
Worst-case Bounds and Optimized Cache on Mth Request
Cache Insertion Policies under Elastic Conditions

Niklas Carlsson, Linköping University

Derek Eager, University of Saskatchewan

Proc. IFIP Performance, Toulouse, France, Dec. 2018.

2

Motivation and problem
• Cloud services and other shared infrastructures increasingly common

• Typically third-party operated

• Allow service providers to easily scale services based on current
resource demands

• Content delivery context: Many content providers are already using
third-party operated Content Distribution Networks (CDNs) and
cloud-based content delivery platforms

• This trend towards using third-party providers on an on-demand basis
is expected to increase as new content providers enter the market

Problem: Individual content provider that wants to minimize its
delivery costs under the assumptions that

• the storage and bandwidth resources it requires are elastic,

• the content provider only pays for the resources that it consumes, and

• costs are proportional to the resource usage.

Motivation and problem
• Cloud services and other shared infrastructures increasingly common

• Typically third-party operated

• Allow service providers to easily scale services based on current
resource demands

• Content delivery context: Many content providers are already using
third-party operated Content Distribution Networks (CDNs) and
cloud-based content delivery platforms

• This trend towards using third-party providers on an on-demand basis
is expected to increase as new content providers enter the market

Problem: Individual content provider that wants to minimize its
delivery costs under the assumptions that

• the storage and bandwidth resources it requires are elastic,

• the content provider only pays for the resources that it consumes, and

• costs are proportional to the resource usage.

High-level picture
• Analyze the optimized delivery costs of different cache on Mth request cache

insertion policies when using a Time-to-Live (TTL) based eviction policy

• File object remains in the cache until a time T has elapsed

• Assuming elastic resources, cache eviction is not needed to make space for a
new insertion

• Rather to reduce cost by removing objects that are not expected to be
requested again soon

• A TTL-based eviction policy is a good heuristic for such purposes

• Bonus: TTL provides approximation for fixed-size LRU caching

• Cloud service providers already provide elastic provisioning at varying
granularities for computation and storage

• Support for fine-grained elasticity likely to increase in the future

5

Contributions
Within this context, we
• derive worst-case bounds for the optimal cost and competitive cost

ratios of different classes of cache on Mth request cache insertion
policies,

• derive explicit average cost expressions and bounds under arbitrary
inter-request distributions,

• derive explicit average cost expressions and bounds for short-tailed
(deterministic, Erlang, and exponential) and heavy-tailed (Pareto) inter-
request distributions, and

• present numeric and trace-based evaluations that reveal insights into
the relative cost performance of the policies.

Our results show that a window-based cache on 2nd request policy (with
parameter selected based on the best worst-case bounds) provides good average
performance across the different distributions and the full parameter ranges of
each considered distribution

6

Contributions
Within this context, we
• derive worst-case bounds for the optimal cost and competitive cost

ratios of different classes of cache on Mth request cache insertion
policies,

• derive explicit average cost expressions and bounds under arbitrary
inter-request distributions,

• derive explicit average cost expressions and bounds for short-tailed
(deterministic, Erlang, and exponential) and heavy-tailed (Pareto) inter-
request distributions, and

• present numeric and trace-based evaluations that reveal insights into
the relative cost performance of the policies.

Our results show that a window-based cache on 2nd request policy (using a single
threshold parameter optimized to minimize the best worst-case costs) provides
good average performance across the different distributions and the full
parameter ranges of each considered distribution

7

System model

8

System model

• Assumptions:
• storage and bandwidth resources it requires are elastic
• content provider only pays for the resources that it consumes
• costs are proportional to the resource usage

• Analyze the optimized delivery costs of different cache on Mth request cache
insertion policies when using a Time-to-Live (TTL) based eviction policy

• Policy decision: At the time a request is made for a file object not currently
in the cache, the system must, in an online fashion, decide whether the
object should be cached or not

Storage close to end-user

(normalized storage cost 1 per time unit)

Backhaul bandwidth

(remote bandwidth cost R)

9

System model and problem

• Assumptions:
• storage and bandwidth resources it requires are elastic
• content provider only pays for the resources that it consumes
• costs are proportional to the resource usage

• Analyze the optimized delivery costs of different cache on Mth request cache
insertion policies when using a Time-to-Live (TTL) based eviction policy

