

Tradeoffs in Cloud and Peerassisted Content Delivery Systems

Niklas Carlsson

György Dan Derek Eager Anirban Mahanti

Linköping University

KTH Royal Institute of Technology University of Saskatchewan NICTA

panding reality

September 5, 2012

.

2

- Content provider wanting to minimize its delivery cost
 - Catalogue of many contents
 - Different popularity
 - Average service guarantees

- Cost-efficient solution must scale with regards to both:
 - Request rate
 - Number of available contents

- Cost-efficient solution must scale with regards to both:
 - Request rate
 - Number of available contents

- Cost-efficient solution must scale with regards to both:
 - Request rate
 - Number of available contents

- Cost-efficient solution must scale with regards to both:
 - Request rate
 - Number of available contents

- Cost-efficient solution must scale with regards to both:
 - Request rate
 - Number of available contents

- Client can download from either
 - Origin servers (all contents)
 - Cloud storage/servers (subset of contents)
 - Other clients (peers)

Harrat

- Client can download from either
 - Origin servers (all contents)
 - Cloud storage/servers (subset of contents)
 - Other clients (peers)

Attailizet

- Client can download from either
 - Origin servers (all contents)
 - Cloud storage/servers (subset of contents)
 - Other clients (peers)

- -Atalevett, chada
- 2: get GS UNIVERS

- Client can download from either
 - Origin servers (all contents)
 - Cloud storage/servers (some contents)
 - Other clients (peers)

- Client can download from either
 - Origin servers (all contents)
 - Cloud storage/servers (subset of contents)
 - Other clients (peers)

Hailrat

unoterich "

 $B(\lambda_i) \approx \lambda \sum_{k=1}^{\infty} \frac{(\lambda L/U)^k}{k!} e^{-\lambda L/U} \frac{k!}{(k+1)^k} L$

- Consider **missing piece** policy
 - Server upload only one piece at a time whenever there is at least one piece missing among peer set

 $B(\lambda_i) \approx \lambda \sum_{k=1}^{\infty} \frac{(\lambda L/U)^k}{k!} e^{-\lambda L/U} \frac{k!}{(k+1)^k} L$

- Consider missing piece policy
 - Server upload only one piece at a time whenever there is at least one piece missing among peer set
- Assume (for simplicity)
 - Poisson arrivals, piece fractions, and independent pieces on each peer

 $B(\lambda_i) \approx \lambda \sum_{k=1}^{\infty} \frac{(\lambda L/U)^k}{k!} e^{-\lambda L/U} \frac{k!}{(k+1)^k} L$

- Consider **missing piece** policy
 - Server upload only one piece at a time whenever there is at least one piece missing among peer set
- Assume (for simplicity)
 - Poisson arrivals, piece fractions, and independent pieces on each peer

- Consider missing piece policy
 - Server upload only one piece at a time whenever there is at least one piece missing among peer set
- Assume (for simplicity)
 - Poisson arrivals, piece fractions, and independent pieces on each peer

Consider **missing piece** policy

 $B(\lambda_i) \approx \lambda \sum_{k=1}^{\infty} \frac{\left(\lambda L/U\right)^k}{k!} e^{-k!}$

- Server upload only one piece at a time whenever there is at least one piece missing among peer set
- Assume (for simplicity)
 - Poisson arrivals, piece fractions, and independent pieces on each peer

Peer k missing 1/(k+1) Peer k-1 missing 2/(k+1)

Peer 1 missing k/(k+1)

- Consider missing piece policy
 - Server upload only one piece at a time whenever there is at least one piece missing among peer set

Assume (for simplicity)

 Poisson arrivals, piece fractions, and independent pieces on each peer

Peer k missing 1/(k+1)

- Consider missing piece policy
 - Server upload only one piece at a time whenever there is at least one piece missing among peer set
- Assume (for simplicity)
 - Poisson arrivals, piece fractions, and independent pieces on each peer

 $B(\lambda_i) \approx \lambda \sum_{k=1}^{\infty} \frac{(\lambda L/U)^k}{k!} e^{-\lambda L/U} \frac{k!}{(k+1)^k} L$

Consider **missing piece** policy

- Approximation fairly accurate
- Very small benefit prioritizing young peers (with few pieces)
- Self sustainability

Consider **missing piece** policy

- Approximation fairly accurate
- Very small benefit prioritizing young peers (with few pieces)
- Self sustainability

Consider **missing piece** policy

- Approximation fairly accurate
- Very small benefit prioritizing young peers (with few pieces)
- Self sustainability

Self sustainability

Consider **missing piece** policy

- Approximation fairly accurate
- Very small benefit prioritizing young peers (with few pieces)
- Self sustainability

Detti

ENING

wards QUI

steoringh

Help out, but only during download/service

WGS UNI

Example allocation for optimal policy (when no seeding or bundling) Intermediately popular files pushed to the cloud

Policy comparison (which files to push to cloud)

- Optimal (intermediate) vs. baseline policies
- Big differences when either
 - High/low load

JJust det att hinde

dugarna mod e den palthröden

OBJERT

dauchte

SNING

- High popularity skew
- Catalogue size has little impact (not shown)

Policy comparison (which files to push to cloud)

- Optimal (intermediate) vs. baseline policies
- Big differences when either
 - High/low load

Just det att hinde

dugarna mod e den paltbriden

OZUELET

dauchte

ENING

- High popularity skew
- Catalogue size has little impact (not shown)

Policy comparison (which files to push to cloud)

- Optimal (intermediate) vs. baseline policies
- Big differences when either
 - High/low load

Just det att hinde

dugarna mod e

OBJERT

dauchte

SNING

- High popularity skew
- Catalogue size has little impact (not shown)

Policy comparison (which files to push to cloud)

- Optimal (intermediate) vs. baseline policies
- Big differences when either
 - High/low load

JJust det att hinde

dugarna mod e den palthröden

OBJERT

dauchte

SNING

- High popularity skew
- Catalogue size has little impact (not shown)

Detti

ENING

wards QUI

steoringh

Help out, but only during download/service

How to best use this bandwidth?

