
Predicting Video QoE from Encrypted Traffic:
Leveraging Video Fingerprinting and Providing

System-Level Insights
Somiya Kapoor∗, Ethan Witwer∗, David Hasselquist∗†, Mikael Asplund∗, Niklas Carlsson∗
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Abstract—Accurate Quality of Experience (QoE) estimation is
both important and challenging for network operators: important
since it is crucial for improving user satisfaction and challenging
due to end-to-end encryption preventing them from accessing
critical application-level metrics, such as video quality and buffer-
ing, forcing them to rely on indirect network-level data for QoE
assessment. In this work, we address the challenge of predicting
QoE from encrypted video traffic through two key contributions.
First, we adapt state-of-the-art video fingerprinting techniques,
originally developed for content identification, to accurately
predict QoE in encrypted settings. We demonstrate that our best
tested model achieves high prediction accuracy across diverse
and fluctuating network conditions, establishing it as a reliable
QoE predictor. These findings underscore the potential of deep
learning-based classification techniques for predicting QoE from
network traffic, offering a practical tool for QoE management
across diverse streaming environments. Second, we conduct a
systematic analysis of essential system-level factors to provide
practical guidance for network operators. Here, we examine the
impact of training data composition, varying network conditions,
and model generalizability across sites. Our results reveal that
robust QoE prediction is possible with our best tested model even
with limited training data and varying conditions, making our
approach feasible for real-world deployment. By enabling QoE
prediction without requiring access to encrypted video content,
our approach stands to support network operators in proactively
managing QoE and dynamically adjusting network resources,
ultimately enhancing user satisfaction.

I. INTRODUCTION

With online video consumption becoming central to daily
life, accurate Quality of Experience (QoE) estimation is crucial
for network operators aiming to enhance user satisfaction.
Today, streaming platforms dominate global Internet traffic [1],
with services like YouTube delivering entertainment, news,
and information to billions of users [2]. While these services
are typically delivered over-the-top using advanced Content
Delivery Networks (CDNs), network operators are respon-
sible for maintaining the infrastructure that connects users
to content, while ensuring that each user receives sufficient
bandwidth and stable connections. With the help of accurate
QoE estimation, a network operator can implement informed
resource allocation strategies and minimize playback interrup-
tions to improve user satisfaction [3], [4].

However, the rise of encrypted traffic (e.g., HTTPS) pre-
vents direct access to critical application-level metrics like

video quality, bitrate switches, and rebuffering – all of which
are key to understanding user experience and to diagnosing and
addressing issues affecting user experience. This lack of direct
access poses challenges for network operators, as they must
depend on network-level data to infer QoE and obtain proxy
insights. Moreover, network conditions may change over time,
leading to fluctuations in latency and available bandwidth. This
introduces inconsistencies in user experience: playback may at
times be smooth and at other times be plagued by buffering
and stalls. As encrypted traffic becomes more complex and
widespread, operators need alternative methods to assess and
manage QoE without direct access to application-level data.

To tackle these challenges, we investigate two main ob-
jectives: (1) leveraging state-of-the-art video fingerprinting
techniques to predict QoE from encrypted network traffic
accurately, and (2) systematically analyzing key system-level
factors that affect practical deployment and performance op-
timization for network operators.

First, motivated by recent advances in video fingerprinting,
we investigate whether state-of-the-art fingerprinting tech-
niques, originally designed to identify video content from
encrypted traffic, can be adapted for accurate QoE prediction.
These methods, known for their robustness in detecting fea-
tures of encrypted streams, prove effective for QoE prediction
across varying network conditions. Our results confirm this,
with a modified version of the Video-Adapted Robust Fin-
gerprinting (vRF) model [5] achieving high accuracy. Unlike
most prior QoE prediction studies, our selected models are
open source, encouraging further research and development.

Second, we present a systematic analysis of key system-
level questions to guide practical deployment and optimize
performance. For example: (1) Does it matter if the viewed
videos are part of the training dataset? Our findings suggest
it does not, which simplifies training data selection for network
providers. (2) How sensitive are accuracies to differences or
changes in training conditions? While accuracy does drop
when network conditions deviate from those of the training
data, we find it remains relatively high even when average
bandwidth differs by up to a factor of eight, with best results
when the training data reflects higher-bandwidth conditions.
(3) Are there benefits to sharing and/or combining training
data across sites with different conditions? We find that client
group-specific models yield the best results, although a global

© IFIP, 2025. This is the author’s version of the work. It is posted here by permission of IFIP for your personal use. Not for redistribution.
The definitive version was published in Proc. 2025 IFIP Networking Conference (IFIP Networking), https://doi.org/add-when-becomes-available



Video
provider

QoE prediction

Cross-site
data sharing

Client
group 1

Client
group 2

Fig. 1: Example deployment scenario of QoE prediction.

model performs better than a mismatched model. (4) How
much training data and time are needed to achieve high
accuracy? High accuracy is achievable with relatively short
training sequences: the first minute of data is often sufficient
for reliable QoE prediction throughout the entire session. By
examining these critical deployment factors, we contribute
insights that both advance the technical accuracy of QoE pre-
diction in encrypted settings and provide practical guidelines
for network operators aiming to monitor and optimize user
experience under heterogeneous and evolving conditions.

Outline: Section II provides background and an overview
of related works. Section III outlines the datasets and QoE
metrics used. Section IV presents, analyzes, and compares
the QoE prediction performance of our adapted fingerprinting
models. Section V presents performance analysis tests to
address each of the outlined system questions of interest.
Section VI examines the individual components that constitute
QoE in detail, discussing how they interact and contribute to
the overall QoE assessment. Finally, Section VII presents our
conclusions and summarizes key findings.