• Policy decision: At the time a request is made for a file object not currently
in the cache, the system must, in an online fashion, decide whether the
object should be cached or not

Storage close to end-user

(normalized storage cost 1 per time unit)

Backhaul bandwidth

(remote bandwidth cost R)

10

Insertion policies

Insertion policies

Insertion policies

Insertion policies

miss

Insertion policies

R

Insertion policies

T

R

Insertion policies

T

R

Insertion policies

T

R

Always on 1st (T)

Insertion policies

T

R

Always on 1st (T)

R

T

Insertion policies

T

R

Always on 1st (T)

R

a3

Insertion policies

T

R

Always on 1st (T)

R

Ta3

Insertion policies

T

R

Always on 1st (T)

R

Ta3 a4

Insertion policies

T

R

Always on 1st (T)

R

Ta3 a4 T

R

Insertion policies

T

R

Always on 1st (T)

R

Ta3 a4 T

R

Insertion policies

T

R

Always on 1st (T)

R

Ta3 a4 T

R

R

Always on 2nd (T)

Insertion policies

T

R

Always on 1st (T)

R

Ta3 a4 T

R

R (cnt=1)

Always on 2nd (T)

Insertion policies

T

R

Always on 1st (T)

R

Ta3 a4 T

R

R

Always on 2nd (T)

R (cnt=2)

T

Insertion policies

T

R

Always on 1st (T)

R

Ta3 a4 T

R

R

Always on 2nd (T)

R

Ta3

Insertion policies

T

R

Always on 1st (T)

R

Ta3 a4 T

R

R

Always on 2nd (T)

R

Ta3 a4

Insertion policies

T

R

Always on 1st (T)

R

Ta3 a4 T

R

R

Always on 2nd (T)

R

Ta3 a4

R (cnt=1)

Insertion policies

T

R

Always on 1st (T)

R

Ta3 a4 T

R

R

Always on 2nd (T)

R

Ta3 a4

R

R (cnt=1)

Single-window on 2nd (T)

Insertion policies

T

R

Always on 1st (T)

R

Ta3 a4 T

R

R

Always on 2nd (T)

R

Ta3 a4

R

R (cnt

Single-window on 2nd (T)

R

T

Insertion policies

T

R

Always on 1st (T)

R

Ta3 a4 T

R

R

Always on 2nd (T)

R

Ta3 a4

R

R

Single-window on 2nd (T)

R (cnt=1)

Insertion policies

T

R

Always on 1st (T)

R

Ta3 a4 T

R

R

Always on 2nd (T)

R

Ta3 a4

R

R

Single-window on 2nd (T)

R

T

R (cnt=2)

Insertion policies

T

R

Always on 1st (T)

R

Ta3 a4 T

R

R

Always on 2nd (T)

R

Ta3 a4

R

R

Single-window on 2nd (T)

R

Ta4

R

Insertion policies

T

R

Always on 1st (T)

R

Ta3 a4 T

R

R

Always on 2nd (T)

R

Ta3 a4

R

R

Single-window on 2nd (T)

R

Ta4

R (cnt=1)R

Insertion policies

T

R

Always on 1st (T)

R

Ta3 a4 T

R

R

Always on 2nd (T)

R

Ta3 a4

R

R

Single-window on 2nd (T)

R

Ta4

RR

Insertion policies

T

R

Always on 1st (T)

R

Ta3 a4 T

R

R

Always on 2nd (T)

R

Ta3 a4

R

R

Single-window on 2nd (T)

R

Ta4

R

R

Dual-window on 2nd (W ≤ T), here W = T/2

R

T

R

R

R R

Insertion policies

T

R

Always on 1st (T)

R

Ta3 a4 T

R

R

Always on 2nd (T)

R

Ta3 a4

R

R

Single-window on 2nd (T)

R

Ta4

R

R

Single-window on 3rd (T)

R

T

R

R

R R

39

Worst-case bounds

Offline-optimal lower bound

R R

a3 a4

R

“Oracle” policy: Keep in cache until (at least) the next inter-request

arrival i whenever ai < R; otherwise, do not cache.

Offline-optimal lower bound

R R

a3 a4

R

“Oracle” policy: Keep in cache until (at least) the next inter-request

arrival i whenever ai < R; otherwise, do not cache.

