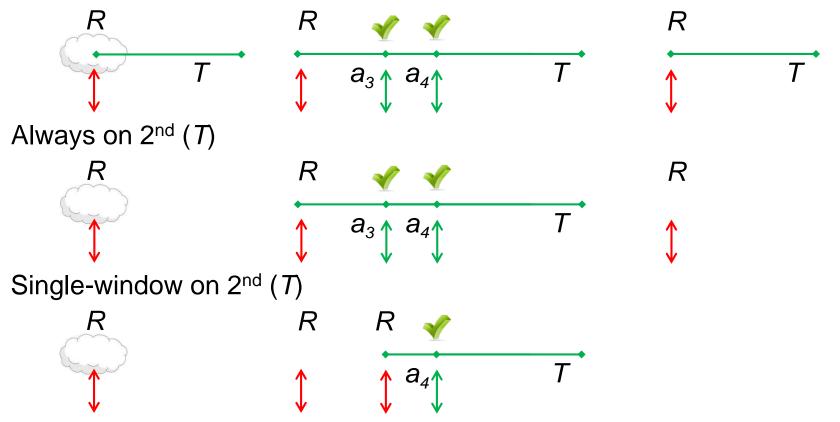
Single-window on 2nd (T)

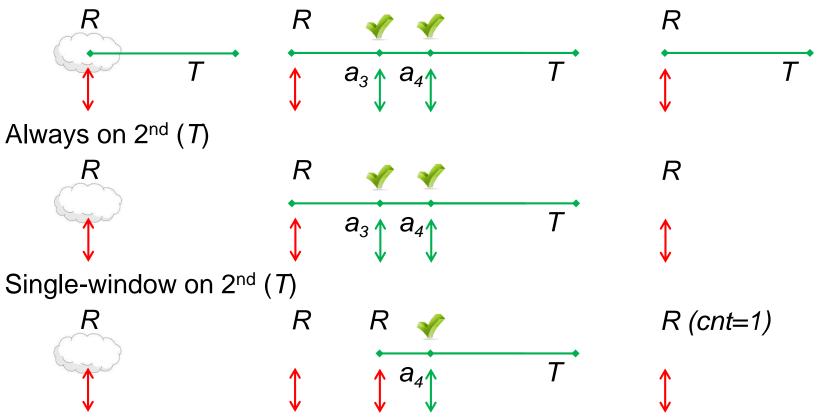
R (cnt=1)

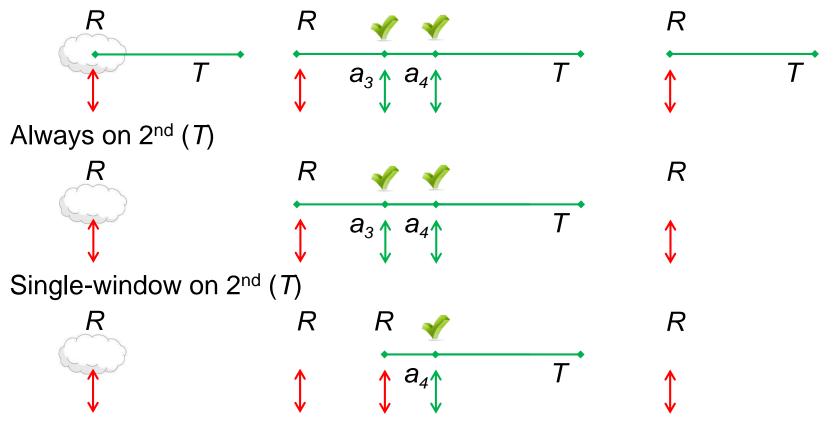






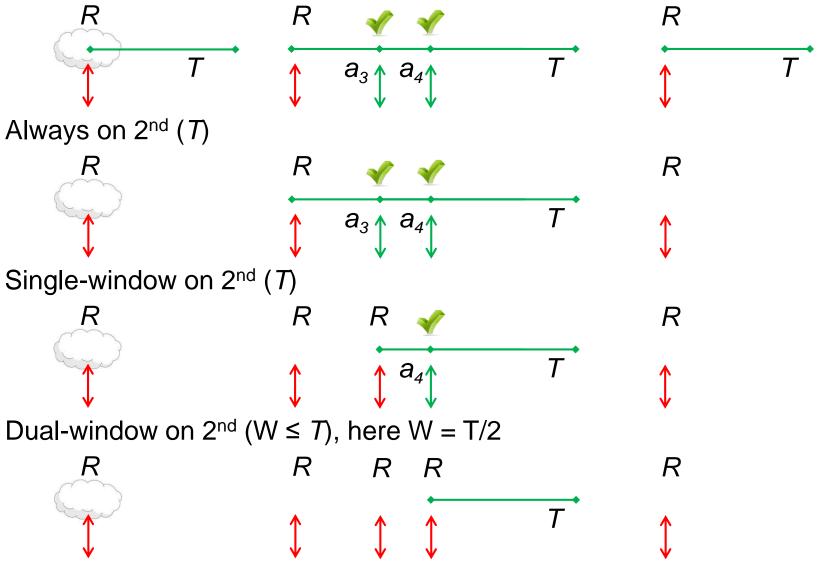






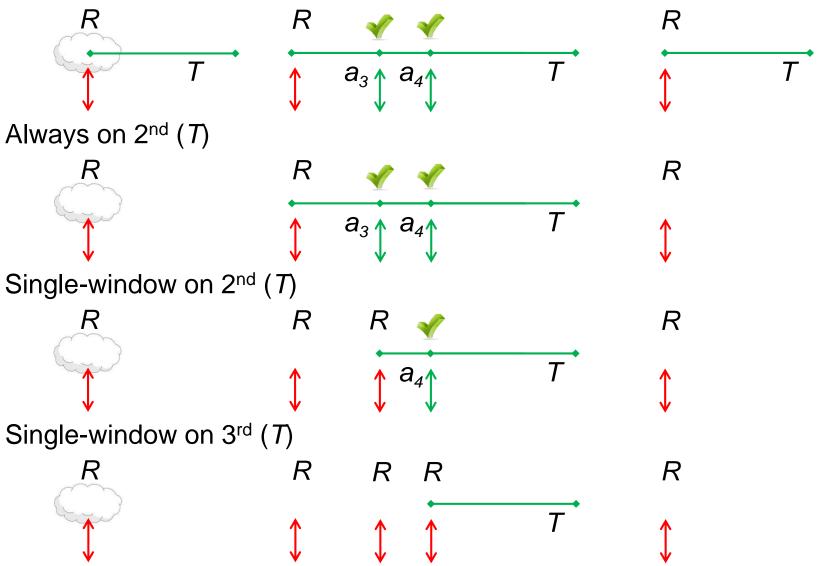
Insertion policies

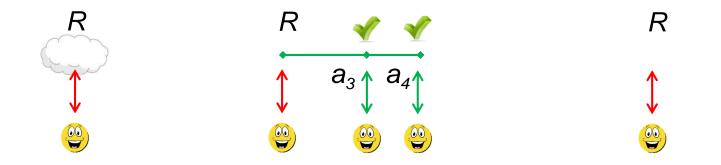
Always on 1st (*T*)