II. BACKGROUND AND RELATED WORK

A. Adaptive Bitrate Streaming

Dynamic Adaptive Streaming over HTTP (DASH) [6] is the
standard protocol for video streaming, often used as-is but also
adapted by platforms like YouTube [7] and Netflix [8]. It en-
ables clients to dynamically request video segments at varying
quality levels based on network conditions, which allows for
optimization of QoE metrics such as overall quality, number of
quality switches, and time spent rebuffering. However, due to
encryption, network operators lack access to the application-
level data required to fully assess or optimize QoE. This is in
contrast to QoS metrics (e.g., throughput and delay), which are
easily accessible but have less correlation with user experience.

B. Video Quality of Experience

While QoE varies subjectively, prior research [9], [10] has
identified critical factors shaping users’ viewing experiences,
including the overall quality, frequency of quality switches,
and rebuffering time, forming the basis for recent advance-
ments in ABR controllers [11]. Many QoE prediction models
based on such metrics have been designed to be implemented
in the network, as in Figure 1, where prediction is performed
by routers for the clients they serve. However, these models
are not typically tested in the multi-site case where data from

different client groups can be shared between nodes – we
return to this situation in Section V-C.

Several studies [12]–[16] use network-layer features with
machine learning or heuristics to predict an overall measure
of QoE or specific metrics, such as quality, quality switches,
and stalls. While some enable near real-time classification,
they often lack accuracy and comprehensive evaluation across
varied network conditions. Other systems attempt to replicate
client state, such as BUFFEST [17], which employs a buffer
emulator to replicate the client’s buffer conditions and predict
stalls in real-time. Two key differences between these studies
and our methodology are that existing techniques have not
been comprehensively evaluated in different network condi-
tions and generally offer lower accuracies.

More recent studies have begun to employ deep learning.
Rec-Live [18] uses a Long-Short Term Memory (LSTM) net-
work to differentiate live streams from video-on-demand and
a Random Forest model to predict quality and stalls. Similarly,
Oura et al. [19] use an LSTM to predict bitrate, resolution, and
stalls, followed by a Random Forest model to compute a mean
opinion score. Shen et al. [20] use a Convolutional Neural Net-
work (CNN) to predict quality, rebuffering events, and startup
delay. Loh et al. [21] compare deep learning and Random
Forest models for predicting events, including quality, quality
switches, and stalls, while Seufert et al. [22] investigate various
models and transfer techniques to achieve better performance
in unseen conditions. Others have proposed real-time quality
prediction using a fingerprint database, achieving very high
accuracy [23], [24]; but this would require network operators
to generate fingerprints for popular videos, rendering these
approaches impractical. In contrast to prior work, we focus
on practical challenges and systems insights into how to best
implement and use state-of-the-art traffic analysis solutions.
Furthermore, to address the current lack of available source
code, our work is fully open-source and reproducible.

Network-level policies aim to optimize QoE, with server-
assisted techniques [25], [26] increasing infrastructure load
but not effectively addressing varying network conditions and
client interactions. Edge-based solutions [27], [28] mitigate
some limitations but depend on tailored clients providing
device information, lacking local bitrate adaptation. Krish-
namoorthi et al. [3] propose temporary bandwidth caps to
enhance buffering and stall recovery. Other works [4], [29] use
heuristics or deep learning for QoE and fairness, though with
limitations. Caching decisions based on QoE measurements
to improve QoE at scale [30]–[34] have also been proposed.
These approaches depend on client state awareness and would
benefit from our QoE metric predictions.

C. Traffic Analysis

Traffic analysis is a group of techniques used to determine
details about encrypted traffic by analyzing network-level
patterns, such as packet directions, timing, and sizes [35], [36].
Several works have investigated video fingerprinting, which
employs heuristic and machine learning-based tools to identify
videos streamed over encrypted connections [37].



Recent video fingerprinting models demonstrate a remark-
able ability to extract useful information from encrypted video
streams. Among them, Beauty and the Burst [38] stands out
as the canonical deep learning model, achieving high accuracy
with a simple CNN and high-level features. Recently, Carlson
et al. [5] adapted two website fingerprinting models (designed
for identifying websites), Deep Fingerprinting (DF) [39] and
Robust Fingerprinting (RF) [40], to the DASH live streaming
context, improving upon Beauty and the Burst with high ac-
curacy in challenging scenarios, including variable bandwidth
conditions, training for unknown conditions, and variations in
live latency between training and testing datasets.

Though Carlson et al.’s two adapted models, Video-Adapted
DF (vDF) and vRF (based on DF and RF, respectively), are
intended for classification of videos, we consider that, due to
their great success in identifying key features of encrypted
video streams even in challenging network conditions, a
similar approach is appropriate for QoE estimation of video
streams. In this work, we thus investigate and further refine
vDF and vRF to predict QoE metrics for encrypted streams.
For comparison, we also consider default DF and RF, with
more granular input formats.

III. DATASET AND QOE METRICS

Designing robust QoE prediction systems presents several
challenges. One challenge is managing heterogeneous network
conditions. Another is utilizing training data across different
network conditions, and how to best utilize training data
and system resources in general. We perform a systematic
study to provide insights into these key challenges. For fair
comparisons of different solutions, we use a sequence of tests.
These tests provide quantitatively supported insights into the
best ways to address various challenges. We rely on an open,
large-scale dataset and well-established performance metrics.
In this section, we outline our dataset and metrics.