Example: Always on 1st

T

R R

Ta3 a4 T

R

Worst-case ratio: Always on 1st

Worst-case ratio: Always on 1st

?? Given arbitrary worst-
case request sequence

Worst-case ratio: Always on 1st

Case: T ≤ R

R R R RTTT

??

Worst-case ratio: Always on 1st

Case: T ≤ R

R R R RTTT

… [some steps] …

Worst-case ratio: Always on 1st

Case: T ≤ R

R R R RTTT

… [some steps] …

Worst-case ratio: Always on 1st

Case: T ≤ R

R R R RTTT

… [some steps] …

Bound monotonically decreasing in

range 0 ≤ T ≤ R.

Bound tight when T R (and equal

to 2); achieved with T+ spacing

Similar approach for case when R ≤ T

49

Worst-case bounds

Policy Parameters Optimal choice Tight bound

Always 1st T T = R 2

Always Mth

Single-window Mth

Dual-window 2nd

50

Worst-case bounds

Policy Parameters Optimal choice Tight bound

Always 1st T T = R 2

Always Mth T T = R M+1

Single-window Mth T T = R M+1

Dual-window 2nd W, T W = T = R 3

51

Worst-case bounds

Policy Parameters Optimal choice Tight bound

Always 1st T T = R 2

Always Mth T T = R M+1

Single-window Mth T T = R M+1

Dual-window 2nd W, T W = T = R 3

• Although M+1 worst-case bounds may seem discouraging, we
will see that window-based policies are good on average (across
different distributions and distribution parameters)

52

Steady-state analysis

Offline-optimal lower bound

R R

a3 a4

R

“Oracle” policy: Keep in cache until (at least) the next inter-request

arrival i whenever ai < R; otherwise, do not cache.

Offline-optimal lower bound

R R

a3 a4

R

“Oracle” policy: Keep in cache until (at least) the next inter-request

arrival i whenever ai < R; otherwise, do not cache.

Rate of new

requests

Cost ai

(per request)

Cost R

(per request)

Offline-optimal lower bound

R R

a3 a4

R

“Oracle” policy: Keep in cache until (at least) the next inter-request

arrival i whenever ai < R; otherwise, do not cache.

… [some steps] …

56

Example distribution results

Exponential Erlang Deterministic Pareto

Short-tailed Heavy-tailed

57

Example distribution results

Exponential Erlang Deterministic Pareto

Short-tailed Heavy-tailed

“Static baseline” policy: Either “always remote” or “always local”.

58

Example distribution results

Exponential Erlang Deterministic

Short-tailed

“Static baseline” policy: Either “always remote” or “always local”.

59

Example distribution results

Exponential Erlang Deterministic

Short-tailed

“Static baseline” policy: Either “always remote” or “always local”.

60

Example distribution results

Exponential Erlang Deterministic

Short-tailed

“Static baseline” policy: Either “always remote” or “always local”.

… is online optimal for these cases!!

61

Gap between online and offline optimal

62

Gap between online and offline optimal

63

However, not true for heavy-tailed …

… in fact, for Pareto the optimal static baseline can be far from optimal

Policy analysis: Always on 1st

T

R R

Ta3 a4 T

R

Policy analysis: Always on 1st

T

R R

Ta3 a4 T

R

Policy analysis: Always on 1st

T

R R

Ta3 a4 T

R

Policy analysis: Always on 1st

T

R R

Ta3 a4 T

R

Policy analysis: Always on 1st

T

R R

Ta3 a4 T

R

Policy analysis: Always on 1st

T

R R

Ta3 a4 T

R

Policy analysis: Always on 1st

T

R R

Ta3 a4 T

R

No extension Extension case

71

Results for example distributions

72

Example distributions: Summary of costs

73

Example distribution: Exponential

• Results with W = T = R

74

Example distribution: Exponential

• Results with W = T = R

Example distribution: Exponential

• Results with W = T = R

• Window on 2nd performs good throughout

• Window on 4th performs somewhat better for lower request
rates, but at an increased peak cost (at somewhat higher rates)

Always on Mth

asymptotes at M/(M+1)

Example distribution: Exponential

• Results with W = T = R

• Window on 2nd performs good throughout

• Window on 4th performs somewhat better for lower request
rates, but at an increased peak cost (at somewhat higher rates)

Always on Mth

asymptotes at M/(M+1)