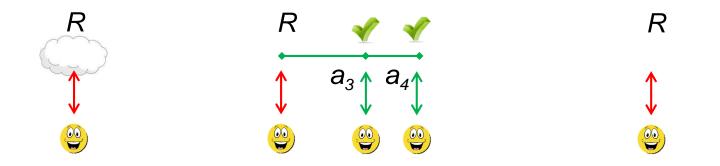


Insertion policies

Always on 1st (*T*)





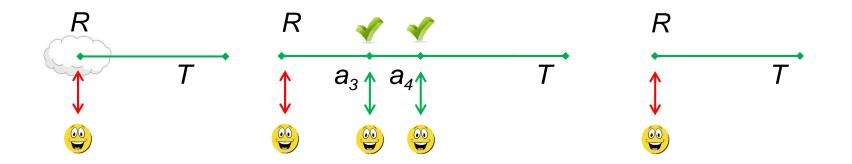


"Oracle" policy: Keep in cache until (at least) the next inter-request arrival i whenever $a_i < R$; otherwise, do not cache.

LEMMA 4.1. Given an arbitrary request sequence \mathcal{A} , the minimum total delivery cost of the optimal offline policy is:

$$C_{opt}^{offline} = R + \sum_{i=2}^{N} \min[a_i, R].$$
(1)

Example: Always on 1st



$$C_{M=1,T}^{always} = R + T + \sum_{i=2}^{N} x_i,$$

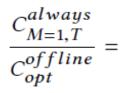
$$x_i = \begin{cases} T + R, & \text{if } a_i > T \\ a_i, & \text{otherwise.} \end{cases}$$
(2)
(3)

Worst-case ratio: Always on 1st

THEOREM 4.2. The best (optimal) competitive ratio using always on 1^{st} is achieved with T = R and is equal to 2. More specifically,

$$\max_{\mathcal{A}} \frac{C_{M=1,T=R}^{always}}{C_{opt}^{offline}} \le \max_{\mathcal{A}} \frac{C_{M=1,T}^{always}}{C_{opt}^{offline}}$$
(4)
for all T, and $\frac{C_{M=1,T=R}^{always}}{C_{opt}^{offline}} \le 2$ for all possible sequences $\mathcal{A} = \{a_i\}.$

Worst-case ratio: Always on 1st

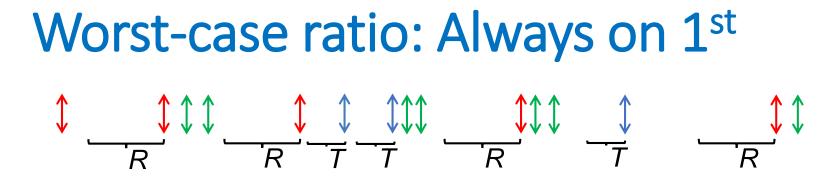


?? Given arbitrary worstcase request sequence

$$C_{M=1,T}^{always} = R + T + \sum_{i=2}^{N} x_i,$$

$$x_i = \begin{cases} T + R, & \text{if } a_i > T \\ a_i, & \text{otherwise.} \end{cases}$$
(2)
(3)

$$C_{opt}^{offline} = R + \sum_{i=2}^{N} \min[a_i, R].$$
(1)



Case:
$$T \le R$$

$$S = \{i | a_i \leq T\},\$$

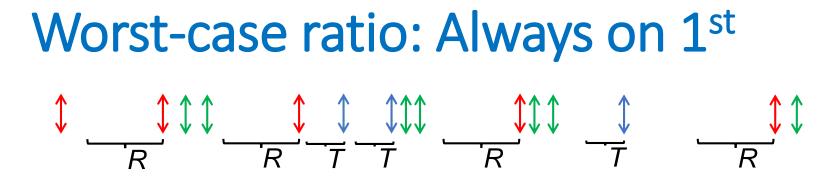
$$S' = \{i | T < a_i \leq R\},\$$

$$S'' = \{i | R < a_i\}.\$$

$$\frac{C_{M=1,T}^{always}}{C_{opt}^{offline}} = ??$$

$$C_{M=1,T}^{always} = R + T + \sum_{i=2}^{N} x_i, \qquad (2)$$
$$x_i = \begin{cases} T + R, & \text{if } a_i > T\\ a_i, & \text{otherwise.} \end{cases} \qquad (3)$$

$$C_{opt}^{offline} = R + \sum_{i=2}^{N} \min[a_i, R].$$
(1)

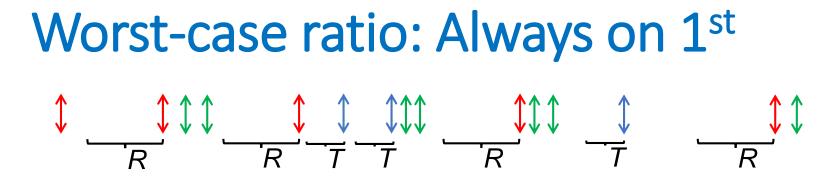


Case:
$$T \le R$$

$$S = \{i | a_i \leq T\},\$$

$$S' = \{i | T < a_i \leq R\},\$$

$$S'' = \{i | R < a_i\}.\$$



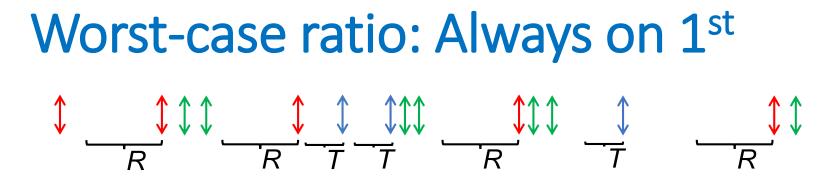
Case:
$$T \le R$$

$$S = \{i | a_i \leq T\},\$$

$$S' = \{i | T < a_i \leq R\},\$$

$$S'' = \{i | R < a_i\}.\$$

$$\frac{C_{M=1,T}^{always}}{C_{opt}^{offline}} = \frac{R + \sum_{i \in S} a_i + (|S'| + |S''|)(T+R) + T}{R + \sum_{i \in S} a_i + \sum_{i \in S'} a_i + |S''|R} \\
\leq \frac{(R+T)(1+|S''|) + (R+T)|S'|}{R(1+|S''|) + \sum_{i \in S'} a_i} \\
\leq \frac{(R... [some steps]_{R...}T)|S'|}{R(1+|S''|) + |S'|T} \leq \frac{R+T}{T}.$$