A. Dataset

To allow direct comparisons of QoE prediction performance
across a wide range of scenarios, each with heterogeneous
and time-varying bandwidth, we use an extended version of
the LongEnough-variable dataset [5], [37]. This dataset was
specifically crafted to reflect a diverse range of bandwidth con-
ditions encountered during real-time streaming and includes
both network traces and QoE metrics for 100 live-streamed
videos representing a variety of content.

During data collection, each sample was generated while
streaming over a bottleneck link following a session-unique
bandwidth pattern, derived from authentic real-world LTE
traces [41]. To capture different average bandwidth conditions,
scale factors of 1, 2, 4, and 8 were applied to the bandwidth
patterns to represent a spectrum of network conditions, from
a highly constrained real-world LTE scenario (scale factor
1, average of 3.85 Mbps) to more favorable scenarios (scale
factor 8, reaching peaks around 100 Mbps), allowing us to
compare model performance over different QoE ranges. For
each set of average conditions (Var-X, where X is the scale

factor), every video was streamed up to the 10-minute mark
(for a maximum duration of 10 minutes), initiated from 10
distinct starting points spaced at 60-second intervals from the
beginning of the video. 10 samples were collected at every
starting point, resulting in a total of 4× 100×

∑10
i=1 i× 10 =

220, 000 minutes ≈ 3, 667 hours of streamed video traffic.
The videos in the dataset were streamed at three distinct

quality levels: 1000 kbps (1K), 2000 kbps (2K), and 4000
kbps (4K). This offers a broad view of the streaming quality
spectrum. These quality levels, along with variations thanks
to variable bitrate (VBR) encoding, allow us to capture the
segment size variations of modern streaming services under
different network conditions. Using the LongEnough-variable
dataset, we are also able to capture adaptability characteristics:
note that many quality switches and lower average qualities are
expected with a scale factor of 1 (average bandwidth less than
4000 kbps), while much fewer switches should occur with a
scale factor of 4 or 8. For a comprehensive explanation of the
induced bandwidth limitations and dataset collection process,
see Appendix B in Hasselquist et al. [37].

While there are other factors that can impact the QoE of
modern DASH clients, available bandwidth is likely the factor
that impacts their QoE the most. In Section III-C, we show
that the above selection of bandwidth scales and bandwidth
variations captures a wide range of interesting QoE values.

B. QoE Metrics

To measure QoE, we extract data from the QoE traces in
the dataset and calculate normalized average statistics over two
time intervals: the first or last minute of a trace. These two
time periods are particularly interesting for this dataset, since
the first minute captures the most transient and often most
challenging conditions for a client (as the client initially has no
data and must both build a buffer and find out what playback
rate it can sustain), while clients have typically reached steady-
state conditions by the last minute (although bandwidth still
changes uniquely with time for all clients).

To ensure consistency with prior works [11], [42] in terms
of combined QoE score, we use the same definition of QoE
and normalized versions of the three most commonly used
QoE metrics – mean utility, rebuffering ratio, and switching
rate – as well as an overall QoE metric based on these
normalized metrics. These metrics are intuitive and easy to
interpret, making them valuable on their own, with adaptive
bitrate (ABR) algorithms typically designed to take them
into account. With our normalization, each value is scaled
between 0 and 1, making it easier to interpret and compare
results across different scenarios. The combined QoE metric is
defined such that higher scores capture the desirable goals of
(1) delivering high video quality, (2) minimizing rebuffering
time, and (3) reducing the frequency of bitrate switches during
playback. This approach ensures a comprehensive evaluation
of the user’s viewing experience by addressing both the quality
of the stream and the smoothness of playback under varying
network conditions. The exact definitions of the components
of our selected QoE metric are described next.
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Fig. 2: First-minute differences observed across bandwidth conditions (Var-1 to Var-8) with regard to the three key metrics
and overall QoE scores.
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Fig. 3: Last-minute differences observed across bandwidth conditions (Var-1 to Var-8) with regard to the three key metrics and
overall QoE scores.

Mean Utility: We calculate the mean video quality using a
logarithmic utility function:

v̄ =
1

N

N∑
i=1

log(ri/rmin)

log(rmax/rmin)
, (1)

where N represents the total number of segments in the video,
rmin and rmax correspond to the minimum and maximum
bitrates possible for each such segment. This definition pro-
vides a normalized score reflecting bitrate closeness to the
maximum, capturing the overall viewing experience in terms
of resolution, with higher scores indicating better quality.

Rebuffering Ratio: We calculate the rebuffering ratio as:

ρrebuf =
Trebuf

Tsession
, (2)

where Trebuf is the total rebuffering time and Tsession is the
total duration of the observed playback session. This ratio
represents the proportion of the observed session duration
spent buffering, with higher values indicating more disruptions
and lower values reflecting smoother playback.

Switching Rate: We calculate the switching rate as:

pswitch =
Nswitch

N − 1
, (3)

where Nswitch is the total number of bitrate switches and N
is the total number of video segments. This metric captures
the frequency of bitrate changes during playback, with higher
values indicating more frequent quality adjustments and po-
tential disruptions. A lower switch ratio reflects more stable,
consistent streaming.

Combined QoE Score: The QoE score is calculated as a
linear, weighted combination of the above key factors:

QoE = v̄ − β · ρrebuf − γ · pswitch, (4)

where β and γ are weighting factors. Like Chen et al. [11],
we select β = 10 and γ = 1, placing greater emphasis on
users being frustrated by rebuffering times.