Window on 2nd

peaks at (1.052,1.588)

Example distribution: Exponential

• Results with W = T = R

• Window on 2nd performs good throughout

• Window on 4th performs somewhat better for lower request
rates, but at an increased peak cost (at somewhat higher rates)

Always on Mth

asymptotes at M/(M+1)

Window on 2nd

peaks at (1.052,1.588)

Static

peaks at (1,1.582)

Example distribution: Exponential

• Results with W = T = R

• Window on 2nd performs good throughout

• Window on 4th performs somewhat better for lower request
rates, but at an increased peak cost (at somewhat higher rates)

Always on Mth

asymptotes at M/(M+1)

Window on 2nd

peaks at (1.052,1.588)

Static

peaks at (1,1.582)

Example distribution: Exponential

• Results with W = T = R

• Window on 2nd performs good throughout

• Window on 4th performs somewhat better for lower request
rates, but at an increased peak cost (at somewhat higher rates)

Always on Mth

asymptotes at M/(M+1)

Window on 2nd

peaks at (1.052,1.588)

Static

peaks at (1,1.582)

Example distribution: Exponential

• Results with W = T = R

• Window on 2nd performs good throughout

• Window on 4th performs somewhat better for lower request
rates, but at an increased peak cost (at somewhat higher rates)

Always on Mth

asymptotes at M/(M+1)

Window on 2nd

peaks at (1.052,1.588)

Static

peaks at (1,1.582)

81

Example distributions: Low variability distributions

• Peak cost ratio for single-window on 2nd reduces as k increases
and inter-request times become increasingly deterministic
(rightmost fig)

Erlang k=2 Erlang k=4 Deterministic

Increasingly deterministic inter-request times

82

Example distribution: Pareto

• As per Theorem 6.6, static baseline performs very poorly when
α 1 (and tm is small). E.g., large peak cost ratio in left-most fig

• For larger α (e.g., α = 2), this peak reduces substantially.

• Otherwise, the results are similar as for the other inter-request
distributions, suggesting that single-window on 2nd with T = R is
a good choice

α =1.1 α =1.25 α = 2

83

Multi-file evaluation

84

Example distributions

• Setup: 1,000,000 objects with Zipf popularity
• Here, =1 (but results with =0.75 and =1.25 similar)
• W = T = R

• Significant benefits to being selective
• Window on 2nd significantly outperforms always on Mth

• Window on 2nd good throughout
• Close to static optimal when Exponential and Erlang
• Outperform static when Pareto
• Has a peak cost-ratio of 1.4

Pareto, α =1.25 Exponential Erlang, k=4

85

Trace-based simulations

• Setup: 20-month long university trace with YouTube viewings
• 5.5 M video request to 2.4 M unique videos
• Long tail of less popular videos
• W = T = R

• “Static” (highly optimistically) assumes “oracle” knowledge of which choice is
better (always local or always remote) for each individual video ...

• Yet, window on 2nd outperform static
• Highlights value of policy when request rates are unknown and variable

86

Break-down of cost contributions

• Tail contribute to most of the costs ...

… highlighting importance of selective insertions.

Top (more than 20) Middle (4-20 views) Tail (1-3 views)

87

Conclusions

Conclusions
Worst-case bounds for the optimal cost and competitive cost ratios

• E.g., Best worst-case bounds of M+1 are achieved by selecting W = T = R

Average cost expressions and bounds

• Arbitrary inter-request distributions

• Example inter-request distributions (both short-tailed and heavy-tailed)

• Static is online optimal for constant and decreasing hazard rates, but can be arbitrarily
bad when heavy tailed or request rates are not known

Numeric and trace-based evaluations reveal insights into the relative cost
performance of the policies

• Substantial cost benefits of using window-based with intermediate M (e.g., 2-4) and the
optimal worst-case parameter setting (i.e., W = T = R)

Window-based cache on 2nd request policy using a single threshold optimized to
minimize worst-case costs provides good average performance

• Attractive choice for a wide range of practical conditions where request rates of
individual file objects typically are not known and can change quickly ...

Niklas Carlsson (niklas.carlsson@liu.se)

Thanks for listening!

Worst-case Bounds and Optimized Cache on Mth Request

Cache Insertion Policies under Elastic Conditions

Niklas Carlsson and Derek Eager