Case:
$$T \le R$$

$$S = \{i | a_i \leq T\},\$$

$$S' = \{i | T < a_i \leq R\},\$$

$$S'' = \{i | R < a_i\}.\$$

$$\frac{C_{M=1,T}^{always}}{C_{opt}^{offline}} = \frac{R + \sum_{i \in S} a_i + (|S'| + |S''|)(T+R) + T}{R + \sum_{i \in S} a_i + \sum_{i \in S'} a_i + |S''|R} \\
\leq \frac{(R+T)(1+|S''|) + (R+T)|S'|}{R(1+|S''|) + \sum_{i \in S'} a_i} \\
\leq \frac{(R... [some steps]_{R...,T})|S'|}{R(1+|S''|) + |S'|T} \leq \frac{R+T}{T}.$$

Bound monotonically decreasing in range $0 \le T \le R$.

Bound tight when $T \rightarrow R$ (and equal to 2); achieved with $T+\varepsilon$ spacing

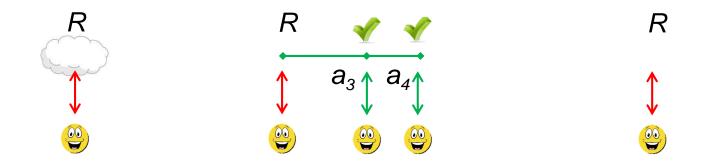
Similar approach for case when $R \leq T$

Policy	Parameters	Optimal choice	Tight bound
Always 1 st	Т	T = R	2
Always M th			
Single-window <i>M</i> th			
Dual-window 2 nd			

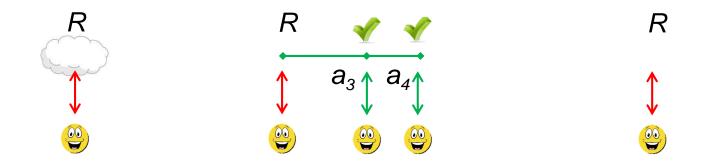
Policy	Parameters	Optimal choice	Tight bound
Always 1 st	Τ	T = R	2
Always <i>M</i> th	Т	T = R	M+1
Single-window <i>M</i> th	Т	T = R	<i>M</i> +1
Dual-window 2 nd	W, T	W = T = R	3

Policy	Parameters	Optimal choice	Tight bound
Always 1 st	Т	T = R	2
Always <i>M</i> th	Т	T = R	M+1
Single-window <i>M</i> th	Т	T = R	M+1
Dual-window 2 nd	W, T	W = T = R	3

 Although M+1 worst-case bounds may seem discouraging, we will see that window-based policies are good on average (across different distributions and distribution parameters) Steady-state analysis

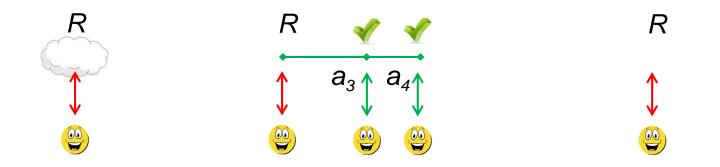


$$C_{opt}^{offline} = \frac{1}{E[a_i]} \left[\int_0^R tf(t) dt + R \int_R^\infty f(t) dt \right]$$



$$C_{opt}^{offline} = \frac{1}{E[a_i]} \left[\int_0^R tf(t) dt + R \int_R^\infty f(t) dt \right]$$

Rate of new Cost a_i Cost R
requests (per request) (per request)



$$C_{opt}^{offline} = \frac{1}{E[a_i]} \left[\int_0^R tf(t) dt + R \int_R^\infty f(t) dt \right]$$
$$= \frac{1}{E[a_i]} \left[[some \ steps](..., dt + R(1 - F(R))] \right]$$
$$= \frac{1}{E[a_i]} \left[R - \int_0^R F(t) dt \right].$$
(12)

Table 1: Summary of costs for different distributions and insertion policies. To make room, for Erlang, we simplified expressions using $F(t) = 1 - \sum_{n=0}^{k-1} \frac{1}{n!} e^{-\lambda t} (\lambda t)^n$ and $\Phi(T) = \frac{e^{-\lambda T}}{\lambda} \sum_{m=1}^k \sum_{n=0}^{m-1} \frac{(\lambda T)^n}{n!}$.

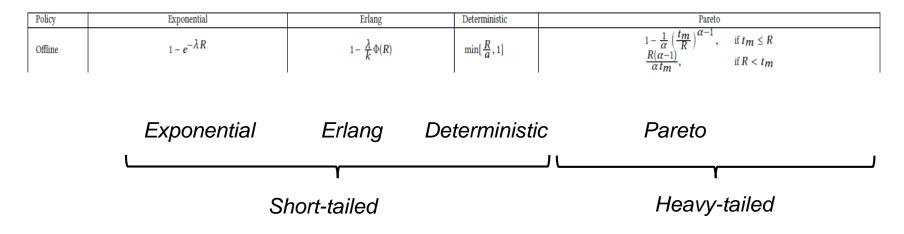
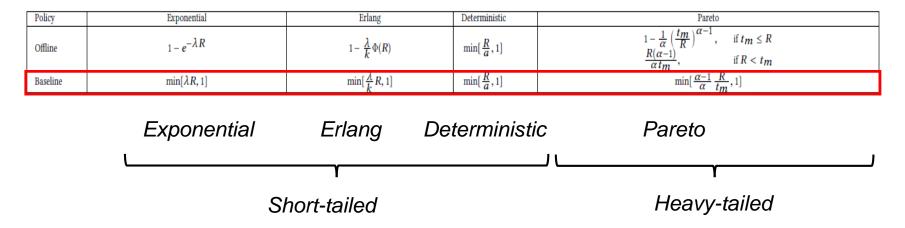
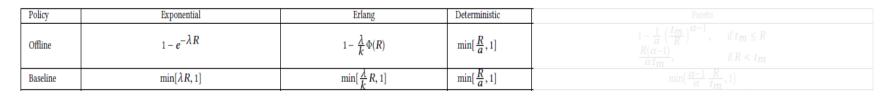