C. QoE Differences between Trace Classes

To provide some intuition for the relative challenges that
each bandwidth category in the dataset presents, Figures 2
and 3 show the normalized metrics and QoE for the first
and last minute of all trace categories. This selection spans
bandwidth conditions from Var-1 (worst) to Var-8 (best), cap-
turing a broad range of normalized values across key metrics
and diverse overall QoE scores. This diversity highlights the
dataset’s suitability for evaluating if training data from one
type of conditions may be helpful when predicting the QoE
of a different client group’s network conditions. For example,
we note that the bandwidth conditions were selected such that
we see substantial differences across conditions, regardless of
metric, with the most challenging conditions (Var-1) spanning
almost the full range of mean utilities and the best conditions
(Var-8) typically allowing for a mean utility close to one.

IV. CAN STATE-OF-THE-ART FINGERPRINTING ATTACKS
BECOME GOOD QOE PREDICTORS?

One major goal of this study is to determine whether state-
of-the-art fingerprinting attack models, designed for content
identification, can provide accurate QoE prediction.

A. Adapted Fingerprinting Techniques

Here, we outline the four fingerprinting attack models that
we have adapted for QoE prediction purposes.

DF: Deep Fingerprinting (DF) [39] is a website finger-
printing attack that uses a 1×5,000 matrix to represent the
first 5,000 packets in a network trace, where each entry
indicates the direction of a packet (+1 for outgoing and −1 for
incoming, from the client’s perspective). The matrix is padded
with zeros if there are fewer packets and truncated if there are
more. A simple neural network with multiple convolutional
layers processes this matrix to extract patterns from the packet
sequence. While DF is effective at identifying websites based
on raw traffic, it may be sensitive to variations in data structure.



TABLE I: Accuracy (%) when training and evaluating under same average bandwidth conditions, with five QoE classes.
(a) First minute, exact (b) First minute, ±1 class (c) Last minute, exact (d) Last minute, ±1 class

Bandwidth Method Method Method Method
case ↓ DF vDF RF vRF DF vDF RF vRF DF vDF RF vRF DF vDF RF vRF
Var-8 74.5 76.5 73.6 85.5 97.5 97.8 98.4 99.2 57.6 56.4 68.9 76.0 93.3 91.8 99.1 99.1
Var-4 50.0 53.4 60.7 74.8 90.5 92.0 96.4 98.6 42.8 43.9 58.4 65.6 82.3 82.1 93.5 96.7
Var-2 46.7 50.3 60.8 71.6 89.7 90.7 96.1 98.7 35.6 33.5 48.1 59.3 80.2 77.1 91.5 96.0
Var-1 63.4 64.9 71.1 76.8 95.2 95.8 99.3 98.8 55.9 51.6 63.9 70.5 90.1 88.7 97.8 98.1

RF: Robust Fingerprinting (RF) [40] builds on the suc-
cess of CNNs in website fingerprinting attacks and surpasses
previous methods by introducing a new input format called
the Traffic Aggregation Matrix (TAM). This matrix separates
packets into two rows by direction and groups them into time
intervals, called buckets, which make up the matrix columns.
For the website fingerprinting task, the TAM is specifically
adjusted to divide 80 seconds of network traffic into a 2×1,800
matrix, with each bucket representing 0.044 seconds of traffic.

vDF/vRF: Video-Adapted DF (vDF) [5] is Carlson et al.’s
adaptation of DF for identification of video traffic. The primary
change from default DF is the introduction of a time series
input with buckets containing sums of packet sizes. Video-
Adapted RF (vRF) [5] follows a similar approach, extending
RF’s TAM to also take packet sizes into account. We find
that few further modifications are needed to achieve high
performance in the QoE prediction setting due to the models’
already strong ability to extract features from encrypted video
traffic. Based on preliminary testing, the only changes we
make are to use a higher learning rate of 0.01 for vRF and a
fixed value of 50 epochs for every model, replacing the initial
settings of 0.0005 for learning rate and 30 epochs.

B. Training and Labeling

Ground Truth Labeling: Using the QoE logs in the dataset,
we label every relevant 60-second interval of the traffic traces
(first and last minute) with the normalized QoE values defined
above as well as the overall QoE score for that period.

QoE Prediction Granularity: In our evaluations, we use
five similarly frequent QoE classes but also report results
for varying granularity of the QoE classification. The default
choice of five classes matches the scoring scale distinguishable
by humans [43] and is often used in various contexts (e.g.,
Likert tests, student grades, etc.). Furthermore, since in this
case being one class off still provides a QoE estimate that may
result in reasonable flow prioritization (e.g., based on bad vs.
average vs. good QoE flows), we report values for both perfect
prediction and being one class off.

To decide the thresholds for the class boundaries, we sort the
QoE scores of all 60-second intervals of interest (as observed
across the combined set of bandwidth conditions) and then
pick thresholds in two ways. For the first minute, we use equal
distribution such that all classes contain the same number of
samples (i.e., equally spaced percentiles). For the last minute,
we opt for perfect score allocation, in which we assign all
samples with perfect score (i.e., QoE = 1) to class A and then
split the other samples equally among the remaining N − 1
classes (e.g., classes B to E). In this scenario, the top class A

contains 25% of samples, and the other four classes comprise
the remaining 75% of samples. Note that equal distribution is
used for the first minute because no samples have a perfect
QoE score of 1 and perfect score allocation is thus unsuitable.

C. Performance Comparisons

We start by comparing the performance of the four models
across different average bandwidth conditions. For this anal-
ysis, we assume that a network provider can collect training
data under similar average bandwidth conditions to the clients
whose QoE they try to classify, and that the training data ex-
hibits similar high-level bandwidth variability as the evaluation
data. This is a reasonable assumption in most cases, as the
network provider can either collect data behind the same bot-
tleneck link as the clients they monitor or perform controlled
tests under similar conditions as the monitored clients. Later,
we consider deviations from this assumption, including how
an operator may best use training data from diverse conditions
(or client groups) when targeting specific client groups.