GS UNI

Bundling only (UT > L)

Hybrid

600

800

1000

Server (only) Cloud (only)

Hybrid (UT > L)

Popularity rank of files

Seeding (only)

Inflate most popular Depends less on cloud

Popularity rank of files

Hybrid

Policy comparison

- How did we decide which files to "inflate"?
- Baseline inflation policies with different complexity
 - Proportional: $\phi_i \propto \lambda_i$ (based on random peer interest, to help friends, for example)
 - Random: $\phi_i \propto 1$ (same for all)
 - Basic: yes/no decision using base allocation; same to all
 - □ Fine: Greedy search (with "basic" as starting point)
 - Other baseline inflation policies [IFIP Networking '10]
JJust det att hind arna med althrückim ENING OBJERT

- How did we decide which files to "inflate"?
- Baseline inflation policies with different complexity
 - Proportional: $\phi_i \propto \lambda_i$ (based on random peer interest, to help friends, for example)
 - Random: $\phi_i \propto 1$ (same for all)
 - Basic: yes/no decision using base allocation; same to all
 - □ Fine: Greedy search (with "basic" as starting point)
 - Other baseline inflation policies [IFIP Networking '10]

JJust det att hind arna med oalthrüden ENING OBJERT

- How did we decide which files to "inflate"?
- Baseline inflation policies with different complexity
 - Proportional: $\phi_i \propto \lambda_i$ (based on random peer interest, to help friends, for example)
 - **Random:** $\phi_i \propto 1$ (same for all)
 - Basic: yes/no decision using base allocation; same to all
 - □ Fine: Greedy search (with "basic" as starting point)
 - Other baseline inflation policies [IFIP Networking '10]

JJust det att hind AT IA Q SNING OBJERT

- How did we decide which files to "inflate"?
- Baseline inflation policies with different complexity
 - Proportional: $\phi_i \propto \lambda_i$ (based on random peer interest, to help friends, for example)
 - Random: $\phi_i \propto 1$ (same for all)
 - Basic: yes/no decision using base allocation; same to all
 - □ Fine: Greedy search (with "basic" as starting point)
 - Other baseline inflation policies [IFIP Networking '10]

JJust det att hind AT IA Q SNING OBJERT

- How did we decide which files to "inflate"?
- Baseline inflation policies with different complexity
 - Proportional: $\phi_i \propto \lambda_i$ (based on random peer interest, to help friends, for example)
 - Random: $\phi_i \propto 1$ (same for all)
 - Basic: yes/no decision using base allocation; same to all
 - □ Fine: Greedy search (with "basic" as starting point)
 - Other baseline inflation policies [IFIP Networking '10]

JJust det att hind arna med ENING OBJERT

- How did we decide which files to "inflate"?
- Baseline inflation policies with different complexity
 - Proportional: $\phi_i \propto \lambda_i$ (based on random peer interest, to help friends, for example)
 - Random: $\phi_i \propto 1$ (same for all)
 - Basic: yes/no decision using base allocation; same to all
 - □ Fine: Greedy search (with "basic" as starting point)
 - Other baseline inflation policies [IFIP Networking '10]

- Baseline inflation policies with different complexity
 - Up to 20% benefit using hybrid approach
 - Reckless use of bundling can be costly
 - Simpler (basic) policies achieves most of the benefits

- Baseline inflation policies with different complexity
 - Up to 20% benefit using hybrid approach
 - Reckless use of bundling can be costly
 - Simpler (basic) policies achieves most of the benefits

- Baseline inflation policies with different complexity
 - Up to 20% benefit using hybrid approach
 - Reckless use of bundling can be costly
 - Simpler (basic) policies achieves most of the benefits

- Baseline inflation policies with different complexity
 - Up to 20% benefit using hybrid approach
 - Reckless use of bundling can be costly
 - Simpler (basic) policies achieves most of the benefits

- Baseline inflation policies with different complexity
 - Up to 20% benefit using hybrid approach
 - Reckless use of bundling can be costly
 - Simpler (basic) policies achieves most of the benefits

83

Contributions

- Derive and evaluate bounds and approximations of the minimum server bandwidth required to ensure target average download rate
- Compare simple policy classes for which content to push to the cloud and provide insights regarding the importance of careful content selection
- Compare the best usage of the peer upload bandwidth, including policies determining how seeding and torrent inflation should be best utilized
- Also (in paper):
 - Where to direct clients in systems where the cloud provider has a differentiated cost model and charges based on the locality of the clients that are served

Thank you!

- Niklas Carlsson
- György Dan

Just det att hink

arna med el palthröden

OBUERET

ENING

- Derek Eager
- Anirban Mahanti

Linköping University KTH Royal Institute of Technology University of Saskatchewan NICTA