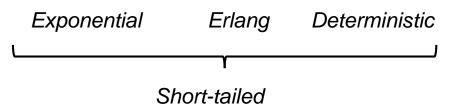
Table 1: Summary of costs for different distributions and insertion policies. To make room, for Erlang, we simplified expressions using $F(t) = 1 - \sum_{n=0}^{k-1} \frac{1}{n!} e^{-\lambda t} (\lambda t)^n$ and $\Phi(T) = \frac{e^{-\lambda T}}{\lambda} \sum_{m=1}^k \sum_{n=0}^{m-1} \frac{(\lambda T)^n}{n!}$.



"Static baseline" policy: Either "always remote" or "always local".

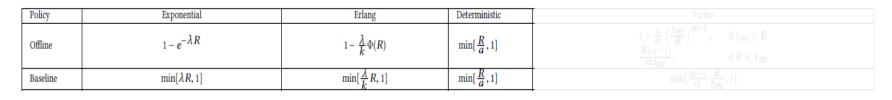
Table 1: Summary of costs for different distributions and insertion policies. To make room, for Erlang, we simplified expressions using $F(t) = 1 - \sum_{n=0}^{k-1} \frac{1}{n!} e^{-\lambda t} (\lambda t)^n$ and $\Phi(T) = \frac{e^{-\lambda T}}{\lambda} \sum_{m=1}^k \sum_{n=0}^{m-1} \frac{(\lambda T)^n}{n!}$.

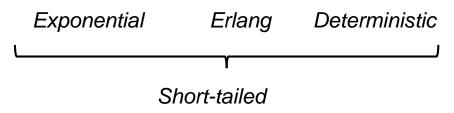




"Static baseline" policy: Either "always remote" or "always local".

Table 1: Summary of costs for different distributions and insertion policies. To make room, for Erlang, we simplified expressions using $F(t) = 1 - \sum_{n=0}^{k-1} \frac{1}{n!} e^{-\lambda t} (\lambda t)^n$ and $\Phi(T) = \frac{e^{-\lambda T}}{\lambda} \sum_{m=1}^k \sum_{n=0}^{m-1} \frac{(\lambda T)^n}{n!}$.

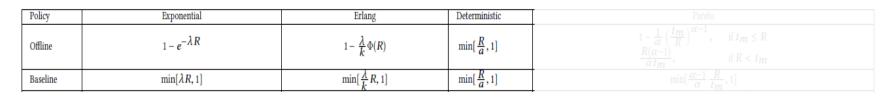


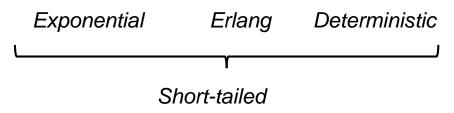


"Static baseline" policy: Either "always remote" or "always local".

THEOREM 6.1. Static baseline achieves the minimum cost of any online policy when the inter-request distribution has an increasing or constant hazard rate.

Table 1: Summary of costs for different distributions and insertion policies. To make room, for Erlang, we simplified expressions using $F(t) = 1 - \sum_{n=0}^{k-1} \frac{1}{n!} e^{-\lambda t} (\lambda t)^n$ and $\Phi(T) = \frac{e^{-\lambda T}}{\lambda} \sum_{m=1}^k \sum_{n=0}^{m-1} \frac{(\lambda T)^n}{n!}$.





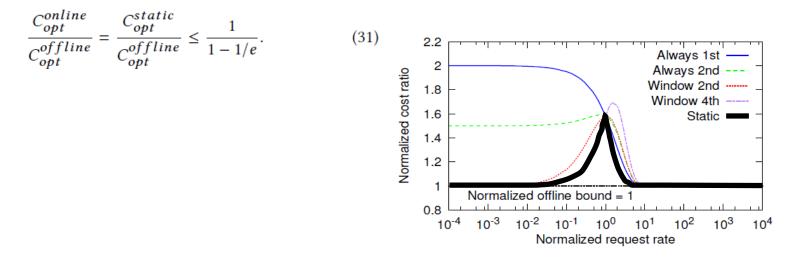
"Static baseline" policy: Either "always remote" or "always local".

THEOREM 6.1. Static baseline achieves the minimum cost of any online policy when the inter-request distribution has an increasing or constant hazard rate.

... is online optimal for these cases!!

Gap between online and offline optimal

THEOREM 6.3. Under Poisson requests we have



THEOREM 6.1. Static baseline achieves the minimum cost of any online policy when the inter-request distribution has an increasing or constant hazard rate.

Gap between online and offline optimal

THEOREM 6.3. Under Poisson requests we have

$$\frac{C_{opt}^{online}}{C_{opt}^{offline}} = \frac{C_{opt}^{static}}{C_{opt}^{offline}} \le \frac{1}{1 - 1/e}.$$
(31)

THEOREM 6.4. Under Erlang inter-request times, we have

$$\frac{C_{opt}^{online}}{C_{opt}^{offline}} = \frac{C_{opt}^{static}}{C_{opt}^{offline}} \le \frac{1}{1 - e^{-k}\frac{k^k}{k!}}.$$
(32)

THEOREM 6.5. Under deterministic inter-request times, we have

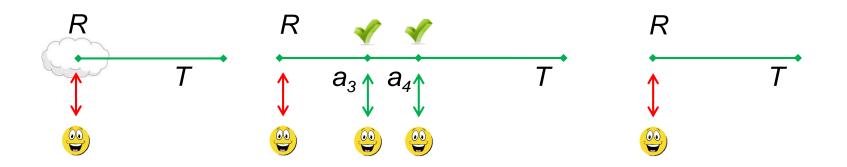
$$\frac{C_{opt}^{online}}{C_{opt}^{offline}} = \frac{C_{opt}^{static}}{C_{opt}^{offline}} = 1.$$
 (36)

THEOREM 6.1. Static baseline *achieves the minimum cost of any* online policy *when the inter-request distribution has an increasing or constant hazard rate.*

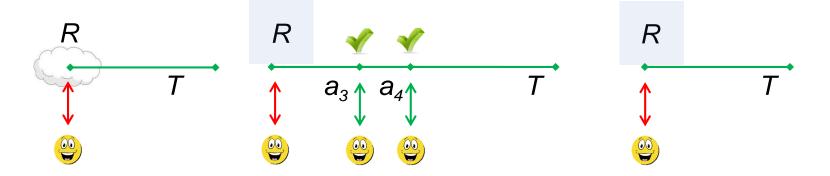
However, not true for heavy-tailed ...