Table I shows example results when training and evaluating
using each of the tested bandwidth conditions: Var-1 (worst) to
Var-8 (best). Here, classification accuracy is presented for both
the first minute (initial transient period) and last minute (most
stable period). We consider accuracy both when the models
exactly predict the QoE class of a trace (Table I(a) and I(c))
and when allowing a margin of one class (Table I(b) and I(d)).
In the latter case, the models still provide an informative,
actionable estimate of the user’s QoE while achieving better
performance due to the less stringent requirement. We split
the dataset into 80% for training and 20% for testing based on
videos and perform five iterations of hold-out cross-validation
to enhance robustness by varying the dataset partitions.

All models demonstrate a decreasing accuracy trend as
bandwidth scale decreases from Var-8 to Var-2, but accuracy
again increases once Var-1 is reached. This is likely due to
lower QoE variability at more extreme scales. However, this
tendency is most clearly visible when predictions must be
exact: vRF, which achieves the best performance in all cases,
has up to 16.7% accuracy variation between scales when an
exact match is required, but its accuracy is at least 96.0%
otherwise. The other models also exhibit less variability and
higher accuracy when allowed to be off by one class.

We also see higher accuracy during the first minute of
playback, when quality is most likely to fluctuate, than the
last minute, when quality is expected to be more stable; this
is true for all models. We attribute this to the models’ ability to
utilize the greater diversity of QoE values observed during the
first minute (more balanced classes). Regardless, vRF stands



TABLE II: Accuracy (%) with vRF when using four and
six classes. (Training and evaluating under same average
bandwidth conditions.)

4 classes 6 classes
Bandwidth First Last First Last

case ↓ Exact ±1 Exact ±1 Exact ±1 Exact ±1
Var-8 89.4 99.6 78.0 99.1 82.0 97.8 73.3 97.7
Var-4 80.4 99.0 69.9 98.0 71.5 96.8 60.7 94.7
Var-2 74.9 99.3 65.1 98.5 65.4 97.2 53.6 93.3
Var-1 85.1 99.4 79.5 98.9 72.3 98.3 62.4 96.6

out as the most effective model in both scenarios: DF, vDF, and
RF achieve only 73.6-76.5% accuracy during the first minute
and 56.4-68.9% during the last minute on Var-8 when an exact
match is required; in contrast, vRF provides 85.5% and 76.0%
accuracy, respectively. This increases further to 99.2% and
99.1% with a one-class margin.

Finally, we note that vRF also performs well when using
different numbers of classes. This is illustrated in Table II,
where we show example results with 4 and 6 classes. Accuracy
improves slightly with 4 classes, and while it decreases with
6 classes (compared to 4 and 5 classes), the differences are
relatively small, especially when considering the off-by-one
case. This captures that most misclassifications are still off by
at most one class with 6 classes. These results also indicate
that network operators can tune the tradeoff between model
performance and granularity. As vRF is the most effective
model by a large margin, we only consider vRF throughout
the remainder of the paper.

V. SYSTEMS QUESTIONS OF INTEREST

We next present a systematic analysis of key system-level
questions for practical use and performance optimizations.

A. How Well Do Models Generalize to Videos Outside the
Training Dataset?

A key indicator of the viability of a QoE prediction model
is whether it effectively generalizes to videos outside of the
training set. If this is not the case, the model must be trained
on popular videos (i.e., those that users are likely to watch) and
may only perform well on those videos, restricting the model’s
utility and requiring costly continual retraining. In contrast, a
model whose performance is not significantly impacted by the
choice of video content for training has substantial positive
implications for the resources required by network providers:
QoE can be proactively managed for all users and videos, and
frequent retraining is not necessary.

To evaluate vRF’s ability to generalize to videos outside of
the training set, we train the model using 80 videos, with 80
samples from each video included in the training dataset. For
testing, we prepared two distinct datasets: one for seen videos,
consisting of the remaining 20 samples from the 80 training
videos, and another for unseen videos, which included all 100
samples from the 20 videos that are not part of the training set.
This approach allows us to evaluate vRF’s generalizability to
both familiar and unfamiliar video content. Figure 4 compares
the accuracy of vRF when predicting QoE for seen and unseen
videos under all bandwidth conditions.
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Fig. 4: Accuracy of seen vs. unseen videos.

The results indicate that vRF is equally effective regardless
of whether the testing data consists of videos in the training
set. In fact, vRF consistently achieves slightly higher accuracy
on unseen videos during the first minute of playback, and this
is sometimes the case during the last minute. We note that
these differences are negligible (no more than 3% between
the seen and unseen videos in Figure 4), as is also the case in
the few instances where vRF performs slightly better on seen
videos. This indicates that frequent retraining is unnecessary
and that vRF can provide an accurate indication of users’ QoE
regardless of which videos they choose to watch.

B. How Sensitive are Accuracies to Differences or Changes
in Training Conditions?

In this section, we train and test on different conditions.
Two cases are considered: (1) when training and testing are
done under varying bandwidth conditions, and (2) a more
challenging scenario involving training on the first minute and
testing on the last minute, also under varying conditions.

This means that training and evaluation data are collected
under different conditions. For example, such a situation may
arise when bandwidth conditions change significantly over
time and the operator does not have enough time or resources
to collect more/new data. Another example arises when a
network provider does not have access to instrumented clients
for all of their clients’ network conditions.