... in fact, for Pareto the optimal static baseline can be far from optimal

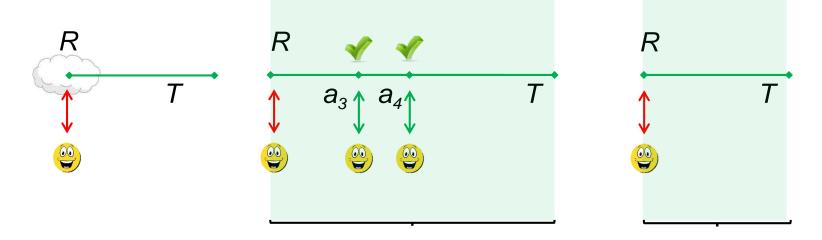
THEOREM 6.6. With Pareto inter-request times, the worst-case cost ratio for the optimal static baseline is unbounded. In particular, $\frac{C_{opt}^{static}}{C_{opt}^{offline}} \to \infty$ (37) when $\alpha = \frac{1}{1 - \frac{t_m}{R}}$ and $\frac{t_m}{R} \to 0+$.



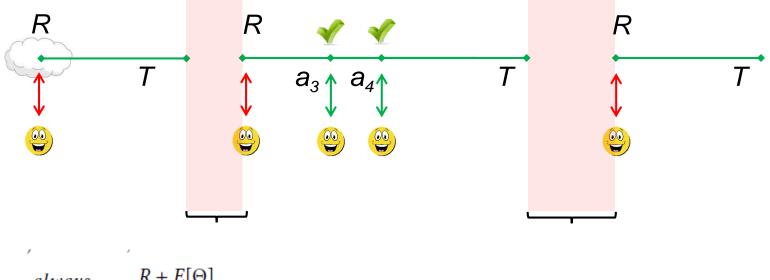
$$C_{M=1,T}^{always} = \frac{R + E[\Theta]}{E[\Delta_1] + E[\Theta]},$$
(42)



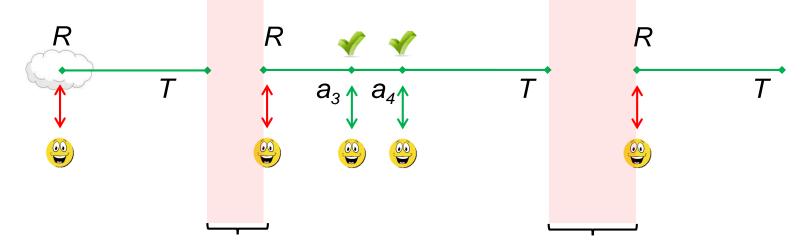
$$C_{M=1,T}^{always} = \frac{R + E[\Theta]}{E[\Delta_1] + E[\Theta]},$$
(42)



$$C_{M=1,T}^{always} = \frac{R + E[\Theta]}{E[\Delta_1] + E[\Theta]},$$
(42)

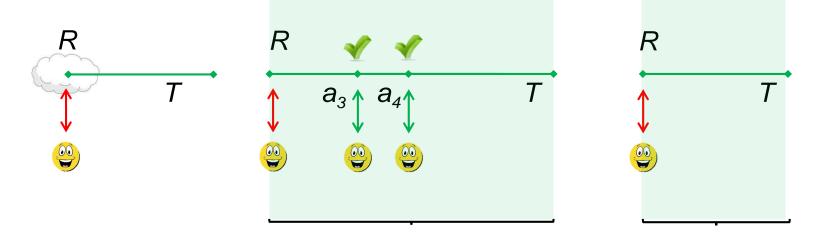


$$C_{M=1,T}^{always} = \frac{R + E[\Theta]}{E[\Delta_1] + E[\Theta]},$$
(42)



$$C_{M=1,T}^{always} = \frac{R + E[\Theta]}{E[\Delta_1] + E[\Theta]},$$
(42)

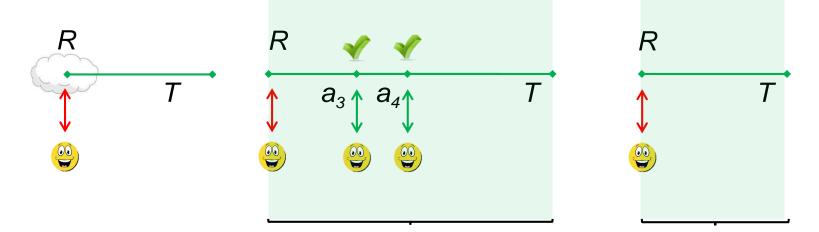
$$E[\Delta_1] = E[a_i|a_i > T] - T = \frac{1}{1 - F(T)} \left(E[a_i] + \int_0^T F(t) dt - T \right),$$
(43)



$$C_{M=1,T}^{always} = \frac{R + E[\Theta]}{E[\Delta_1] + E[\Theta]},$$
(42)

$$E[\Delta_1] = E[a_i|a_i > T] - T = \frac{1}{1 - F(T)} \left(E[a_i] + \int_0^T F(t) dt - T \right),$$
(43)