Here, we assume that the network provider collects or has
collected training and testing data under different average
bandwidth conditions. Table III presents the results for vRF
when training and testing across varying bandwidth conditions,
with 80 videos for training and 20 videos for testing. Here,
accuracy is presented for both the first minute and last minute,
and cases in which training and testing data are from the
same conditions (diagonals, corresponding to Table I, but
without cross-validation here) are marked in bold. We consider
accuracy both when the models must exactly predict the QoE
class of a trace (Table III(a)) during the first minute and when
allowing a margin of one class (Table III(b) and III(c)) during
the first and last minute.

Though predicting user experience across bandwidth condi-
tions can be difficult, our experiments indicate that vRF retains
high accuracy even in this challenging scenario. We observe
the same trend as reported previously when training and testing
under the same conditions; i.e., accuracy decreases from Var-8



TABLE III: Accuracy (%) when training and evaluating under different average bandwidth conditions. Here, vRF with five
QoE classes is used. (To avoid repetition, better use space, and simplify comparisons one variable at a time, we show results
only for first minute/exact, first minute/± 1 class, and last minute/± 1 class.)

(a) First minute, exact (b) First minute, ±1 class (c) Last minute, ±1 class
Training Testing dataset Testing dataset Testing dataset
dataset ↓ Var-8 Var-4 Var-2 Var-1 Var-8 Var-4 Var-2 Var-1 Var-8 Var-4 Var-2 Var-1

Var-8 88.1 65.7 57.2 71.9 99.6 97.5 95.7 97.6 99.2 93.8 94.4 61.6
Var-4 85.2 81.7 69.9 75.4 99.5 99.3 98.2 99.1 99.2 97.4 95.9 97.8
Var-2 79.6 73.5 77.0 76.9 99.2 98.9 99.1 99.2 99.2 96.6 97.2 97.9
Var-1 39.1 53.7 66.5 79.9 98.3 97.9 98.1 99.4 69.7 86.9 94.5 98.6

TABLE IV: Accuracy (%) with vRF when using first minute
for training and last minute for testing. (Training and evaluat-
ing under different bandwidth conditions.)

Testing on last minute
Training on Var-8 Var-4 Var-2 Var-1

first minute ↓ Exact ±1 Exact ±1 Exact ±1 Exact ±1
Var-8 68.4 97.4 52.9 92.8 40.7 91.4 29.4 94.5
Var-4 68.8 99.2 54.9 95.0 60.9 93.6 71.0 96.3
Var-2 71.0 98.0 60.9 95.1 54.9 94.2 68.8 97.0
Var-1 29.4 99.0 40.7 95.2 52.9 94.5 68.4 97.2

to Var-2 and increases again at Var-1. In Table III(a), we see it
is better to train on bandwidth conditions similar to the testing
set when an exact match is required, as accuracy decreases
further from the diagonal. However, if a one-class margin is
acceptable, the choice of training and testing conditions does
not have a significant impact: accuracy is at least 95.7% for
the first minute and, with the exceptions of (1) training on Var-
1/testing on Var-4, and (2) training on Var-1/testing on Var-8
and vice versa, 93.8% for the last minute. This indicates that
vRF can provide a good indication of QoE, regardless of the
conditions of the testing set, when training on intermediate
conditions (accuracy is at least 95.9% in these cases).

Temporal differences in data: In the second scenario, a
network operator collects data only from the initial part of
some videos, e.g., the first minute, and evaluates the model’s
performance on a later part of the playback session, such as the
last minute. This approach eliminates the need to track network
traces throughout the entire video and focuses on resource
allocation and saving time. Table IV shows the performance of
vRF when trained on data from the first minute (of the training
set) and tested on the last minute (of the evaluation set) under
various bandwidth conditions, including results for both exact
predictions and those within a one-class margin. For exact
predictions, training on intermediate conditions (such as Var-
4 or Var-2) improves generalization across bandwidth scales.
Meanwhile, within a one-class margin, accuracy remains high
across all scenarios, exceeding 90% and demonstrating vRF’s
robustness for approximate QoE prediction.

Finally, in comparison with training and evaluating on last-
minute data (Table III(c)), the results with a one-class margin
are lower by a maximum of 3.0%. This suggests that a network
operator must weigh the advantages of potentially slightly
higher accuracies from training on the last minute against the
added cost of significantly longer data collection periods (to
capture steady-state behavior) when creating training data. We
also note a few cases where there are significant benefits to
using first-minute training data. These cases all correspond to

scenarios when the accuracy is generally low due to using
training data from a bandwidth scale a factor eight greater or
smaller than the monitored clients (e.g., Var-1 vs. Var-8), with
benefits likely being related to the first-minute training data
being exposed to a wider range of scenarios and conditions.

C. Are there Benefits to Sharing Training Data Across Sites
with Different Conditions?

Even if bandwidth conditions are known, a network oper-
ator with multiple sites may have the option to share data
across sites with different bandwidth conditions, as depicted
previously in Figure 1 (blue arrow between routers). In
this section, we consider whether vRF benefits from such
additional training data. We compare its performance when
using (1) a specialized model, consisting of training data from
the same bandwidth conditions as the testing dataset, (2) an
extended specialized model additionally containing 20% of the
data from other bandwidth scales (25% of the 80% we use
for training in other experiments), (3) a combined (“global”)
model that uses training data from all client locations, and (4)
a combined scaled-down model, which also uses data from all
sites but limited to the size of specialized model, serving as a
second baseline. The results are summarized in Table V.