 $E[\Theta] = (1 - F(T))T + F(T)(E[a_i|a_i < T] + E[\Theta]), \quad (44)$



$$C_{M=1,T}^{always} = \frac{R + E[\Theta]}{E[\Delta_1] + E[\Theta]},$$
(42)

$$E[\Delta_1] = E[a_i|a_i > T] - T = \frac{1}{1 - F(T)} \left(E[a_i] + \int_0^T F(t) dt - T \right),$$
(43)

$$E[\Theta] = (1 - F(T))T + F(T)(E[a_i|a_i < T] + E[\Theta]), \quad (44)$$

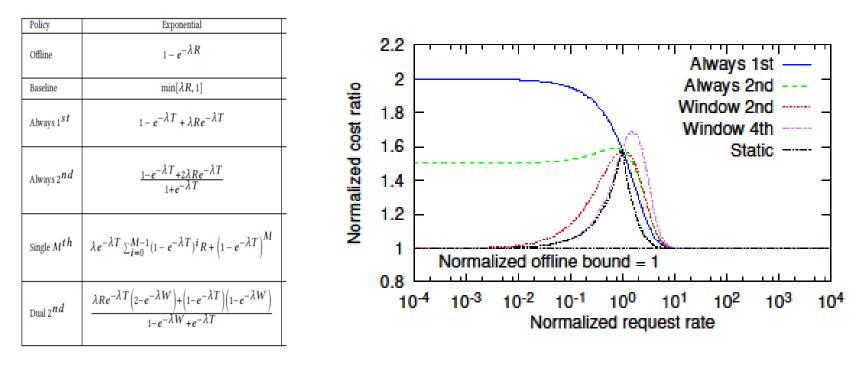
No extension Extension case

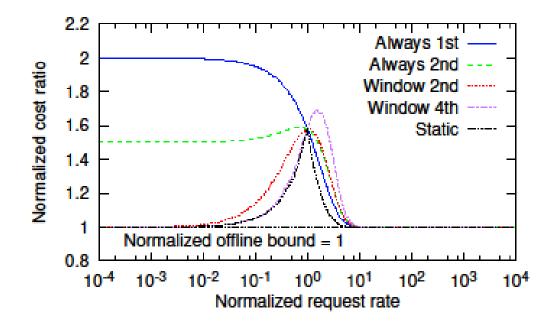
Results for example distributions

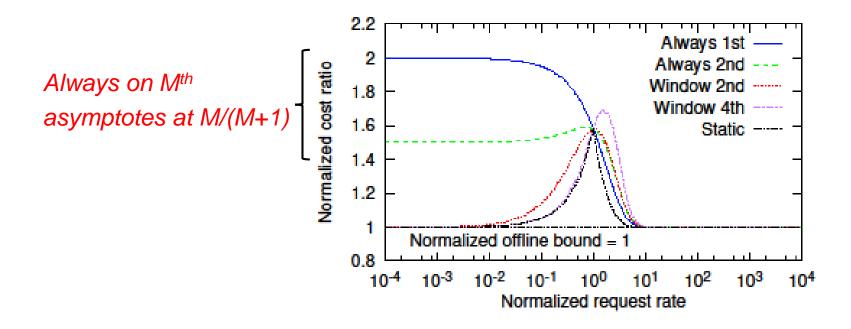
Example distributions: Summary of costs

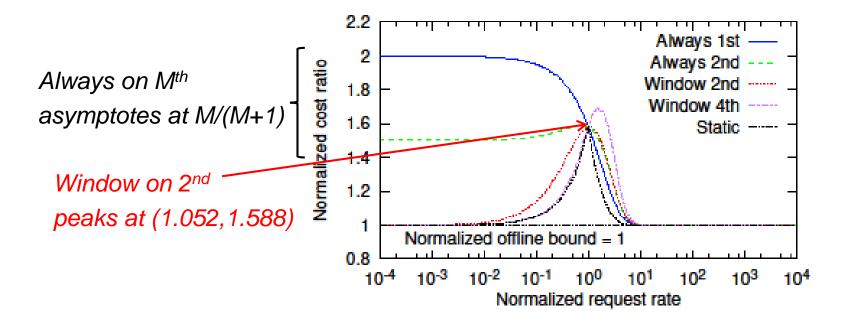
Table 1: Summary of costs for different distributions and insertion policies. To make room, for Erlang, we simplified expressions using $F(t) = 1 - \sum_{n=0}^{k-1} \frac{1}{n!} e^{-\lambda t} (\lambda t)^n$ and $\Phi(T) = \frac{e^{-\lambda T}}{\lambda} \sum_{m=1}^k \sum_{n=0}^{m-1} \frac{(\lambda T)^n}{n!}$.

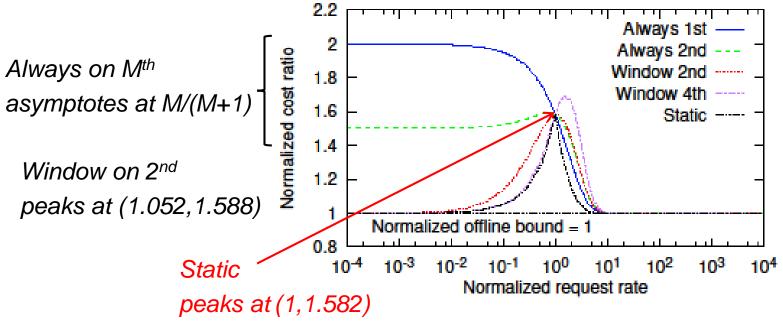
Policy	Exponential	Erlang	Deterministic	Pareto
Offline	$1 - e^{-\lambda R}$	$1 - \frac{\lambda}{k} \Phi(R)$	$\min[\frac{R}{a}, 1]$	$\frac{1 - \frac{1}{\alpha} \left(\frac{t_m}{R}\right)^{\alpha - 1}}{\frac{R(\alpha - 1)}{\alpha t_m}}, \text{if } t_m \le R$
Baseline	$\min[\lambda R, 1]$	$\min[\frac{\lambda}{k}R, 1]$	$\min[\frac{R}{a}, 1]$	$\min[\frac{\alpha-1}{\alpha}\frac{R}{t_m}, 1]$
Always 1 ^{s t}	$1 - e^{-\lambda T} + \lambda R e^{-\lambda T}$	$(1-F(T))\frac{\lambda}{k}R+(1-\frac{\lambda}{k}\Phi(T))$	1, if $a \le T$ $\frac{R+T}{a}$, if $T < a$	$\frac{\frac{\alpha-1}{\alpha}\left(\frac{tm}{T}\right)^{\alpha}}{\frac{(R+T)(\alpha-1)}{\alpha tm}} + \left(1 - \frac{1}{\alpha}\left(\frac{tm}{T}\right)^{\alpha-1}\right), \text{if } tm \leq T$
Always 2nd	$\frac{1 - e^{-\lambda T} + 2\lambda R e^{-\lambda T}}{1 + e^{-\lambda T}}$	$\frac{(1-F(T))\frac{\lambda}{k}2R+(1-\frac{\lambda}{k}\Phi(T))}{2-F(T)}$	1, if $a \le T$ $\frac{2R+T}{2a}$, if $T < a$	$\frac{\frac{\alpha-1}{\alpha}\left(\frac{tm}{T}\right)^{\alpha}\frac{2R}{tm} + \left(1 - \frac{1}{\alpha}\left(\frac{tm}{T}\right)^{\alpha-1}\right)}{1 + \left(\frac{tm}{T}\right)^{\alpha}}, \text{if } tm \leq T$ $\frac{2R+T}{2}\frac{\alpha-1}{\alpha tm}, \text{if } T < tm$ $\frac{\alpha-1}{\alpha}\left(\frac{tm}{T}\right)^{\alpha}\sum_{i=0}^{M-1}(1 - \left(\frac{tm}{T}\right)^{\alpha})^{i}\frac{R}{T}$
Single M th	$\lambda e^{-\lambda T} \sum_{i=0}^{M-1} (1 - e^{-\lambda T})^i R + \left(1 - e^{-\lambda T}\right)^M$	$ \begin{array}{l} (1-F(T))\frac{\lambda}{k}\sum_{i=0}^{M-1}F(T)^{i}R\\ +\left(1-\frac{\lambda}{k}\Phi(T)\right)F(T)^{M-1} \end{array} $	1, if $a \le T$ $\frac{R}{a}$, if $T < a$	$ + \left(1 - \frac{1}{\alpha} \left(\frac{t_m}{T}\right)^{\alpha - 1}\right) \left(1 - \left(\frac{t_m}{T}\right)^{\alpha}\right)^{M - 1}, \text{if } t_m \le T \\ \frac{R(\alpha - 1)}{\alpha t_m}, \text{if } T < t_m $
_{Dual 2} nd	$\frac{\lambda R e^{-\lambda T} \left(2 - e^{-\lambda W}\right) + \left(1 - e^{-\lambda T}\right) \left(1 - e^{-\lambda W}\right)}{1 - e^{-\lambda W} + e^{-\lambda T}}$	$\frac{(1\!-\!F(T))\Big(2\!+\frac{1\!-\!F(W)}{F(W)}\Big)R\!+\!\Big(\frac{k}{\lambda}\!-\!\Phi(T)\Big)}{\frac{k}{\lambda}(1\!+\!\frac{1\!-\!F(T)}{F(W)})}$	1, if $a < W \le T$ $\frac{R}{a}$, if $W < a$	$ \begin{array}{ll} \displaystyle \frac{(\alpha-1)\Big(\frac{t_m}{T}\Big)^{\alpha}(2-\Big(\frac{t_m}{W}\Big)^{\alpha}\Big)R+(1-\Big(\frac{t_m}{W}\Big)^{\alpha}\big)(t_m\alpha-T\Big(\frac{t_m}{T}\Big)^{\alpha}\Big)}{\alpha t_m(1-\Big(\frac{t_m}{W}\Big)^{\alpha}+\Big(\frac{t_m}{T}\Big)^{\alpha}\big)}, & \text{if } t_m \leq W \\ \displaystyle \frac{R(\alpha-1)}{\alpha t_m}, & \text{if } W < t_m \end{array} $

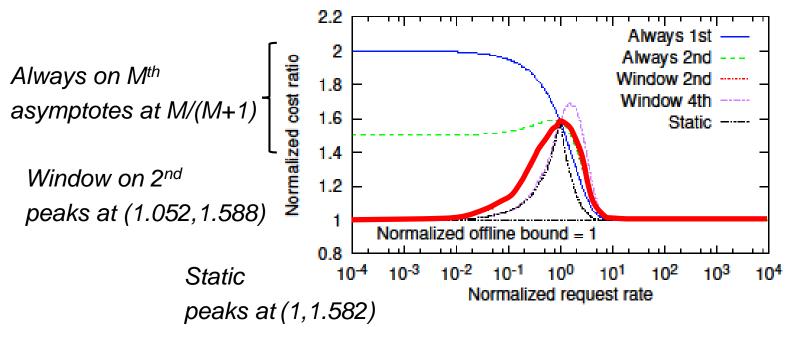




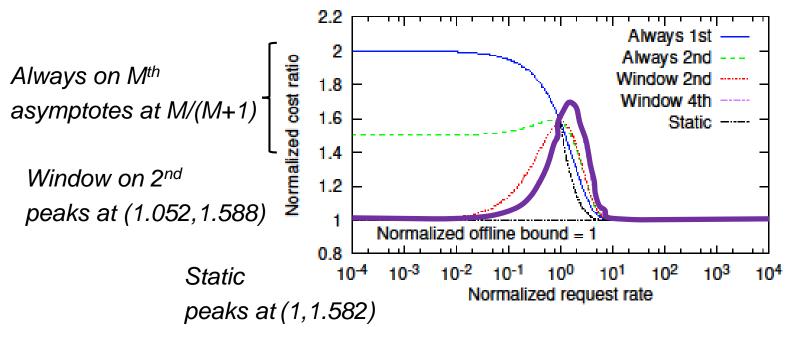




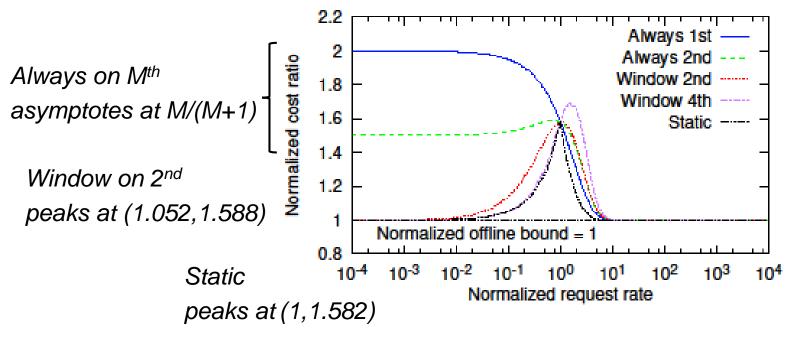




- Results with W = T = R
- Window on 2nd performs good throughout
- Window on 4th performs somewhat better for lower request rates, but at an increased peak cost (at somewhat higher rates)

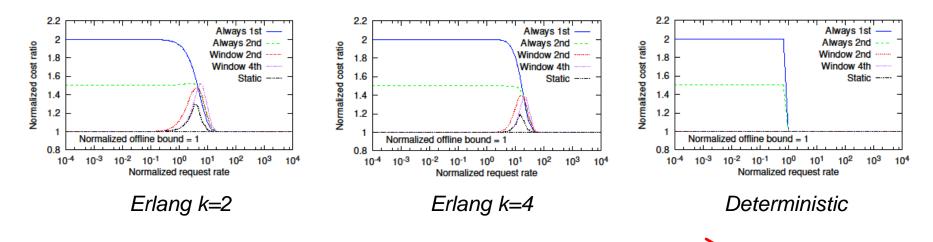


- Results with W = T = R
- Window on 2nd performs good throughout
- Window on 4th performs somewhat better for lower request rates, but at an increased peak cost (at somewhat higher rates)