We see substantial benefits to training a specialized model.
vRF consistently achieves better accuracy with the specialized
model, and the differences are greater at higher bandwidth
scales: for example, during the first minute, vRF has 10.1%
better exact-match accuracy on Var-8 and 7.0% better accuracy
on Var-1 with the specialized dataset than with the full-scale
combined dataset. However, this assumes that the correct
training model is selected, necessitating the ability to estimate
average bandwidth conditions.

In contrast, there does not appear to be a significant ben-
efit to extending the specialized model. While the extended
specialized model achieves 0.1% greater accuracy on Var-
2 and Var-8 during the last minute, these improvements are
negligible, and accuracy is typically lower than with the
specialized model. This indicates that training data from the
same bandwidth conditions as the evaluation data contains
sufficient features for accurate classification and that addition
of data from other bandwidth conditions does not provide the
models with further useful information in almost any case.

Both combined models perform similarly to the extended
specialized model. Comparing also with results from Table III
(training and testing under different conditions), we note
that the combined model consistently outperforms the worst



TABLE V: Accuracy (%) when training using training data shared across bandwidth conditions.
(a) First minute, exact (b) First minute, ±1 class (c) Last minute, ±1 class

Testing dataset Testing dataset Testing dataset
Training dataset ↓ Var-8 Var-4 Var-2 Var-1 Var-8 Var-4 Var-2 Var-1 Var-8 Var-4 Var-2 Var-1

Specialized 88.1 81.7 77.0 79.9 99.6 99.3 99.1 99.4 99.2 97.4 97.2 98.6
Combined, full scale 78.0 65.6 70.5 72.9 99.1 98.6 98.5 99.5 98.3 96.7 97.1 99.2
Combined, scaled down 78.7 68.5 71.6 74.4 99.1 98.3 98.9 99.4 98.3 97.1 97.0 99.1
Specialized, extended 75.7 73.7 70.9 77.2 99.4 98.9 98.7 98.7 99.3 97.1 97.3 98.2
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Fig. 5: Impact of sample duration on accuracy.

matching model but typically does not offer any benefits when
off by only a factor of 2. This suggests that a network operator
would benefit from training specialized models when they
have access to training data from various bandwidth conditions
and can classify bandwidth conditions sufficiently well (e.g.,
within a factor of 2). On the other hand, a global model may
be appropriate when it is difficult to identify the approximate
bandwidth class. In this case, while exact predictions may be
up to 10.1% less accurate, allowing a one-class margin still
results in very high accuracy – at least 97.0% regardless of
which scale is selected for the global model.

Finally, we emphasize that more data is not always better.
We see this in two ways: (1) comparing the accuracies of the
two combined models, where the smaller model sometimes
perform better; and (2) the reduction in accuracy seen when
extending the specialized models (adding training data from
other conditions, fourth training set in Table V) compared to
just using the specialized models on their own (first training
set). These results highlight the value of collecting training
data and creating specialized models for conditions similar to
those experienced by client groups of interest.

D. How Much Training Data and Time are Needed to Achieve
High Accuracy?

The sooner a network operator obtains an estimate of the
user’s QoE, the more likely it is that they will be able to
apply policies that counteract any ongoing or impending QoE
issues. Thus, we find it important to quantify how long a
stream needs to be active before vRF can provide an accurate
result. Similarly, to bootstrap vRF, initial training is required
– it may be favorable for an operator to save resources by
limiting training time/computational demands to the minimum
required to reach the desired level of performance. In this
section, we explore these issues by analyzing the impact of
sample duration and epoch count on vRF.

Impact of Sample Duration: The duration of a video
stream impacts the amount of data available for QoE predic-
tion, thus affecting models’ ability to assess user experience.
To evaluate this, we successively trim each sample in the

dataset, from 60 to 2 seconds for both the first and last minute,
and track the accuracy of vRF at each sample length for all
bandwidth scales. Figure 5 shows the results for exact predic-
tion and accuracy within a one-class margin. The improvement
in accuracy as sample length increases is (except for Var-8)
smaller for the last minute than the first minute when an exact
prediction is required, but accuracy does not ever improve by
more than 15-20% when increasing the sample length from
2 to 60 seconds. Regardless of sample duration, accuracies
are consistently highest for Var-8, with higher accuracies for
the first minute compared to the last minute; and the lowest
accuracies are observed for Var-2, which also demonstrates the
greatest volatility as sample length changes.

These results indicate that near real-time prediction can be
carried out with high average bandwidth and that operators can
obtain an early initial indication of the user’s QoE for all but
exceedingly short videos. The results with a one-class margin
are even more promising: for the first minute, no notable
changes in accuracy are seen with sample lengths above 10
seconds, though accuracy increases by up to 8.5% (depending
on bandwidth scale) up to 10 seconds. For the last minute,
accuracy is even more stable, and accuracy on Var-8 is highest
below 10 seconds. As a result, a network operator can obtain
an accurate indication of QoE very early on in a session and
perform near real-time QoE prediction with vRF.

Impact of Number of Epochs: Up to this point, we have
not varied the number of epochs for our tested models. Instead,
we have consistently set the epochs to 50 across all conditions
to keep the epoch count low and based on initial observations
that high accuracy is attainable with 50 epochs. However,
different settings may be appropriate for different network
providers, as epoch count represents a tradeoff between train-
ing time/resources and performance. Figure 6 shows vRF’s
accuracy as a function of epochs for the first and last minute.