- Results with W = T = R
- Window on 2nd performs good throughout
- Window on 4th performs somewhat better for lower request rates, but at an increased peak cost (at somewhat higher rates)

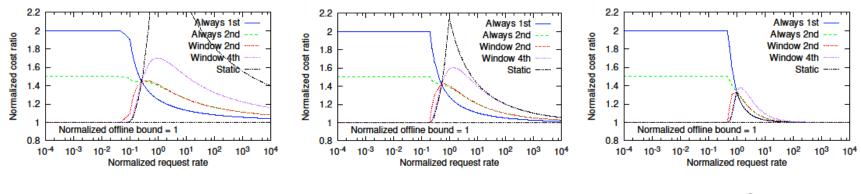
Example distributions: Low variability distributions



Increasingly deterministic inter-request times

 Peak cost ratio for single-window on 2nd reduces as k increases and inter-request times become increasingly deterministic (rightmost fig)

Example distribution: Pareto

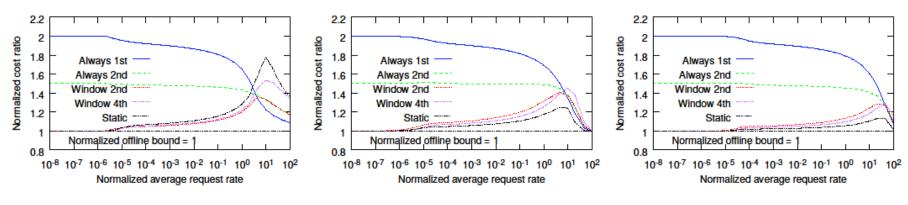


α = 2

- As per Theorem 6.6, static baseline performs very poorly when $\alpha \rightarrow 1$ (and t_m is small). E.g., large peak cost ratio in left-most fig
 - For larger α (e.g., α = 2), this peak reduces substantially.
- Otherwise, the results are similar as for the other inter-request distributions, suggesting that single-window on 2nd with T = R is a good choice

Multi-file evaluation

Example distributions



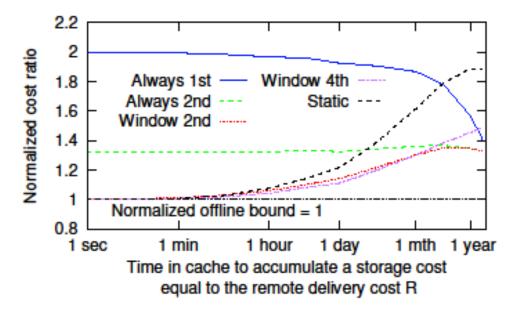
Pareto, α =1.25

Exponential

Erlang, k=4

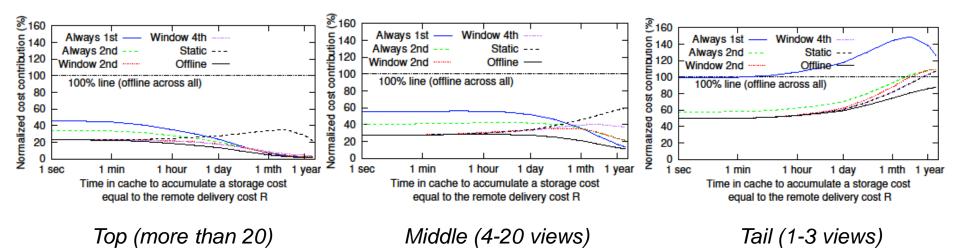
- Setup: 1,000,000 objects with Zipf popularity
 - Here, $\gamma = 1$ (but results with $\gamma = 0.75$ and $\gamma = 1.25$ similar)
 - W = T = R
- Significant benefits to being selective
 - Window on 2nd significantly outperforms always on Mth
- *Window on 2nd* good throughout
 - Close to static optimal when Exponential and Erlang
 - Outperform static when Pareto
 - Has a peak cost-ratio of 1.4

Trace-based simulations



- Setup: 20-month long university trace with YouTube viewings
 - 5.5 M video request to 2.4 M unique videos
 - Long tail of less popular videos
 - W = T = R
- "Static" (highly optimistically) assumes "oracle" knowledge of which choice is better (*always local* or *always remote*) for each individual video ...
- Yet, window on 2nd outperform static
 - Highlights value of policy when request rates are unknown and variable

Break-down of cost contributions



• Tail contribute to most of the costs ...

... highlighting importance of selective insertions.

Conclusions

Conclusions

Worst-case bounds for the optimal cost and competitive cost ratios

• E.g., Best worst-case bounds of M+1 are achieved by selecting W = T = R

Average cost expressions and bounds

- Arbitrary inter-request distributions
- Example inter-request distributions (both short-tailed and heavy-tailed)
- *Static* is *online optimal* for constant and decreasing hazard rates, but can be arbitrarily bad when heavy tailed or request rates are not known

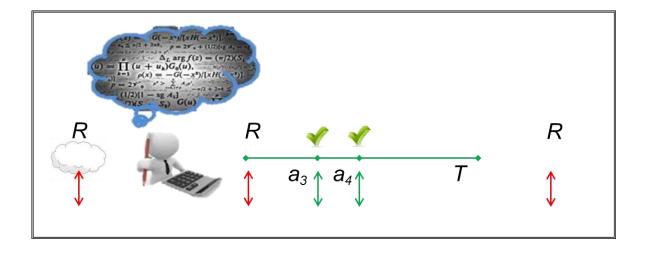
Numeric and trace-based evaluations reveal insights into the relative cost performance of the policies

Substantial cost benefits of using window-based with intermediate M (e.g., 2-4) and the optimal worst-case parameter setting (i.e., W = T = R)

Window-based cache on 2nd request policy using a single threshold optimized to minimize worst-case costs provides good average performance

• Attractive choice for a wide range of practical conditions where request rates of individual file objects typically are not known and can change quickly ...

Thanks for listening!



Worst-case Bounds and Optimized Cache on *Mth* Request Cache Insertion Policies under Elastic Conditions

Niklas Carlsson and Derek Eager

Niklas Carlsson (niklas.carlsson@liu.se)