We observe in all cases that accuracy is negligible with
extremely low epochs (less than 10), but it quickly rises and
remains consistent after around 50 epochs, with no further
improvements if the epoch count is raised further. This in-



0 100 200 300 400 500 600
Epochs

0
20
40
60
80

100
Ac

cu
ra

cy
 (%

)

Var-1
Var-2
Var-4
Var-8

(a) First minute, exact

0 100 200 300 400 500 600
Epochs

0
20
40
60
80

100

Ac
cu

ra
cy

 (%
)

Var-1
Var-2
Var-4
Var-8

(b) First minute, ±1 class

0 100 200 300 400 500 600
Epochs

0
20
40
60
80

100

Ac
cu

ra
cy

 (%
)

Var-1
Var-2
Var-4
Var-8

(c) Last minute, exact

0 100 200 300 400 500 600
Epochs

0
20
40
60
80

100

Ac
cu

ra
cy

 (%
)

Var-1
Var-2
Var-4
Var-8

(d) Last minute, ±1 class

Fig. 6: Impact of number of epochs on accuracy.
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Fig. 7: Accuracy when considering individual QoE components: (a) mean utility, (b) rebuffering ratio, and (c) switching rate.

dicates that 50 epochs represents a good choice for network
operators wishing to obtain maximal accuracy without wasting
resources, while it is still possible to achieve comparable
results with even less training if resources are limited.

VI. INSIGHTS FROM QOE COMPONENTS

While the overall QoE score reflects the full user experi-
ence, analyzing its individual components can help network
providers identify issues, fine-tune services, and enhance per-
formance. This analysis also helps explain variations in predic-
tion accuracy. Therefore, we evaluate vRF’s accuracy for each
QoE factor: mean utility, rebuffering ratio, and switching rate.

Mean Utility: We use an 80-20 train-test split based on
videos, with perfect score allocation, when predicting mean
utility. Figure 7(a) shows the results, where we see a similar
pattern to the overall QoE score: accuracy is highest for Var-8
and decreases as the bandwidth conditions worsen, before in-
creasing slightly again at Var-1. This reflects that more volatile
bandwidth conditions, characterized by more bitrate switches
and greater diversity in mean utility values, make accurate
prediction more difficult. As with overall QoE, accuracy is
higher during the first minute when most quality switches oc-
cur (richer training data), and vRF’s prediction of mean utility
is effectively perfect when a one-class margin is allowed.

Rebuffering Ratio: For this analysis, we follow the same
method as described in Section IV-B, utilizing equal distribu-
tion for the first minute and perfect score allocation for the
last minute. The results are displayed in Figure 7(b). In this
scenario, we again observe that accuracy is best for Var-8.
However, accuracy decreases with reduced average bandwidth
conditions and does not increase again at Var-1. As rebuffering
is more common with lower average bandwidth, this indicates
that a higher presence of rebuffering and greater variability in
rebuffering ratios make it challenging to achieve high exact-
match accuracy. However, accuracy is still very high with a
one-class margin, and accuracies are similar for first- and last-
minute predictions, regardless of bandwidth conditions.

Switching Rate: For the switching rate, we categorize
traces in the same way as in the rebuffering ratio experiments
and Section IV-B. The results are shown in Figure 7(c).
As with mean utility, we see that accuracy decreases with
bandwidth scale before increasing again slightly at Var-1; this
reflects the greater challenge of predicting switching rate in the
presence of more switches and greater inter-trace differences
in switching behavior. Conversely, the best accuracies are
attained during the first minute, reflecting vRF’s ability to take
advantage of more varied training data. Accuracy is high in
all cases when allowing a one-class margin.

Discussion: The primary aim of the combined QoE score is
to improve the overall user experience, encompassing higher
video quality, shorter rebuffering times, and fewer bitrate
switches. However, rebuffering is the most frustrating for
users [44], as reflected in our choice of β for the QoE score.
Thus, a network operator may place a higher emphasis on
reducing the rebuffering time as much as possible, while
focusing less on preventing bitrate switches. This could be
done by predicting the rebuffering ratio directly, in which
case our analysis indicates that nearly perfect accuracy can be
attained for both the first and last minute if a one-class margin
is acceptable, or by increasing β relative to γ. In the latter
case, the promising results of vRF when predicting the QoE
score with β = 10 and when predicting the rebuffering ratio
(compared to the switching rate) suggest that the performance
would stay the same or increase slightly.

While we see lower accuracies for mean utility and switch-
ing rate during the last minute, this is when quality is expected
to be most stable, so it may not be of as much interest for
a network operator to perform such predictions in any case.
Perfect or nearly perfect accuracy is achievable during the
first minute, when these metrics are most sensitive, with a
one-class margin. Thus, a network operator can, for example,
take measures to optimize and stabilize quality early on in a
session and tweak clients’ allocated resources throughout the
remainder of the stream to reduce rebuffering.



VII. CONCLUSIONS

This paper presented (1) a robust method for predicting QoE
from encrypted video traffic using adapted video fingerprinting
techniques and (2) a systematic analysis of essential system-
level factors, offering practical guidance for network opera-
tors. The best model we tested (vRF) achieves up to 99.2%
accuracy across varied network conditions, demonstrating its
adaptability to real-world scenarios. By analyzing system-
level factors such as training data composition, variability in
bandwidth conditions, and generalizability to unseen videos,
we showed that the presented approach is scalable and feasible
for practical deployment – it remains effective with minimal
training data and generalizes well across sites without any need
for frequent retraining – while providing a host of insights for
network operators wishing to deploy vRF in their networks.
Our proposed method bridges QoE prediction and encrypted
traffic analysis, enabling efficient resource allocation and en-
hanced user satisfaction in modern streaming environments.

Code and Dataset: Our source code and dataset can be
found here: https://github.com/trafnex/qoe-live.
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